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Ordered sets preliminaries

Definition 1

An ortholattice is a bounded lattice M = (M,≤, 0, 1) equipped

with an orthocomplementation map ⊥: M → M that satisfies the

following axioms for all m, n ∈ M:

1 Complementation: m ∧m⊥ = 0 and m ∨m⊥ = 1.

2 Involution: (m⊥)⊥ = m.

3 Order-Reversing: If m ≤ n, then n⊥ ≤ m⊥.

An orthomodular lattice is an ortholattice that satisfies the

orthomodular law: for all m, n ∈ M such that m ≤ n, it holds that

n = m ∨
(
m⊥ ∧ n

)
.
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Ordered sets preliminaries

Definition 2

Given two orthomodular lattices M1 =
(
M1,≤1,−⊥1

)
and

M2 =
(
M2,≤2,−⊥2

)
, an ortholattice isomorphism

g : M1 → M2 is a function g : M1 → M2 that satisfies the

following conditions for every m, n ∈ M1:

1 Bijectivity: g is a bijection.

2 Order-Preservation: m ≤1 n ⇔ g (m) ≤2 g (n).

3 Orthocomplementation-Preservation:

g
(
m⊥1

)
= (g (m))

⊥2
.

OML is the category of orthomodular lattices and ortholattice

isomorphisms.
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Definition 3

An m-semilattice is a tuple K = (K ,⊔,⊙) satisfying the

following:

1 (K ,⊔) is a bounded join-semilattice.

2 (K ,⊙) is a semigroup.

3 ⊙ distributes over finite joins in K .

An m-semilattice is unital if its semigroup is a monoid (i.e., has

an identity element).

An m-semilattice K is involutive if there exists a unary operation

−∗ on K such that (K ,⊙,−∗) forms an involutive semigroup

and the involution distributes over finite joins in K .
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Remark 1

Within an ortholattice M = (M,≤,⊥), the Sasaki projection

onto an element m ∈ M is the map πm : M → M defined by

πm(n) = m ∧ (m⊥ ∨ n) for all n ∈ M.

For orthomodular lattices M and N , a function f : M → N is

defined as a linear map if there exists a map f ∗ : N → M,

called its adjoint, such that the following condition holds for

all m ∈ M and n ∈ N:

f (m) ⊥ n ⇐⇒ m ⊥ f ∗(n).

The set of all linear maps from M to N is denoted by

Lin(M,N ). When M = N , the set Lin(M,M) = Lin(M) is

a unital involutive m-semilattice.
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Finitary generalized dynamic algebra

Definition 4

A finitary generalized dynamic algebra is a tuple

K = (K ,
⊔
,⊙,∼) where:

1 K is a non-empty set.

2
⊔

: Pfin(K ) → K is a finitary join operation, where Pfin(K )

denotes the set of all finite subsets of K .

3 ⊙ : K × K → K is a binary operation.

4 ∼: K → K is a unary operation.

From this, we derive the following terms and constructions:
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Terms and constructions on K = (K ,
⊔
,⊙,∼):

Complemented Elements: The set of complemented

elements, denoted by K̃ , is defined as:

K̃
def
= {∼ k | k ∈ K}

Finite Join: The finite join of a set W ⊆ K̃ is defined as:∨
W

def
= ∼ (∼

⊔
W ) , for any finite W ⊆ K̃

Finite Meet: The finite meet of a set W ⊆ K̃ is defined as:∧
W

def
= ∼

⊔
{∼ w | w ∈ W } , for any finite W ⊆ K̃

Order Relation: The order relation ⪯ on K̃ is defined as:

⪯ def
=

{
(k, l) ∈ K̃ × K̃ |

∨
{k, l} = l

}
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Generated Elements: The set of elements generated by

complemented elements via the ⊙ operation, denoted by ⟨K̃ ⟩,
is defined as:〈

K̃
〉

def
=

{
k ∈ K : k = w1 ⊙ · · · ⊙ wn, for some n ∈ N+ and

w1, . . . ,wn ∈ K̃
}
.

