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Abstract

Weak congruences on algebras were introduced at the end of the
last century as relations that satisfied all features of congruences
except reflexivity. All weak congruences on an algebra form an
algebraic lattice, which has been used for the investigation of
structural properties of algebras.

In this talk, we will mention two aspects of applying weak
congruences.
The first is connected to the representation of various classes of
groups and group-like algebras. Namely, we characterized several
classes of groups by their weak congruence lattices, for example,
abelian groups, Hamiltonian groups, nilpotent groups, solvable
groups, etc.
Another aspect is connected to applications with so-called
Ω-algebras, which are ordinary algebras with generalized equality.
Particular Ω-algebras like Ω -vector spaces have a big role in the
approximate solving of systems of relational equations.
Both aspects will be briefly presented with some examples.
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A. Tepavčević Role of weak congruences in theoretical and practical applications



Abstract

Weak congruences on algebras were introduced at the end of the
last century as relations that satisfied all features of congruences
except reflexivity. All weak congruences on an algebra form an
algebraic lattice, which has been used for the investigation of
structural properties of algebras.
In this talk, we will mention two aspects of applying weak
congruences.
The first is connected to the representation of various classes of
groups and group-like algebras. Namely, we characterized several
classes of groups by their weak congruence lattices, for example,
abelian groups, Hamiltonian groups, nilpotent groups, solvable
groups, etc.
Another aspect is connected to applications with so-called
Ω-algebras, which are ordinary algebras with generalized equality.
Particular Ω-algebras like Ω -vector spaces have a big role in the
approximate solving of systems of relational equations.

Both aspects will be briefly presented with some examples.
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Weak congruences

A weak congruence on an algebra A is a symmetric, transitive
and compatible relation θ on an algebra A, hence fulfilling the
weak reflexivity:

For every nullary operation c in the language of A, cθc .
Equivalently, a weak congruence on an algebra A is a symmetric
and transitive subuniverse of A2

By the definition, if A has no fundamental nullary operations, then
the empty set is also a weak congruence on this algebra.

Clearly, every congruence on a subalgebra of A is a weak
congruence on A, and vice versa, every nonempty weak
congruence θ on A is a congruence on a subalgebra Bθ of A,
where Bθ := {x ∈ A | x θ x}.

Vojvodić, Šešelja: On the lattice of weak congruence relations.
Algebra Universalis 25 (1988), 121-130.
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A. Tepavčević Role of weak congruences in theoretical and practical applications



Weak congruences
A weak congruence on an algebra A is a symmetric, transitive

and compatible relation θ on an algebra A, hence fulfilling the
weak reflexivity:

For every nullary operation c in the language of A, cθc .
Equivalently, a weak congruence on an algebra A is a symmetric
and transitive subuniverse of A2

By the definition, if A has no fundamental nullary operations, then
the empty set is also a weak congruence on this algebra.

Clearly, every congruence on a subalgebra of A is a weak
congruence on A, and vice versa, every nonempty weak
congruence θ on A is a congruence on a subalgebra Bθ of A,
where Bθ := {x ∈ A | x θ x}.
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A. Tepavčević Role of weak congruences in theoretical and practical applications



Weak congruences
A weak congruence on an algebra A is a symmetric, transitive

and compatible relation θ on an algebra A, hence fulfilling the
weak reflexivity:

For every nullary operation c in the language of A, cθc .
Equivalently, a weak congruence on an algebra A is a symmetric
and transitive subuniverse of A2

By the definition, if A has no fundamental nullary operations, then
the empty set is also a weak congruence on this algebra.

Clearly, every congruence on a subalgebra of A is a weak
congruence on A, and vice versa, every nonempty weak
congruence θ on A is a congruence on a subalgebra Bθ of A,
where Bθ := {x ∈ A | x θ x}.
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The weak congruences on A form an algebraic lattice under
inclusion, denoted by Conw(A).

The congruence lattice Con(A) of A is a principal filter in
Conw(A), generated by the diagonal relation ∆ of A.

The congruence lattice of any subalgebra of A is an interval
sublattice of Conw(A).

