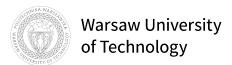
# An introduction of a new operation on a free barycentric algebra

## Adam Siwek work with Adam Komorowski

9 września 2025



# Barycentric algebra

## Definition (Barycentric Algebra)

We call set A with family of bianry operation  $I^0 = \{+_r\}_{r \in (0,1)}$  a Barycentric algebra if following conditions are fulfilled:

$$\begin{array}{ll} \forall_{a \in A} \forall_r & a +_r a = a \\ \forall_{a,b \in A} \forall_r & a +_r b = b +_{1-r} a \\ \forall_{r,p < 1} & \left(a +_p b\right) +_r c = a +_{pr} \left(b +_{\frac{r-pr}{1-pr}} c\right) \end{array}$$

## Free barycentric algebra

#### Lemma

For an arbitrary set G, a set

 $A_G = \{a: G \longrightarrow \mathbb{R}_{\geqslant 0} \mid \sum_{g \in G} a(g) = 1 \land a^{-1}(\mathbb{R}_+) \text{ is finite} \}$  with a family  $I^0 = \{+_r\}_{r \in (0,1)}$  of binary operations such that

$$a +_r b = ra + (1 - r)b$$
,

where  $r \in (0,1)$ , is a free barycentric algebra over a set G.

## Extended operation

#### Definition

Let  $\langle G, \circ \rangle$  be a magma. Let  $\langle B(G), I^0 \rangle$  be a free barycentric algebra over the set G. We define the binary operation  $\odot$  on B(G) by

where  $G_a^{\odot} = \{(x,y) \in G \times G \mid x \circ y = a\}$ . We will call it expanded operation.

## Intuition

Let p be an element of B(G). Then p can be treated as the distribution of a random variable over G. Then the addition operations in the barycentric algebra  $+_r$  can be interpreted as a conditional probability distribution.

Let  $p, q \in B(G)$  be distributions of some random variables X, Y over G. Let R be Bernoulli distribution with  $\mathbb{P}(X=1)=r$ . Then  $\mathbb{P}(z=Z|Z=X \text{ iff } R=1, Z=Y \text{ otherwise})=\mathbb{P}(z=X|R=1)+\mathbb{P}(z=Y|R=0)=\frac{1}{r}\mathbb{P}(z=X)+\frac{1}{1-r}\mathbb{P}(z=Y)=(p+_rq)(z)$ . For our expanded operation we have following interpretation. Let  $p, q \in B(G)$  be distributions of some independent random variables X, Y over G. Then  $(p \odot q)(z)=\mathbb{P}(z=X \circ Y)$ .

# Natural embedding

#### Lemma

Assume that  $\langle G, \circ \rangle$  is a magma. Let  $\langle B(G), I^0, \odot \rangle$  be a free barycentric algebra over the set G with expanded operation and let  $\epsilon: G \longrightarrow B(G)$ ;  $g \mapsto \delta_g$  be an embedding. Then the magma  $\langle G, \circ \rangle$  is isomorphic with the magma  $\langle \epsilon(G), \odot \rangle$ , and  $\epsilon$  is an isomorphism.

## Basic properties

#### **Theorem**

Let  $\langle G, \circ \rangle$  be a magma. Let  $\langle B(G), I^0, \odot \rangle$  be a free barycentric algebra over set G with expanded operation. Then

- 1. if  $\circ$  has associative property then  $\odot$  has associative property.
- 2. if ∘ has commutative property then ⊚ has commutative property.
- 3. if  $\circ$  has identity element then  $\odot$  has identity element.

## Interesting property

#### Lemma

Let  $\langle G, \circ \rangle$  be a finite group of size n. Let  $\langle B(G), I^0, \odot \rangle$  be a free barycentric algebra over set G with expanded operation. Then  $p \in B(G)$  such as  $\forall_{g \in G} p(g) = \frac{1}{n}$ , is a absorbing element  $\mathbb{O}_{\odot}$  in B(G).

## Corollary

If  $\langle G, \circ \rangle$  is a group then  $\langle B(G), \odot \rangle$  is not a group.

# Group of automorphisms

#### **Theorem**

Let  $\langle G, \circ \rangle$  be a finite group. Let  $\langle B(G), I^0, \odot \rangle$  be a free barycentric algebra over set G with expanded operation. Then  $Aut(G, \circ) \cong Aut(B(G), I^0, \odot)$ .

# Group of automorphisms

## **Theorem**

Let  $\langle G, \circ \rangle$  be a finite group. Let  $\langle B(G), I^0, \odot \rangle$  be a free barycentric algebra over set G with expanded operation. Then  $Aut(G, \circ) \cong Aut(B(G), I^0, \odot)$ .

## **Problem**

Let  $\langle G, \circ \rangle$  be a finite group. Let  $\langle B(G), I^0, \odot \rangle$  be a free barycentric algebra over set G with expanded operation. Is  $Aut(G, \circ) \cong Aut(B(G), \odot)$ ?

## Norm

We will now add infinity norm on B(G). From definition if  $p \in B(G)$  then  $||p||_{\infty} = ||\Sigma_{g \in G} p_g g||_{\infty} = max_{g \in G} p_g$ .

#### Lemma

Let  $\langle G, \circ \rangle$  be a finite group. Let  $\langle B(G), I^0, \odot \rangle$  be a free barycentric algebra over set G with expanded operation. If  $p, q \in B(G)$  then  $\|p \odot q\|_{\infty} \leq \|p\|_{\infty}$  and  $\|p \odot q\|_{\infty} \leq \|q\|_{\infty}$ .

## Entropy

#### Definition

Let A be a finite set, and let p be distribution of some random variable X on A, we will denote  $p(x) = \mathbb{P}(x = X)$ . Shannon's entropy will be a function  $H : \mathcal{P} \longrightarrow \mathbb{R}$ ,

$$H(p) = -\sum_{x \in A} p(x) \log(p(x)).$$

Relation between Shannon's entropy and operation on B(G).

#### **Theorem**

Let  $\langle G, \circ, \setminus, / \rangle$  ( $\langle G, \circ \rangle$ ) be a finite quasigroup (group). Let  $\langle B(G), I^0, \odot \rangle$  be a free barycentric algebra over set G with expanded operation. Let  $p, q \in B(G)$ . Then  $H(p \odot q) \geqslant H(p)$  and  $H(p \odot q) \geqslant H(q)$ .

## Order

## Definition

Let  $\langle G, \circ \rangle$  be a finite magma with a partial order  $\leqslant_G$  on the set G. Then we can define a partial order on the set B(G) such as  $p \leqslant_{B(G)} q \Leftrightarrow \forall_{g \in G} \Sigma_{h \in \uparrow g} p(h) \leqslant \Sigma_{h \in \uparrow g} q(h)$ .

# Thank you for your attention

