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Background

W
hat is the Hilbert space an

d w
here

 does
 it come from?

Find a simple framework leading in a natural manner to the
most basic model of quantum physics.



Towards a simplified description of Hilbert spaces

We may describe complex Hilbert spaces as ...

certain algebras,

certain relational structures, or

certain categories.

C. Heunen, A. Kornell, Axioms for the category of Hilbert
spaces, Proc. Natl. Acad. Sci. USA, 2022.

S. Lack, S. Tobin, A characterisation for the category of
Hilbert spaces, Appl. Categor. Struct., 2025.
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Constructions for Hilbert spaces: composition

Orthogonal sum

For complex Hilbert spaces H1 and H2, let H1 ⊕H2 be the
direct sum of the linear spaces and

(u1 + u2 | v1 + v2) = (u1 | v1)+ (u2 | v2) ,
u1, v1 ∈ H1, u2, v2 ∈ H2.

Then H1 ⊕H2 is likewise a Hilbert space.

Direct limit

For complex Hilbert spaces H1 ⊆ H2 ⊆ . . ., the completion of⋃
iHi is again a Hilbert space.

More generally, we may form the direct limit of an isometric
direct system of complex Hilbert spaces.
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Constructions for Hilbert spaces: decomposition

Orthomodularity

Let S be a closed subspace of a complex Hilbert space.
Then H is the orthogonal sum of S and S⊥, i.e.

H = S ⊕ S⊥.

The “atomic” Hilbert space

Let I be the 1-dimensional complex Hilbert space.

(i) Every non-zero isometry to I is unitary.

(ii) For every non-zero Hilbert space H, there is a non-zero
linear map I → H.

(iii) For every non-zero linear map φ : I → H, there is a linear
automorphism h : I → I such that φ ◦ h is an isometry.
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Square roots of Hilbert space automorphisms

Strict square roots

Let φ be a unitary map on a complex Hilbert space H.
Then there is a unitary map ψ on H such that

ψ2 = φ,

a closed subspace H is reducing for φ
iff it is reducing for ψ.



Dagger categories

Definition (Abramsky, Coecke, Selinger, ...)

A dagger on a category C assigns to each morphism f : X → Y
a morphism f∗ : Y → X such that

(g ◦ f)∗ = f∗ ◦ g∗ for any f : X → Y and g : Y → Z,

idA
∗ = idA for any object A,

f∗∗ = f for any f : X → Y .

A category equipped with a dagger is called a dagger category.

Let HilC consist of

the complex Hilbert spaces;

the bounded linear maps between them;

the adjoint as the dagger.

Then HilC is a dagger category.
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Some sorts of morphisms

Definition

In a dagger category, a morphism f : A→ B is

a dagger monomorphism if f∗ ◦ f = idA,

a dagger isomorphism if f∗ ◦ f = idA and f ◦ f∗ = idB.

Lemma

In HilC,

the monomorphisms are the linear injections;

the dagger monomorphisms are the isometries;

the isomorphisms are the linear isomorphisms;

the dagger isomorphism are the unitary maps.
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Zero object

Definition

A zero object in a dagger category C is an object 0 such that
there is a unique morphism 00,A : 0 → A for each object A.

A zero object is unique up to dagger isomorphism.

Lemma

In HilC, the zero space is the zero object.
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Biproducts

Let C be a dagger category with zero object.

Definition

By a dagger biproduct of A,B ∈ C, we mean a coproduct

A A⊕B B
ιA ιB

such that ιA, ιB are dagger monomorphisms and ιB
∗ ◦ ιA = 0A,B.

Lemma

(i) For spaces H1, H2 ∈ HilC, the orthogonal sum H1 ⊕H2,
together with the inclusion maps, is a biproduct.

(ii) For any orthoclosed subspace S of H ∈ HilC,
H is the biproduct of S and S⊥ via the inclusion maps.
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Simple objects

Definition

A non-zero object I of a dagger category is called atomic (or
dagger simple) if any non-zero dagger monomorphism to I is a
dagger isomorphism.

