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Motivation

In this lecture, we generalize the results of Kishida, Rafiee Rad, Sack, and Zhong
by expanding the quantale Q(X ) into a T -based orthomodular dynamic algebra.
Here X is a complete orthomodular lattice (the category of complete
orthomodular lattices and orthomodular lattice isomorphism between them shall
be denoted as COL) and Q(X ) ⊆ P(XX ) is generated by the Sasaki projections
{πa | a ∈ X} and closed under the pointwise lifting of composition

A · B = { f ◦ g | f ∈ A, g ∈ B }.

In other words, we work in a generalized setting that augments Q(X ) with
additional morphisms.
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Standard Orthomodular dynamic algebras

Definition (Generalized dynamic algebra — signature)

A GDA is a tuple (Q,
∨
, ·,∼) where∨

: P(Q) → Q, · : Q × Q → Q, ∼: Q → Q.

No axioms are imposed here; any algebraic laws used later will be stated
explicitly where needed.
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Ordered set preliminary

Definition

An ortho-lattice is a tuple M =
(
M,≤,−⊥) satisfying the following

conditions:

1 (M,≤) is a bounded lattice with least element 0 and greatest element
1.

2 The map −⊥ : M → M satisfies, for all m, n ∈ M,
1 m ∧m⊥ = 0 and m ∨m⊥ = 1
2 m ≤ n ⇒ n⊥ ≤ m⊥

3 (m⊥)⊥ = m.

An ortho-lattice M is defined to be an orthomodular lattice if for all
m, n ∈ Y such that m ≤ n, it holds that n = m ∨

(
m⊥ ∧ n

)
.
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We write x ⊥ y ⇐⇒ x ≤ y⊥.

Definition

A function f : X → Y is defined as a linear map (or adjoint map) from an
orthomodular lattice X to an orthomodular lattice Y if there exists a
function g : Y → X , denoted as f ∗ and referred to as an adjoint of f ,
such that for all x ∈ X and for all y ∈ Y , the following equivalence holds:

f (x) ⊥Y y ⇐⇒ x ⊥X g(y).

The collection of all linear maps from an orthomodular lattice X to an
orthomodular lattice Y is conventionally denoted by Lin(X ,Y ).
Furthermore, if both X and Y are complete orthomodular lattices, then
Lin(X ,Y ) forms a complete lattice. Additionally, when X = Y , Lin(X )
(equivalent to Lin(X ,X )) is a Foulis quantale.
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This subsection will eventually define the category of T -based
orthomodular dynamic algebras. A T -based Orthomodular dynamic
algebra fundamentally enriches a standard Orthomodular dynamic algebra.
We will begin by defining the quantale, and then start by defining the
standard Orthomodular dynamic algebra.
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Notation

In the framework of GDAs, we introduce these definitions:

⊑ def
= {(x , y) ∈ Q × Q |

⊔
{x , y} = y}

PQ
def
= {∼ x | x ∈ Q}∨

X
def
=∼∼

⊔
X , for any X ⊆ PQ∧

X
def
=∼

⊔
{∼ x | x ∈ X}, for any X ⊆ PQ

⪯ def
= {(p, q) ∈ PQ × PQ |

∨
{p, q} = q}

⌜x⌝
def
= λy . ∼∼ (x · y) or ⌜x⌝ : PQ → PQ ⌜x⌝(p) = ∼∼ (x · p).

≡ def
= {(x , y) ∈ Q × Q | ⌜x⌝(p) = ⌜y⌝(p), for each p ∈ PQ}

TQ
def
= {x ∈ Q | x = p1 · · · · · pn, for some n ∈ N+ and p1, . . ., pn ∈ PQ}

We define TQ as the minimal set containing PQ within Q that is closed
under the operation denoted by ”·.”
We may omit the subscript ”Q” from PQ and TQ when the context is
clear.
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Quantales

Definition

A quantale is a pair V = (V ,⊗), where V is a complete
∨
-semilattice and

⊗ is a binary operation on V satisfying:

(V1) a⊗ (b ⊗ c) = (a⊗ b)⊗ c for all a, b, c ∈ V (associativity).

(V2) a⊗ (
∨
S) =

∨
s∈S(a⊗ s) for every S ⊆ V and every a ∈ V .

(V3) (
∨

S)⊗ a =
∨

s∈S(s ⊗ a) for every S ⊆ V and every a ∈ V .

A quantale V = (V ,⊗) is called unital if there exists an element e ∈ V
such that for every a ∈ V the equalities a⊗ e = a and e ⊗ a = a hold.

By an involutive quantale we mean a quantale V equipped with a
semigroup involution ∗ satisfying(∨

ai

)∗
=

∨
a∗i

for all ai ∈ V , i ∈ I .
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Standard Orthomodular dynamic algebras

Definition

(Kishida, et al.) An orthomodular dynamic algebra is a generalized
dynamic algebra Q = (Q,

⊔
, ·,∼) such that

1 (Q,⊑, ·) is a quantale, and
⊔

is the arbitrary join.

2 (P,⪯,∼) is a complete orthomodular lattice, where P ⊆ Q.
3 If A is such that

1 P ⊆ A ⊆ Q
2 A is closed under the operation ·, and
3 A is closed under

⊔
, by which we mean, for any Y ∈ P(A),

⊔
Y ∈ X .

Then A = Q (minimality).

4 For any A,B ⊆ T ,
⊔
A =

⊔
B, if and only if A = B (sets).