Dynamic Closure: For a fixed element k ∈ K , a unary

operation is defined as:

⌜k⌝(l)
def
= ∼ (∼ (k ⊙ l)) , for all l ∈ K

Dynamic Equivalence Axiom: The Dynamic Equivalence

Axiom introduces an equivalence relation ≡ on K :

≡ def
=

{
(k, l) ∈ K × K | ⌜k⌝(w) = ⌜l⌝(w), for every w ∈ K̃

}
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Finitary orthomodular dynamic algebra

Definition 5

A finitary orthomodular dynamic algebra is a finitary

generalized dynamic algebra K = (K ,
⊔
,⊙,∼) with a unary

operation −∗ : K → K that satisfies the following conditions:

1 K forms a unital involutive m-semilattice, and (K̃ ,⪯,∼) is

an orthomodular lattice where x∗ = x for all x ∈ K̃ .

2 Finitary Uniqueness Axiom: For any subsets S ,T ⊆
〈
K̃
〉
,⊔

S =
⊔
T if and only if S = T .

3 Dynamic Equality Axiom: For any s, t ∈
〈
K̃
〉
, s = t if and

only if s ≡ t.
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Finitary orthomodular dynamic algebra

4 Generative Axiom: K is the smallest subset of itself that

contains K̃ and is closed under the ⊙, −∗, and
⊔

operations.

5 Dynamic Orthomodularity Axiom: For any v ,w ∈ K̃ ,

⌜v⌝(w) = πv (w), where πv is an Sasaki projection.

6 Composition Axiom: For each k , l ∈ K , the composition

property holds: ⌜k⌝(l) = ⌜k⌝(∼ (∼ l)).
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Definition 6

A FODA-morphism f : K1 → K2 is a function between two finitary

orthomodular dynamic algebras that preserves their structure.

Specifically, for all elements and finite sets in the domain, it

satisfies:

1 Ortholattice Isomorphism Axiom: f |
K̃1

: K̃1 → K̃2 is an

ortholattice isomorphism.

2 Finitary Join Preservation: f preserves the finitary join

operation, i.e., f
(⊔

1 A
)
=

⊔
2{f (a) | a ∈ A}.

3 Dynamic Product Preservation: f preserves the dynamic

product operation, i.e., f (k ⊙1 l) = f (k)⊙2 f (l).
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4 Dynamic Complement Preservation: f preserves the

dynamic complement operation, i.e., f
(
∼1 k

)
=∼2

(
f (k)

)
.

5 Involution Preservation: f preserves the involution

operation, i.e., f
(
k∗1

)
=

(
f (k)

)∗2 .
6 Unit Preservation: f maps the unit element of the first

algebra to the unit element of the second, i.e., f (e1) = e2.

FODA is the category of finitary orthomodular dynamic algebras

and FODA-morphisms.

We will now prove that the category of orthomodular lattices

(OML) is categorical equivalence to the category of finitary

orthomodular dynamic algebras (FODA).
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Categorical equivalence

Definition 7

An equivalence between categories C and D is a pair of covariant

functors Γ : C → D and Ψ : D → C such that

1 there is a natural isomorphism µ : 1C → Ψ ◦ Γ

2 there is a natural isomorphism λ : 1D → Γ ◦Ψ.

OML FODA

Γ

Ψ
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The Functor Γ : OML → FODA

Mapping of Objects

For an arbitrary orthomodular lattice M =
(
M,≤,−⊥), The

object mapping of Γ is defined such that

Γ(M) =
(
Pfin(SM),

⋃
,⊙,∼,−∗), where:

1 SM: The smallest subset of containing all Sasaki projections

on M and closed under function composition and involution.

2 Pfin(SM): The set of all finite subsets of SM.

3 Dynamic Product (⊙): A binary operation on Pfin(SM)

defined by

A⊙ B = { a ◦ b | a ∈ A, b ∈ B} ∈ Pfin(SM)

for every A,B ∈ Pfin(SM).
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The Functor Γ : OML → FODA

4 Dynamic Complement (∼): A unary operation on Pfin(SM)

defined by

∼ A =

{
π(∨

{ a(1) | a∈A}
)⊥}

for every A ∈ Pfin(SM).

