Clones between Group $(\mathbb{Z}_8,+)$ and Ring $(\mathbb{Z}_8,+,\cdot)$

Radka Schwartzová

Miroslav Ploščica

Pavol Jozef Šafárik University SSAOS 2025, Češkovice, Czech Republic

8.9.2025

Contents

- Clone lattice on a set
- 2 Interval \mathcal{J}_n in the clone lattice
- $oldsymbol{3}$ Characterization of the interval \mathcal{J}_8 in the clone lattice
 - (i) Generators of the clones
 - (ii) Invariant relations

Lemma

An intersection of any system of clones on a set A forms a clone on A.

Lemma

All clones on a set A form a complete lattice.

Lemma

An intersection of any system of clones on a set A forms a clone on A.

Lemma

All clones on a set A form a complete lattice.

Lemma

An intersection of any system of clones on a set A forms a clone on A.

Lemma

All clones on a set A form a complete lattice.

If |A| = 1, then the clone lattice on A consists of one clone.

Lemma

An intersection of any system of clones on a set A forms a clone on A.

Lemma

All clones on a set A form a complete lattice.

If |A| = 1, then the clone lattice on A consists of one clone.

If |A|=2, then the clone lattice on A consists of countably many clones (Post's Lattice).

Post's Lattice (Emil Post, 1920)

Lemma

An intersection of any system of clones on the set A forms a clone on A.

Lemma

All clones on a set A form a complete lattice.

If |A| = 1, then the clone lattice on A consists of one clone.

If |A|=2, then the clone lattice on A consists of countably many clones (Post's Lattice).

If |A| > 2, then the clone lattice on A consists of uncountable clones.

Interval \mathcal{J}_n in the Clone Lattice

$$\mathcal{J}_n = \langle P(\mathbb{Z}_n, +), P(\mathbb{Z}_n, +, \cdot) \rangle$$

Interval \mathcal{J}_n in the Clone Lattice

$$\mathcal{J}_n = \langle P(\mathbb{Z}_n, +), P(\mathbb{Z}_n, +, \cdot) \rangle$$

The elements of $P(\mathbb{Z}_n,+)$ are all linear functions in the following form

$$p(x_1,\ldots,x_n) = a_0 + a_1x_1 + a_2x_2 + \cdots + a_nx_n,$$

where $a_0 \in \mathbb{Z}_n$, $a_1, \ldots, a_n \in \mathbb{Z}$.

Interval \mathcal{J}_n in the Clone Lattice

$$\mathcal{J}_n = \langle P(\mathbb{Z}_n, +), P(\mathbb{Z}_n, +, \cdot) \rangle$$

The elements of $P(\mathbb{Z}_n, +)$ are all linear functions in the following form

$$p(x_1,\ldots,x_n) = a_0 + a_1x_1 + a_2x_2 + \cdots + a_nx_n,$$

where $a_0 \in \mathbb{Z}_n$, $a_1, \ldots, a_n \in \mathbb{Z}$.

The elements of $P(\mathbb{Z}_n,+,\cdot)$ are all polynomial functions in the following form

$$q(\mathbf{x}) = \sum_{\alpha} a_{\alpha} \mathbf{x}^{\alpha},$$

where $\mathbf{x}=(x_1,\ldots,x_n)$, the sum consists of finitely many tuples $\alpha=(\alpha_1,\ldots,\alpha_n)$ of natural numbers, coefficients a_α belong to the set \mathbb{Z}_n and $\mathbf{x}^\alpha=x_1^{\alpha_1}\ldots x_n^{\alpha_n}$.

What Is Already Known about the Interval $\mathcal{J}_n = \langle P(\mathbb{Z}_n, +), P(\mathbb{Z}_n, +, \cdot) \rangle$?

Solved cases:

• n = prime number p (Rosenberg, 1970)

What Is Already Known about the Interval $\mathcal{J}_n = \langle P(\mathbb{Z}_n, +), P(\mathbb{Z}_n, +, \cdot) \rangle$?

