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Filters and ultrafilters

Given a set X and nonempty collection .% of subsets of X, we say that .7
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(i) if Z € F and ZC Y C X, then Y € Z.
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is a filter on X if the following properties hold:

() o ¢ .7,

(i)if Y,Ze F, then YNZ € Z,

(i) if Z € F and ZC Y C X, then Y € Z.

Definition

A filter .7 is an ultrafilter on X if % is a maximal element (under inclusion)
in the set of all filters on X.

Equivalently, a filter .% is an ultrafilter on X if for each Y C X, either
YecZForX\YecZ.
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Definition (Finocchiaro 2014)

A topological space X is a spectral space if X satisfies the Ty-axiom and
there is a basis % of X such that

Xg(%) ={xeX|[VBeXB,xeB < Bew|}#@

for any ultrafilter 7 on X.



Semirings and k-ideals

A semiring is a nonempty set S with two binary operations +: Sx S — S
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(i) Vae S a-0=0.
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A semiring is a nonempty set S with two binary operations +: Sx S — S
and - : § X S — S such that:

(i) (5,+,0), (S,-,1) are commutative monoids,

(ii) Ya,b,c € S (a+ b)c = ac + bc,

(i) Vae S a-0=0.

An ideal of semiring S is a nonempty subset / C S such that:
(i) Vx,y el x+yel,
(i) VxelVae$S xael.

A k-ideal of semiring S is an ideal / which satisfies the following condition:

Va,beS a€l,a+bel = bel



Hull-kernel topology

Given a set X, the power set PX is a spectral space endowed with the
hull-kernel topology whose open subbase is given by the sets of the form

D(F):={Y e PX|F¢ Y},
where F € PX, |F| < cc.



Hull-kernel topology

Given a set X, the power set PX is a spectral space endowed with the
hull-kernel topology whose open subbase is given by the sets of the form

D(F):={Y ePX|FZY},
where F € PX,

F| < .

Proposition (Jun, Ray and Tolliver 2022)

For a semiring S, the collections of all ideals (proper or not), all prime
ideals and all k-ideals form spectral spaces with the hull-kernel topology.
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Some examples of closure operators defined on the set of ideals of an
additively idempotent semiring S:

e radical closure
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e k-closure (also known as subtractive closure)
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(it can be shown that cl(/) is the unique smallest k-ideal containing /)

e closure with respect to a congruence
I — 1€ :={ae€ S|3bclsuchthat (a,b) € C}

where C is a given congruence on a semiring S.



Spectral spaces arising from semirings

Let S be a semiring and .# be the poset of all ideals of S. A closure
operation

c: 9 — 7 [— 1
is said to be of finite type if
cd(l)y=U{cl(J) | J C I, J e #, Jis finitely generated}.

All closure operators presented on the previous slide are closure operators
of finite type.
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Let S be a semiring and . be the poset of all ideals of S. A closure
operation

c: 9 — 7 [
is said to be of finite type if
cd(l)=U{cl(J)|JC I, Je 7, Jis finitely generated}.

All closure operators presented on the previous slide are closure operators
of finite type.

Proposition (Jun, Ray and Tolliver 2022)

Let S be a semiring and cl be a closure operator of finite type on the
poset . of all ideals of S. Then the set

{(le 7 |cl)=1}

is a spectral space with the hull kernel topology.
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Proposition (Jun, Ray and Tolliver 2022)

Let S be a semiring. The poset (%, C) of all ideals of S ordered by the
inclusion relation is an algebraic lattice.

e From the above statement we know that (.#, C) is an algebraic lattice.

e Given a closure operator c/ of finite type on the set ., we can form the
lattice (c/(-#),C). This naturally raises the question about the properties
of this lattice. In particular, is the lattice (c/(.#), C) algebraic?

e |t turns out that this lattice must indeed be algebraic, and many authors
establish this fact directly.

e In the remainder of this presentation, | will demonstrate an alternative
proof, making use of a well-known continuous closure operator theorem.
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Continuous closure operator theorem

Definition

Let (P, <) be a poset. A subset D C P is said to be directed if
Vx,yeD3ze D x,y <z

Definition

A closure operator ¢/ : P — S between posets is continous if, for all
directed subsets D C P, C/(\/ D) = \/ cl(D) whenever \/ D exists in P.

Theorem (Rhodes and Steinberg 2009)

Let (L,Vi,AL) be an algebraic lattice and suppose that cl : L — L is
a continuous closure operator. Then (cl(L),V (1), Aei(r)) is an algebraic
lattice where

\/ )x:—c/(\/Lx), A )X:: /\Lx

cl(L cl(L

for every subset X C cl(L).



Let S be an additively idempotent semiring and cl be a closure operator
of finite type on the poset .%. Then cl is continous.




Let S be an additively idempotent semiring and cl be a closure operator
of finite type on the poset .%. Then cl is continous.

Corollary

Let S be an additively idempotent semiring. Then the set of all k-ideals
of S, ordered by inclusion, forms an algebraic lattice.



Further directions of research

e Spectral spaces. Investigate order-theoretic properties of spectral spaces
arising from closure operators on semirings. In particular, one could explore
connections between the lattice-theoretic structure of ideals and the topol-
ogy of the associated spectral spaces.



Further directions of research

e Spectral spaces. Investigate order-theoretic properties of spectral spaces
arising from closure operators on semirings. In particular, one could explore
connections between the lattice-theoretic structure of ideals and the topol-
ogy of the associated spectral spaces.

e Lattices of ideals. Study the interplay between algebraic properties of
semirings and the algebraicity of the lattices of certain ideals.
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