5 For any x , y ∈ T , x = y if and only if x ≡ y (completeness).

6 For any p, q ∈ P, ⌜p⌝(q) = πp(q), i.e., ∼∼ (p · q) = p ∧ (∼ p ∨ q)
(Sasaki projection).

7 ⌜x⌝(y) = ⌜x⌝(∼∼ y), for each x , y ∈ Q (composition).
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Standard Orthomodular dynamic algebras

Fix a complete orthomodular lattice X . Let

1 FT (X ) be the smallest set of XX containing {πa | a ∈ X} and closed
under function composition ◦; recall that πa : X → X is the Sasaki
projection to a;

2 Q(X )
def
= P(FT (X ));

3 · : Q(X )×Q(X ) → Q(X ) :: A ·B 7→ {a ◦b ∈ FT (X ) | a ∈ A, b ∈ B};

4 ∼ : Q(X ) → Q(X ) :: A 7→ {π(∨{a(1)|a∈A})⊥}.
It is proven that Q(X ) is a an involutive quantale. With suitable
modification, we are able to obtain even a so-called Foulis quantale.
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Standard Orthomodular dynamic algebras

Given OGDA as the class of all generalized dynamic algebras and OSET as
the class of all sets, we define a class function

T : OGDA → OSET

where for every K ∈ OGDA, T (K ) is a set such that

K̃ ⊆ T (K ) ⊆ K

This framework facilitates the introduction of the T -based orthomodular
dynamic algebra, which constitutes an expansion upon the extant structure
of orthomodular dynamic algebras.
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T-based ODAs (Part I)

A T -based orthomodular dynamic algebra is a generalized dynamic algebra

K = (K ,
⊔

,⊙,∼)

extended with a unary operation −∗ : K → K . This extended structure
must satisfy the following conditions:

lAbel=(TODA 1)(K ,
⊔
,⊙,−∗) forms a unital involutive quantale, and

⊔
is the

arbitrary join.

lBbel=(TODB 2)(K̃ ,≤,∼) is a complete orthomodular lattice. If x ∈ K̃ , then its
conjugate x∗ = x ∈ K̃ .

lCbel=(TODC 3)If a set A meets these criteria:
label=(a)T (K̃ ) ⊆ A ⊆ K ,
lbbel=(b)A is closed under both the ⊙ and −∗ operations,
lcbel=(c)A is closed under

⊔
(for any B ⊆ A,

⊔
B ∈ A),

then A = K . (Minimality)
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T-based ODAs (Part II)

label=(TODa 1), start=4For any S ,T ⊆ ⟨K̃ ⟩,
⊔
S =

⊔
T ⇔ S = T . (Proper set equality)

lbbel=(TODb 2), stbrt=4For any s, t ∈ ⟨K̃ ⟩, s = t ⇔ s ≡ t. (Completeness)

lcbel=(TODc 3), stcrt=4For any v ,w ∈ K̃ , the unary operation v ′(w) is equivalent to the
Sasaki projection:

πv (w) =∼
(
∼ (v ⊙ w)

)
= v ∧ (∼ v ∨ w).

ldbel=(TODd 4), stdrt=4For each k , l ∈ K , the composition property holds:

k ′(l) = k ′
(
∼ (∼ l)

)
.

The category of T -based orthomodular dynamic algebra with structure
preserving bijections shall be denoted as T−ODA.
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The functor Γ : COL → T -ODA

Mapping of objects (I). Let M = (M,≤, (−)⊥) be a complete orthomodular
lattice. Define:

1 LM = T (Lin(M)): a set of endomaps with

{πm : M → M | m ∈ M} ⊆ LM ⊆ Lin(M), πm(b) = m ∧ (m⊥ ∨ b).

2 ⟨LM⟩: involutive subsemigroup of Lin(M) generated by LM , which is a
closure under composition ◦ and the involution (·)∗ given on generators by
π∗
m = πm and extended by

(f ◦ g)∗ = g∗ ◦ f ∗.

3 ⊙: a binary operation on P(⟨LM⟩) defined by

A⊙ B = { a ◦ b | a ∈ A, b ∈ B }.
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The functor Γ : COL → T -ODA

Mapping of objects (II).

5 (·)∗: a unary operation on P(⟨LM⟩) defined by

A∗ = { a∗ | a ∈ A }.

6 ∼: a unary operation on P(⟨LM⟩) defined by

∼ A =
{
π(

∨
a∈A a(1) )⊥

}
.

Define
Γ(M) :=

(
P(⟨LM⟩), ∪, ⊙, ∼, ∗), 1 = {idM}.
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The functor Ψ : T -ODA → COL

On objects. For a T -based ODA K , let PK be its set of tests. Define the OML
operations for X ⊆ PK by

p⊥ :=∼ p,
∧

X :=∼
∨

{∼ x | x ∈ X},
∨

X :=∼
∧

{∼ x | x ∈ X}.

Set Ψ(K ) := (PK ,≤,⊥) with p ≤ q ⇐⇒ p ∨ q = q.

On morphisms. If h : K → L is a T -ODA morphism (among other things,
preserves joins and ∼), define

Ψ(h) : PK → PL, Ψ(h)(p) := h(p).
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T−ODA COL

Ψ

Γ

Γ(M): pick LM = T (Lin(M)), form S = ⟨LM⟩, then P(S) with
∪,⊙, ∗,∼.

Ψ(K ): extract the test OML PK (with p⊥ =∼ p, joins/meets via De
Morgan).

For every L ∈ COL and Ω ∈ T−ODA, there is a natural bijection

HomT−ODA
(
Γ(L),Ω

) ∼= HomCOL
(
L,Ψ(Ω)

)
,

exhibiting Ψ as left adjoint to Γ (Ψ ⊣ Γ).
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Thank you for your listening.
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