Solved cases:

• n = prime number p (Rosenberg, 1970)

Lemma

Let n, m be prime numbers. If (m, n) = 1, then

$$\mathcal{J}_{mn}\cong\mathcal{J}_m\times\mathcal{J}_n.$$

Corollary

It suffices to investigate the case $n = p^k$, where p is a prime number.

What Is Already Known about the Interval $\mathcal{J}_{p^k} = \langle P(\mathbb{Z}_{p^k}, +), P(\mathbb{Z}_{p^k}, +, \cdot) \rangle$?

Solved cases:

• $n=p^2$, where p is prime number (Krokhin et al. 1997; Idziak and Bulatov, 2003)

Open problem

What is the structure of the clone lattice of the interval \mathcal{J}_{p^3} ?

Our result:

A complete characterization of the interval $\langle P(\mathbb{Z}_8,+),M_1\rangle\subseteq\mathcal{J}_8$ in the clone lattice, where

$$\mathcal{J}_8 = \langle P(\mathbb{Z}_8, +), P(\mathbb{Z}_8, +, \cdot) \rangle, \quad (p = 2).$$

Used tools:

- 2^k -ary relations, where their elements are $\mathbf{x} = (x_A | A \in \mathcal{P}_k)$.
- (Möbius basis) We define $\mathbf{g}^A = (g_B^A \mid B \in \mathcal{P}_k) \in \mathbb{Z}_8^{P_k}$ for every $A \in \mathcal{P}_k$ as follows

$$g_B^A = \left\{ \begin{array}{l} 1, \text{ if } A \subseteq B; \\ 0, \text{ otherwise.} \end{array} \right.$$

Lemma

Every $\mathbf{x} \in \mathbb{Z}_8^{\mathcal{P}_k}$ can be expressed in the form

$$\mathbf{x} = \sum_{A \in \mathcal{P}_k} a_A \mathbf{g}^A,$$

where

$$a_A = (-1)^{|A|} \sum_{B \subseteq A} (-1)^{|B|} x_B$$

for every $A \in \mathcal{P}_k$. The expression of the element x in this form is uniquely determined.

Definition of the Clone M_1 via an Invariant Relation

The clone M_1 consists of all ring polynomials \mathbb{Z}_8 that preserve the relation Z.

Definition

The relation Z is 2^4 -ary relation on \mathbb{Z}_8 , that consists of all elements $\mathbf{u}=(u_A\mid A\in\mathcal{P}_4)$ satisfying:

- (1) $a_2 \equiv 2a_1 \pmod{4}$, $a_4 \equiv 2a_3 \pmod{4}$;
- (2) $a_A \equiv 0 \pmod{2}$, if $|A| \ge 2$;
- (3) $a_A \equiv 0 \pmod{4}$, if $|A| \ge 2$, $A \cap \{2, 4\} \ne \emptyset$;
- (4) $a_A = 0$, if $\{2, 4\} \subseteq A$.

Definition of the Clone M_1 by Its Generators

Definition

Let $f(x_1, \ldots, x_n)$ be a polynomial with variables x_1, \ldots, x_n . A polynomial $f(x_1, \ldots, x_n)$ is fully divisible if it is divisible by $x_1x_2 \ldots x_n$.

Lemma (Bulatov)

Every clone on the interval \mathcal{J}_{n^k} is generated by its fully divisible members.

Definition of the Clone M_1 by Its Generators

Lemma

Let be $n \geq 2$, then n-ary fully divisible polynomial on \mathbb{Z}_8 preserve the relation Z iff it can be expressed in the form

$$f = 2x_1 \dots x_n \left(\sum_{i=1}^n a_i x_i^2 + \sum_{i=1}^n b_i x_i + c \right),$$

where $a_i, b_i \in \{0, 1\}$ for all $i \text{ a } c \in \{0, 1, 2, 3\}.$

Definition of the Clone M_1 by Its Generators

Lemma

Let be $n \geq 2$, then n-ary fully divisible polynomial on \mathbb{Z}_8 preserve the relation Z iff it can be expressed in the form

$$f = 2x_1 \dots x_n \left(\sum_{i=1}^n a_i x_i^2 + \sum_{i=1}^n b_i x_i + c \right),$$

where $a_i, b_i \in \{0, 1\}$ for all $i \text{ a } c \in \{0, 1, 2, 3\}.$

Lemma

Unary fully divisible polynomial on \mathbb{Z}_8 preserve Z iff it can be expressed in the form

$$f = ax^3 + bx^2 + cx,$$

where a, b are even.