5 Involution (−∗): A unary operation on Pfin(SM) defined by

A∗ = { a∗ | a ∈ A}

for every A ∈ Pfin(SM).
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The Functor Γ : OML → FODA

Mapping of Arrows

Let M1 = (M1,≤1,−⊥1) and M2 = (M2,≤2,−⊥2) be

orthomodular lattices. Given an ortholattice isomorphism

g : M1 → M2, the arrow mapping of Γ is defined as

Γ(g) : Γ(M1) → Γ(M2)

A 7→ {g ◦ a ◦ g−1 | a ∈ A}

Theorem 8

The mapping Γ constitutes a functor from the category of

orthomodular lattices (OML) to the category of finitary

orthomodular dynamic algebras (FODA).
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The Functor Ψ : FODA → OML

Mapping of Objects

Let K = (K ,
⊔
,⊙,∼,−∗) be a finitary orthomodular dynamic

algebra. The object mapping of Ψ is defined such that

Ψ(K) = (K̃ ,⪯,−⊥), where K̃ = {∼ k | k ∈ K}.

Mapping of Arrows

Let K1 = (K1,
⊔

1,⊙1,∼1,−∗1) and K2 = (K2,
⊔

2,⊙2,∼2,−∗2) be

finitary orthomodular dynamic algebras. Given a FODA-morphism

f : K1 → K2, the arrow mapping of Ψ is defined as

(Ψ)(f ) : Ψ(K1) → (Ψ)(K2)

k 7→ f (k)
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The Functor Ψ : FODA → OML

Theorem 9

The mapping Ψ constitutes a functor from the category of finitary

orthomodular dynamic algebras (FODA) to the category of

orthomodular lattices (OML).

To establish a categorical equivalence between OML and FODA,

we now define the natural isomorphisms µ : 1OML → Ψ ◦ Γ and

λ : 1FODA → Γ ◦Ψ.
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The Natural Isomorphism λ : 1FODA → Γ ◦Ψ

The Natural Isomorphism λ : 1FODA → Γ ◦Ψ
We define the natural transformation λ : 1FODA → Γ ◦Ψ such that

λK : K → (Γ ◦Ψ)(K) for every object K = (K ,
⊔
,⊙,∼,−∗) in

FODA as:

λK(k) =
{
πp(i,1) ◦ πp(i,2) ◦ . . . ◦ πp(i,ni ) | 1 ≤ i ≤ m

}
for every k =

m⊔
i=1

{
p(i ,1) ⊙ p(i ,2) ⊙ . . .⊙ p(i ,ni )| 1 ≤ i ≤ m

}
∈ K ,

where p(i ,j) ∈ K̃ for each (i , j) ∈
m⋃
i=1

({i} × {1, . . . , ni}) and

(Γ ◦Ψ)(K) = Pfin(SK̃ ).

This natural transformation λ constitutes a natural isomorphism.
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The Natural Isomorphism µ : 1OML → Ψ ◦ Γ

The Natural Isomorphism µ : 1OML → Ψ ◦ Γ
We define the natural transformation µ : 1OML → Ψ ◦ Γ as

µM : M → (Ψ ◦ Γ) (M)

m 7→ {πm}

for every object M =
(
M,≤,−⊥) in OML, where

(Ψ ◦ Γ) (M) = {∼ W | W ∈ Pfin(SM)}
This natural transformation µ constitutes a natural isomorphism.

Theorem 10

The quadruple (Γ,Ψ, λ, µ) establishes a categorical equivalence

between OML and FODA.
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Conclution and future research

Conclution and future research

The category FODA is categorically equivalent to the category

OML.

Future work will extend the finitary orthomodular dynamic

algebra to Relation-based orthomodular dynamic algebra

and Function-based orthomodular dynamic algebra, as

described in Rad et al. (2025). We will then investigate their

categorical equivalence.
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