Lemma

In HilC, a space H is atomic if and only if H is 1-dimensional.
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From a category to a linear structure

Theorem (cf. Herrlich, Strecker)

Consider a category with
biproducts.

For f, g : X → Y , let

f + g = ∇Y ◦ (f ⊕ g) ◦∆X .

X

X X ⊕X X

Y Y ⊕ Y Y

Y

id
∆X

id

ι

f

π π

f⊕g

ι
g

ι

id
∇Y

ι

id

Then:
(C(X,Y );+, 0X,Y ) is a commutative monoid.

Let I ∈ C be such that any non-zero endomorphism of I is
an isomorphism. Then (C(I, I);+, 0I,I , ◦, idI) is a division
semiring.

If, in addition, there are non-zero f, g ∈ C(I, I) such that
f + g = 0, then (C(I, I);+, 0I,I , ◦, idI) is a division ring.
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From a dagger category to Hermitian spaces

Theorem (Paseka, V.)

Let C be a dagger category with a zero object such that:

(H1) C has dagger biproducts.

(H2) For every dagger monomorphism f : A→ X, there is a
further dagger monomorphism g : B → X such that

A X B
f g

is a dagger biproduct.

(H3) C contains an atomic object. In addition, we require:

(a) For any atomic object I and non-zero object A in C, there
is a non-zero morphism u : I → A.

(b) For any non-zero morphism u : I → A from an atomic
object I to an object A ∈ C, there is an automorphism h of
I such that u ◦ h is a dagger monomorphism.

Then ...
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From a dagger category to Hermitian spaces

F = (C(I, I); +, 0I,I , ◦op, idI) is a division ring.

For A ∈ C, put V(A) = C(I, A). Then V(A), equipped with

the addition +,

the constant 0 = 0I,A,

and the scalar multiplication given by

αu = u ◦ α, α ∈ F, u ∈ V(A),

is a linear space over F . Moreover, the product

(u | v) = v∗ ◦ u, u, v ∈ V(A),

makes V(A) into a Hermitian space.

Finally, for a morphism f : A→ B in C,

V(f) : V(A) → V(B), u 7→ f ◦ u
is an adjointable linear map. In fact, V is a dagger functor
from C to the dagger category of Hermitian spaces over F .
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From a dagger category to Hilbert spaces

Definition

In a dagger category, a morphism p : A→ A is a projection if
p∗ = p and p2 = p.

Let f, g : A→ A be dagger automorphims. We say that g is a
strict square root of f if:

g2 = f ,

a projection p : A→ A commutes with f iff p commutes
with g.
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From a dagger category to Hilbert spaces

Theorem (Paseka, V.)

Let C be a dagger category with a zero object such that
conditions (H1)–(H3) hold and:

(H4) The wide subcategory Cdm of dagger monomorphisms has
directed colimits and the inclusion functor Cdm → C

preserves them.

(H5) Every dagger automorphism has a strict square root.

Then

F = C,
V(A) is a complex Hilbert space for each A ∈ C,

and V : C → HilC is a full, faithful, and dagger essentially
surjective dagger functor.

Consequently, C is dagger equivalent to HilC.
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Conclusion

Five axioms characterise the dagger category of
complex Hilbert spaces and bounded linear maps:

(H1) C has dagger biproducts.

(H2) For every dagger monomorphism f : A→ X, there is a
further dagger monomorphism g : B → X such that

A X B
f g

is a dagger biproduct.

(H3) C contains an atomic object. In addition, we require:

(a) For any atomic object I and non-zero object A in C, there
is a non-zero morphism u : I → A.

(b) For any non-zero morphism u : I → A from an atomic
object I to an object A ∈ C, there is an automorphism h of
I such that u ◦ h is a dagger monomorphism.

(H4) The wide subcategory Cdm of dagger monomorphisms has
directed colimits and the inclusion functor Cdm → C

preserves them.

(H5) Every dagger automorphism has a strict square root.