The subalgebra lattice Sub(A) is isomorphic to the principal ideal
generated by ∆, by sending each weak congruence θ contained in
∆ to its domain.

Therefore, both the subalgebra lattice and the congruence lattice
of an algebra may be recovered and investigated within a single
algebraic lattice.
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Congruence Intersection Property, CIP

If ρ is a congruence on a subalgebra of A, then let

ρA :=
⋂

(θ ∈ ConA | ρ ⊆ θ).

In the lattice of weak congruences, ρA = ρ ∨∆.
A is said to have the congruence intersection property (CIP) if
for any ρ ∈ConB, θ ∈Con C, B, C ∈SubA,

(ρ ∩ θ)A = ρA ∩ θA.

In lattice terms, an algebra has the CIP if and only if

∆ ∨ (ρ ∧ θ) = (∆ ∨ ρ) ∧ (∆ ∨ θ).

Hence, A has the CIP if and only if ∆ is a distributive element of
the lattice CwA, if and only if n∆ : ρ 7→ ρ∨∆ is a homomorphism
from Conw(A) onto ↑∆.
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Congruence Extension Property, CEP

Recall that an algebra A has the Congruence Extension
Property, the CEP, if for any congruence ρ on a subalgebra B of
A, there is a congruence θ on A, such that ρ = B2 ∩ θ.

Theorem

The following are equivalent for an algebra A : A has the CEP if
and only if in Conw(A), for ρ, θ ∈ ConB, B ∈ SubA,
ρ ∨∆ = θ ∨∆ implies ρ = θ;

Corollary

An algebra A has the CIP and the CEP if and only if ∆ is a
neutral element in the lattice Conw(A).

Theorem

If an algebra A has the CIP and the CEP, then any lattice identity
holds on Conw(A) if and only if it holds on SubA and on ConA.
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A. Tepavčević Role of weak congruences in theoretical and practical applications



Congruence Extension Property, CEP

Recall that an algebra A has the Congruence Extension
Property, the CEP, if for any congruence ρ on a subalgebra B of
A, there is a congruence θ on A, such that ρ = B2 ∩ θ.

Theorem

The following are equivalent for an algebra A : A has the CEP if
and only if in Conw(A), for ρ, θ ∈ ConB, B ∈ SubA,
ρ ∨∆ = θ ∨∆ implies ρ = θ;

Corollary

An algebra A has the CIP and the CEP if and only if ∆ is a
neutral element in the lattice Conw(A).

Theorem

If an algebra A has the CIP and the CEP, then any lattice identity
holds on Conw(A) if and only if it holds on SubA and on ConA.
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Representation of lattices by weak congruences

Bacic representation problem

Represent an algebraic lattice by a weak congruence lattice of an
algebra.

Easily solved by Grätzer-Schmidt theorem:
Let B = (A,F ) be an algebra such that ConB is isomorphic with
L. Then the required algebra A can be obtained by adding to F all
the elements from A as nullary operations: A = (A,F ∪ {A}).
Obviously, Conw(A) ∼= ConB ∼= L.

The above construction by which the diagonal relation of the
algebra corresponds to the bottom of the lattice is called the
trivial representation.
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Weak congruence lattice representation problem 1

Let L be an algebraic lattice and a∈ L. Find an algebra such that
its weak congruence lattice is isomorphic with L, the diagonal
relation being the image of a under the isomorphism.

A representation by which the diagonal relation corresponds to an
element different from the bottom of the lattice is said to be
non-trivial.

Weak congruence lattice representation problem 2

Let L be an algebraic lattice. Is there a non-trivial representation
of this lattice by a weak congruence lattice?
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∆-suitable elements.

Many technical lattice conditions.
Some necessary and some sufficient conditions for a lattice and an
element to be representable by a weak congruence lattice of an
algebra.
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Weak congruences on groups

For every group G there is a 1-1 correspondence between weak
congruences and ordered pairs (H,K ) of subgroups of G, such that
K ◁ H.
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Theorem (Czédli, Erné, Šešelja, Tepavčević, 2009)

The following statements on a group G are equivalent:

(1) G is a Dedekind group.

(2) Conw(G ) is modular.

(3) ∆ is a standard (equivalently, a neutral) element of Conw(G ).

