How generalized quasiorders appear in rectangular algebras

Reinhard Pöschel coauthors: Danica Jakubíková-Studenovská (Košice) Sándor Radeleczki (Miskolc)

> Technische Universität Dresden Institute of Algebra

Summerschool on General Algebra and Ordered Sets Blansko, Sept. 7–12, 2025

Outline

Generalized quasiorders and generalized partial orders

Rectangular algebras

Outline

Generalized quasiorders and generalized partial orders

Rectangular algebras

$$f:A^n\to A \text{ $(n$-ary operation), }\varrho\subseteq A^m \text{ $(m$-ary relation)}$$

$$\forall f\colon \boxed{f\triangleright\varrho\iff\operatorname{trl}(f)\triangleright\varrho} \quad (\Xi) \qquad \bullet^{\mathrm{Def}\,\triangleright}$$

$$\operatorname{trl}(f):=\{f(c_1,\ldots,c_{i-1},x,c_{i+1},\ldots,c_n)\mid i\in\{1,\ldots,n\},c_1,\ldots,c_n\in A\}$$

$$(\textit{unary translations} \text{ of }f)$$

(王) holds for

- equivalence relations $\varrho \in \operatorname{Eq}(A)$ (reflexiv, symmetric, transitive)
- quasiorder relations $\varrho \in \mathrm{Quord}(A)$ (binary, reflexive, transitive)
- generalized quasiorders (*m*-ary, reflexive, transitive JPR 2022 (published in Algebra Universalis 2024)

history (JPR = D. Jakubíková-Studenovská, R.P., S. Radeleczki): investigation of (the lattice of) congruence and quasiorder lattices Con(A, F), Quord(A, F), (since 2007)

$$f:A^n\to A \text{ $(n$-ary operation), }\varrho\subseteq A^m \text{ $(m$-ary relation)}$$

$$\forall f\colon \boxed{f\triangleright\varrho\iff\operatorname{trl}(f)\triangleright\varrho} \quad (\Xi)$$

$$\operatorname{trl}(f):=\{f(c_1,\ldots,c_{i-1},x,c_{i+1},\ldots,c_n)\mid i\in\{1,\ldots,n\},c_1,\ldots,c_n\in A\}$$

$$(\textit{unary translations of }f)$$

(Ξ) holds for

- ullet equivalence relations $arrho\in \mathrm{Eq}(A)$ (reflexiv, symmetric, transitive)
- quasiorder relations $\varrho \in \operatorname{Quord}(A)$ (binary, reflexive, transitive)
- generalized quasiorders (*m*-ary, reflexive, transitive)
 JPR 2022 (published in Algebra Universalis 2024)

history (JPR = D. JAKUBÍKOVÁ-STUDENOVSKÁ, R.P., S. RADELECZKI): investigation of (the lattice of) congruence and quasiorder lattices Con(A, F), Quord(A, F), (since 2007)

$$f:A^n\to A \text{ $(n$-ary operation), }\varrho\subseteq A^m\text{ $(m$-ary relation)}$$

$$\forall f\colon \boxed{f\triangleright\varrho\iff\operatorname{trl}(f)\triangleright\varrho} \quad (\Xi)$$

$$\operatorname{trl}(f):=\{f(c_1,\ldots,c_{i-1},x,c_{i+1},\ldots,c_n)\mid i\in\{1,\ldots,n\},c_1,\ldots,c_n\in A\}$$

$$(\textit{unary translations of }f)$$

(Ξ) holds for

- ullet equivalence relations $arrho\in \mathrm{Eq}(A)$ (reflexiv, symmetric, transitive)
- ullet quasiorder relations $arrho\in \mathrm{Quord}(A)$ (binary, reflexive, transitive)
- generalized quasiorders (*m*-ary, reflexive, transitive JPR 2022 (published in Algebra Universalis 2024)

history (JPR = D. Jakubíková-Studenovská, R.P., S. Radeleczki): investigation of (the lattice of) congruence and quasiorder lattices Con(A, F), Ouord(A, F), (since 2007)

$$f:A^n\to A \text{ $(n$-ary operation), }\varrho\subseteq A^m \text{ $(m$-ary relation)}$$

$$\forall f\colon \boxed{f\triangleright\varrho\iff\operatorname{trl}(f)\triangleright\varrho} \quad (\Xi)$$

$$\operatorname{trl}(f):=\{f(c_1,\ldots,c_{i-1},x,c_{i+1},\ldots,c_n)\mid i\in\{1,\ldots,n\},c_1,\ldots,c_n\in A\}$$

$$(\textit{unary translations of }f)$$

(Ξ) holds for

- ullet equivalence relations $arrho\in\mathrm{Eq}(A)$ (reflexiv, symmetric, transitive)
- quasiorder relations $\varrho \in \operatorname{Quord}(A)$ (binary, reflexive, transitive)
- generalized quasiorders (m-ary, reflexive, transitive)
 JPR 2022 (published in Algebra Universalis 2024)