What Are the Generators of Clones on the Interval $\langle P(\mathbb{Z}_8,+), M_1 \rangle \subseteq \mathcal{J}_8$?

Let us denote some n-ary $(n \ge 1)$ operations on \mathbb{Z}_8 :

$$r_n = x_1 x_2 \dots x_n;$$

$$t_n = \begin{cases} x_1 x_2 \dots x_n (x_1 + \dots + x_n), & \text{if } n \text{ is even;} \\ x_1 x_2 \dots x_n (x_1 + \dots + x_n + 1), & \text{if } n \text{ is odd;} \end{cases}$$

$$s_n = \begin{cases} x_1 x_2 \dots x_n (x_1 + \dots + x_n), & \text{if } n \text{ is even;} \\ x_1 x_2 \dots x_n (x_1 + \dots + x_n + 1), & \text{if } n \text{ is odd;} \end{cases}$$

$$u_n = x_1 x_2 \dots x_n (x_1 + 1);$$

$$v_n = x_1 x_2 \dots x_n (x_1 + x_2);$$

$$p_n = x_1^2 x_2 \dots x_n;$$

$$q_n = x_1^3 x_2 \dots x_n.$$

C(f) = a clone generated by operation f, addition and constants.

What Are the Generators of Clones on the Interval $\langle P(\mathbb{Z}_8,+), M_1 \rangle \subseteq \mathcal{J}_8$?

Let us denote some n-ary $(n \ge 1)$ operations on \mathbb{Z}_8 :

$$r_n = x_1 x_2 \dots x_n;$$

$$t_n = \left\{ \begin{array}{l} x_1 x_2 \dots x_n (x_1 + \dots + x_n), \text{ if } n \text{ is even;} \\ x_1 x_2 \dots x_n (x_1 + \dots + x_n + 1), \text{ if } n \text{ is odd;} \end{array} \right.$$

$$s_n = \left\{ \begin{array}{l} x_1 x_2 \dots x_n (x_1 + \dots + x_n), \text{ if } n \text{ is even;} \\ x_1 x_2 \dots x_n (x_1 + \dots + x_n + 1), \text{ if } n \text{ is odd;} \right.$$

$$u_n = x_1 x_2 \dots x_n (x_1 + 1);$$

$$v_n = x_1 x_2 \dots x_n (x_1 + x_2);$$

$$p_n = x_1^2 x_2 \dots x_n;$$

$$q_n = x_1^3 x_2 \dots x_n.$$

C(f) = a clone generated by operation f, addition and constants.

Lemma

If $C(f) \subseteq M_1$, then C(f) can be expressed in the form

$$C(2t_{n_1}) \vee C(2u_{n_2}) \vee C(2v_{n_3}) \vee C(2s_{n_4}) \vee C(2p_{n_5}) \vee C(2q_{n_6}) \vee C(2r_{n_7}) \vee C(4r_{n_8}).$$

Ordering of Clones on $\langle P(\mathbb{Z}_8,+), M_1 \rangle$

Lemma

Let be $n \geq 1$, then

- (i) $C(2p_n) \subseteq C(2q_n) \subseteq C(2p_{n+1})$;
- (ii) $C(2p_n) \subseteq C(2r_{n+1}) \subseteq C(2q_{n+1}) \cap C(2r_{n+2});$
- (iii) $C(2s_n) \cup C(2u_n) \subseteq C(2r_{n+1});$
- (iv) $C(2v_{n+1}) \subseteq C(2q_n)$;
- (v) $C(2q_1) \subseteq C(2u_2)$;
- (vi) if n is odd, then $C(2s_n) \subseteq C(2p_n)$;
- (vii) if n is even, then $C(2s_n) \subseteq C(2q_n)$;
- (viii) $C(2r_n) \subseteq C(2p_{n+1}) \subseteq C(2r_{n+2})$.