(4) G has the CIP and the CEP.

G. Czédli, B. Šešelja, A. Tepavčević, Semidistributive elements in
lattices; application to groups and rings, Algebra Univers. 58
(2008) 349-355.

G. Czédli, M. Erné, B. Šešelja, A. Tepavčević, Characteristic
triangles of closure operators with applications in general algebra,
Algebra Univers. 62 (2009) 399–418.

A. Tepavčević Role of weak congruences in theoretical and practical applications
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Ore’s Theorem: the locally cyclic groups are exactly those with a
distributive subgroup lattice.

Corollary

A group G is cyclic if and only if the subgroup lattice is distributive
and satisfies the maximal condition (ascending chain condition).

Corollary

A group is locally cyclic if and only if its weak congruence lattice is
distributive.
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Theorem

A group G is abelian if and only if Conw(G ) is an A-lattice.

Theorem

A group G is solvable if and only if the lattice Conw(G ) has a
subnormal series of intervals consisting of A-lattices.
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Theorem

A finite group G is nilpotent if and only if Conw(G ) is lower
semimodular.

Theorem

A group G is nilpotent if and only if the lattice Conw(G ) has a
finite series of intervals

[{e}2,H2
1 ], [H

2
1 ,H

2
2 ], . . . , [H

2
i ,H

2
i+1], . . . , [H

2
k ,G

2], (1)

so that for every i ∈ {0, 1, . . . , k} the following holds:

(a) ∆Hi
◀∆;

(b) in the sublattice [H2
i ,G

2] as a lattice with normal elements
determined by H2

i ∨∆, for every δ ∈ C([H2
i ,H

2
i ∨∆]), the

interval [H2
i ,H

2
i ∨∆Hi+1

∨ δ] is an A-lattice determined by
H2
i ∨∆Hi+1

∨ δ.
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Characterization Of Some Classes Of Groups By Series Of
Subgroups, International Journal of Algebra and Computation
2023 33 (2) 211–235.
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Ω-sets and structures

In 1977., M.P. Fourman and D.S. Scott introduced models for
intuitionistic predicate logic. These were Ω-sets, or Heyting-valued
sets, Ω being a Heyting algebra.

A complete Heyting algebra Ω is fixed.
Recall that a complete Heyting algebra is a complete lattice (Ω,⩽)
such that for x , y ∈ Ω, the set {z ∈ Ω | z ∧ x ⩽ y} has a largest
element.
An Ω-set is a pair (A,E ), where A is a nonempty set and E is an
Ω-valued equality, i.e., a function E : A2 → Ω fulfilling:

E (a, b) = E (b, a) (symmetry) and
E (a, b) ∧ E (b, c) ⩽ E (a, c) (transitivity).

Intuitively,
E (a, b) – the ”truth value” of the formula a = b and
E (a, a) – the truth value of the formula a ∈ A.
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A. Tepavčević Role of weak congruences in theoretical and practical applications



Ω-sets and structures

In 1977., M.P. Fourman and D.S. Scott introduced models for
intuitionistic predicate logic. These were Ω-sets, or Heyting-valued
sets, Ω being a Heyting algebra.

A complete Heyting algebra Ω is fixed.
Recall that a complete Heyting algebra is a complete lattice (Ω,⩽)
such that for x , y ∈ Ω, the set {z ∈ Ω | z ∧ x ⩽ y} has a largest
element.
An Ω-set is a pair (A,E ), where A is a nonempty set and E is an
Ω-valued equality, i.e., a function E : A2 → Ω fulfilling:

E (a, b) = E (b, a) (symmetry) and
E (a, b) ∧ E (b, c) ⩽ E (a, c) (transitivity).

Intuitively,
E (a, b) – the ”truth value” of the formula a = b and

E (a, a) – the truth value of the formula a ∈ A.
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An Ω-set may be understood as a ”set-like” entity consisting of
potentially existing (partially defined) elements, only some of
which possess actual existence (are totally defined).

If (A,E ) is an Ω-set, then for all x , y ∈ A
E (x , x) ⩾ E (x , y).