Ordering of Clones on $\langle P(\mathbb{Z}_8,+), M_1 \rangle$

Ordering of Clones on $\langle P(\mathbb{Z}_8,+), M_1 \rangle$

Definition of the Clones via Invariant Relations

We define the following conditions depending on k:

(C1)
$$a_{2m} \equiv 2a_{2m-1} \pmod{4}$$
 for $m = 1, ..., k$;

(C2)
$$a_A = 0 \pmod{2}$$
, if $|A| \ge 2$;

(C3)
$$a_A = 0 \pmod{4}$$
, if $|A| \ge 2$, $A \nsubseteq N$;

(C4)
$$a_{N_m} + 2a_N = 0$$
, for $m = 1, ..., k$;

(C5)
$$a_{N_m} = 0$$
 for $m = 1, ..., k$;

(C6)
$$a_{N_1} + \cdots + a_{N_k} + 2a_N = 0$$
;

(C7)
$$a_{N_1} + \cdots + a_{N_k} = 0$$
;

(C8)
$$a_{N_1} = \cdots = a_{N_k}$$
;

(C9)
$$2a_N = 0$$
;

where
$$N=\{1,3,5,\dots,2k-1\}$$
, $N_m=\{\{1,3,5,\dots,2k-1\}-\{2m-1\}\}\cup\{2m\}$ for $m=1,\dots,k$.

Definition

Let be n = 4, 5, 6, 7, 8, 9, then H_n is 2^{2k} -ary relation on \mathbb{Z}_8 , that consists of all elements satisfying (C1), (C2), (C3) a (Cn).

Invariant Relations

	H_4	H_5	H_8	H_9
$2t_n$	n < k	n < k	n < k + 1	$n < \infty$
$2u_n$	n < k	n < k	n < k	$n < \infty$
$2v_n$	n < k	n < k	n < k	$n < \infty$
$2s_n$	n < k	$n < \infty$	$n < \infty$	n < k
$2p_n$	n < k	n < k	n < k	n < k
$2q_n$	n < k - 1	n < k - 1	n < k - 1(*)	n < k
$2r_n$	n < k + 1	n < k	n < k + 1	n < k
$4r_n$	$n < \infty$	$n < \infty$	$n < \infty$	$n < \infty$

	H_6	H_6	H_7	H_7
	k even	k odd	k even	$k \ odd$
$2t_n$	n < k + 1	n < k	n < k + 1	n < k
$2u_n$	n < k	n < k	n < k	n < k
$2v_n$	n < k + 1	n < k + 1	n < k + 1	n < k + 1
$2s_n$	n < k	n < k	$n < \infty$	$n < \infty$
$2p_n$	n < k + 1	n < k	n < k	n < k + 1
$2q_n$	n < k	n < k	n < k	n < k
$2r_n$	n < k	n < k + 1	n < k + 1	n < k
$4r_n$	$n < \infty$	$n < \infty$	$n < \infty$	$n < \infty$

Definition of the Clones via Invariant Relations

Definition

Let be $2 \le l \le k$. $R_{k,l}$ is 2^k -ary relation on \mathbb{Z}_8 , where all elements satisfy the following conditions

- (D1) $a_A = 0 \pmod{2}$, if $|A| \ge 2$;
- (D2) $a_A = 0 \pmod{4}$, if $|A| \ge l$;
- (D3) $a_{\{1,...,k\}} = 0.$

$$\begin{array}{|c|c|c|c|} \hline 2t_n & n < k - l + 2 \text{ a } n < k - 1 \\ 2u_n & n < k - l + 2 \text{ a } n < k - 1 \\ 2v_n & n < k - l + 2 \text{ a } n < k - 1 \\ 2s_n & n < l + 2 \text{ a } n < k - 1 \\ 2p_n & n < l + 2 \text{ a } n < l + 1 \\ 2q_n & n < k - l + 2 \text{ a } n < l \\ 2q_n & n < k - l + 1, n < k - 2 \text{ a } n < l \\ 2r_n & n < k - l + 2 \text{ a } n < l \\ 4r_n & n < k & n < k \\ \hline \end{array}$$

Thank you for your attention :)