If (A,E ) is an Ω-set, then the mapping µ : A → Ω, such that
µ(x) := E (x , x), for every x ∈ A
is a generalization of a set on which E acts as an equality relation.

The function E in an Ω-set is separated if

x ̸= y and E (x , x) ̸= 0 imply E (x , x) > E (x , y).

Observe that separated symmetric and transitive relation on a set
A is the equality relation on a subset of A.

A. Tepavčević Role of weak congruences in theoretical and practical applications



An Ω-set may be understood as a ”set-like” entity consisting of
potentially existing (partially defined) elements, only some of
which possess actual existence (are totally defined).

If (A,E ) is an Ω-set, then for all x , y ∈ A
E (x , x) ⩾ E (x , y).

If (A,E ) is an Ω-set, then the mapping µ : A → Ω, such that
µ(x) := E (x , x), for every x ∈ A
is a generalization of a set on which E acts as an equality relation.

The function E in an Ω-set is separated if

x ̸= y and E (x , x) ̸= 0 imply E (x , x) > E (x , y).

Observe that separated symmetric and transitive relation on a set
A is the equality relation on a subset of A.
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Ω-algebras

Let Ω be a complete lattice.

An Ω-valued set on a nonempty set X is a mapping µ : X → Ω.

If µ : X → Ω is an Ω-valued set on X then for p ∈ Ω, the set

µp := {x ∈ X | µ(x) ⩾ p}

is a p-cut or (cut) of µ.
Obviously,

µp = µ−1(↑p).

Proposition

The collection {µp | p ∈ Ω} of all cuts of the function µ : X → Ω
is a closure system on X .
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An Ω-valued (binary) relation R on A is a lattice-valued function
on A2, i.e., it is a mapping R : A2 → Ω.

R is symmetric if

R(x , y) = R(y , x) for all x , y ∈ A;

R is transitive if

R(x , y) ⩾ R(x , z) ∧ R(z , y) for all x , y , z ∈ A.
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Let µ : A → Ω and R : A2 → Ω be a lattice-valued function a
lattice-valued relation on A, respectively.

Then R is a lattice-valued relation on µ if for all x , y ∈ A

R(x , y) ⩽ µ(x) ∧ µ(y).

A lattice-valued relation R on µ : A → Ω is said to be reflexive on
µ or µ-reflexive if

R(x , x) = µ(x) for every x ∈ A.

A symmetric and transitive Ω-valued relation R on A, which is
µ-reflexive is a lattice-valued equivalence on µ : A → Ω.
A lattice-valued equivalence R on A is a lattice-valued equality,
if it satisfies the separation property.

A. Tepavčević Role of weak congruences in theoretical and practical applications



Let µ : A → Ω and R : A2 → Ω be a lattice-valued function a
lattice-valued relation on A, respectively.
Then R is a lattice-valued relation on µ if for all x , y ∈ A

R(x , y) ⩽ µ(x) ∧ µ(y).

A lattice-valued relation R on µ : A → Ω is said to be reflexive on
µ or µ-reflexive if

R(x , x) = µ(x) for every x ∈ A.

A symmetric and transitive Ω-valued relation R on A, which is
µ-reflexive is a lattice-valued equivalence on µ : A → Ω.
A lattice-valued equivalence R on A is a lattice-valued equality,
if it satisfies the separation property.

A. Tepavčević Role of weak congruences in theoretical and practical applications



Let µ : A → Ω and R : A2 → Ω be a lattice-valued function a
lattice-valued relation on A, respectively.
Then R is a lattice-valued relation on µ if for all x , y ∈ A

R(x , y) ⩽ µ(x) ∧ µ(y).

A lattice-valued relation R on µ : A → Ω is said to be reflexive on
µ or µ-reflexive if

R(x , x) = µ(x) for every x ∈ A.

A symmetric and transitive Ω-valued relation R on A, which is
µ-reflexive is a lattice-valued equivalence on µ : A → Ω.
A lattice-valued equivalence R on A is a lattice-valued equality,
if it satisfies the separation property.
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A lattice-valued relation R : A2 → Ω on an algebra A = (A,F ) is
compatible with the operations in F if the following holds:

For every n-ary operation f ∈ F , for all a1, . . . , an, b1, . . . , bn ∈ A,
and for every constant (nullary operation) c ∈ F

n∧
i=1

R(ai , bi ) ⩽ R(f (a1, . . . , an), f (b1, . . . , bn));

and R(c, c) = 1.
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For an Ω-set (A,E ), we denote by µ the Ω-valued function on A,
defined by

µ(x) := E (x , x).

We say that µ is determined by E .
E is an Ω-valued relation on µ, namely, it is an Ω-valued equality
on µ.

Proposition

If (A,E ) is an Ω-set and p ∈ Ω, then the cut µp is a subset of A,
and the cut Ep is an equivalence relation on µp.
In addition, the collection of all cuts {Ep | p ∈ Ω} of E is a closure
system, a subposet of the lattice of all weak equivalences on A.
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Ω-algebra; cuts of subalgebras and congruences

Let A = (A,F ) be an algebra and E : A2 → Ω an Ω-valued
equality on A, which is compatible with the operations in F .
Then, (A,E ) is an Ω-algebra.
Algebra A is the underlying algebra of (A,E ).

Proposition

Let (A,E ) be an Ω-algebra. Then the following hold for every
p ∈ Ω:
(i ) The cut µp of µ is a subalgebra of A, and
(ii ) The cut Ep of E is a congruence relation on µp.
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Identities

Let
u(x1, . . . , xn) ≈ v(x1, . . . , xn) (briefly u ≈ v)

be an identity in the type of an Ω-algebra (A,E ). We assume that
variables appearing in terms u and v are from x1, . . . , xn.

Then, (A,E ) satisfies identity u ≈ v (this identity holds on
(A,E )) if the following condition is fulfilled:

n∧
i=1

µ(ai ) ⩽ E (u(a1, . . . , an), v(a1, . . . , an)),

for all a1, . . . , an ∈ A and the term-operations corresponding to
terms u and v respectively.
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If Ω-algebra (A,E ) satisfies an identity, then this identity does not
necessarily hold on A.

On the other hand, if the supporting algebra fulfills an identity,
then also the corresponding Ω-algebra does.

Proposition

If an identity u ≈ v holds on an algebra A, then it also holds on an
Ω-algebra (A,E ).
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Theorem

Let (A,E ) be an Ω-algebra, and F a set of identities in the
language of A. Then, (A,E ) satisfies (all identities in) F if and
only if for every p ∈ L the quotient algebra µp/Ep satisfies the
same identities.
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Proposition

The collection of cuts of E in an Ω-algebra A = (A,E ) is a closure
system on A2, a subposet of the weak congruence lattice Conw(A)
of A.

Theorem (Representation)

Let A be an algebra and R a closure system in Conw(A) such that

if a ̸= b, then (a, b) ̸∈
⋂

{R ∈ R | (a, a) ∈ R} for all a, b ∈ A.

Then there is a complete lattice Ω and an Ω-algebra (A,E ) with
the underlying algebra A, such that R consists of cuts of E .
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Canonical construction

We take Ω to be the starting collection R of weak congruences
ordered by the dual of the set inclusion, ⊇. Being a closure
system, (R,⊇) is a complete lattice. Next, we define E : A2 → Ω:

E (a, b) :=
⋂

(R ∈ R | (a, b) ∈ R) for all a, b ∈ A.

Now we have that ER = R (the cut determined by R considered as
an element of Ω, coincides with R as a weak congruence).

The structure (A,E ) is then the required Ω-algebra, obtained by
the canonical construction.
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For a symmetric and transitive relation R ⊆ A2, we denote by
domR the set {x ∈ A | (x , x) ∈ R}.

Corollary

Let A be an algebra and R a closure system in Conw(A) fulfilling
condition:

if a ̸= b, then (a, b) ̸∈
⋂

{R ∈ R | (a, a) ∈ R} for all a, b ∈ A.

Let also F be a set of identities in the language of A and suppose
that for every R ∈ R, the algebra domR/R fulfills these identities.
Then there is a complete lattice Ω and an Ω-algebra (A,E ), such
that R consists of cuts of E and (A,E ) satisfies F .
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