history (JPR = D. JAKUBÍKOVÁ-STUDENOVSKÁ, R.P., S. RADELECZKI): investigation of (the lattice of) congruence and quasiorder lattices Con(A, F), Quord(A, F), (since 2007)

$$f:A^n\to A \text{ $(n$-ary operation), }\varrho\subseteq A^m \text{ $(m$-ary relation)}$$

$$\forall f\colon \boxed{f\triangleright\varrho\iff\operatorname{trl}(f)\triangleright\varrho} \quad (\Xi)$$

$$\operatorname{trl}(f):=\{f(c_1,\ldots,c_{i-1},x,c_{i+1},\ldots,c_n)\mid i\in\{1,\ldots,n\},c_1,\ldots,c_n\in A\}$$

$$(\textit{unary translations of }f)$$

(Ξ) holds for

- ullet equivalence relations $arrho\in \mathrm{Eq}(A)$ (reflexiv, symmetric, transitive)
- quasiorder relations $\varrho \in \operatorname{Quord}(A)$ (binary, reflexive, transitive)
- generalized quasiorders (m-ary, reflexive, transitive)
 JPR 2022 (published in Algebra Universalis 2024)

history (JPR = D. JAKUBÍKOVÁ-STUDENOVSKÁ, R.P., S. RADELECZKI): investigation of (the lattice of) congruence and quasiorder lattices Con(A, F), Quord(A, F), (since 2007)

Definition

Let $\varrho \subseteq A^m$ (*m*-ary relation)

- reflexive : $\iff \forall a \in A : (a, ..., a) \in \rho$.
- transitive

$$:\iff \forall (a_{ij})_{i,j\in\{1,\ldots,m\}}: \varrho\models(a_{ij})\implies(a_{11},\ldots,a_{mm})\in\varrho$$

- generalized quasiorder : ←⇒ reflexive & transitive
- $gQuord(A) := all generalized quasiorders on <math>A \ (m \in \mathbb{N}_+)$

Remark:
$$gQuord^{(2)}(A) = Quord(A)$$

Definition

Let $\varrho \subseteq A^m$ (*m*-ary relation)

- reflexive : $\iff \forall a \in A : (a, ..., a) \in \varrho$.
- transitive

$$:\iff \forall (a_{ij})_{i,j\in\{1,\ldots,m\}}: \varrho\models (a_{ij})\implies (a_{11},\ldots,a_{mm})\in \varrho$$

- generalized quasiorder : ⇒ reflexive & transitive
- $gQuord(A) := all generalized quasiorders on <math>A \ (m \in \mathbb{N}_+)$

Definition

Let $\varrho \subseteq A^m$ (*m*-ary relation)

- reflexive : $\iff \forall a \in A : (a, ..., a) \in \varrho$.
- transitive

$$:\iff \forall (a_{ij})_{i,j\in\{1,\ldots,m\}}: \varrho\models(a_{ij})\implies(a_{11},\ldots,a_{mm})\in\varrho$$

- generalized quasiorder : ←⇒ reflexive & transitive
- ullet gQuord(A):= all generalized quasiorders on A $(m\in\mathbb{N}_+]$

Definition

Let $\varrho \subseteq A^m$ (*m*-ary relation)

- reflexive : $\iff \forall a \in A : (a, ..., a) \in \varrho$.
- transitive

$$:\iff \forall (a_{ij})_{i,j\in\{1,\ldots,m\}}: \varrho \models (a_{ij}) \implies (a_{11},\ldots,a_{mm}) \in \varrho$$

$$\varrho \models (a_{ij}) = \begin{bmatrix} a_{11} & a_{1m} \in \varrho \\ \in \varrho \\ a_{m1} & a_{mn} \in \varrho \\ \in \varrho \in \varrho \in \varrho \end{bmatrix}$$

- generalized quasiorder : ←⇒ reflexive & transitive
- gQuord(A) := all generalized quasiorders on <math>A ($m \in \mathbb{N}_+$)

Definition

Let $\varrho \subseteq A^m$ (*m*-ary relation)

- reflexive : $\iff \forall a \in A : (a, ..., a) \in \varrho$.
- transitive

$$:\iff \forall (a_{ij})_{i,j\in\{1,\ldots,m\}}: \varrho \models (a_{ij}) \implies (a_{11},\ldots,a_{mm}) \in \varrho$$

$$\varrho \models (a_{ij}) =
\begin{matrix}
a_{11} & a_{1m} \in \varrho \\
\vdots & \vdots & \vdots \\
a_{m1} & a_{mn} \in \varrho \\
\vdots & \vdots & \vdots \\
\vdots$$

- generalized quasiorder : ← reflexive & transitive
- $gQuord(A) := all generalized quasiorders on <math>A \ (m \in \mathbb{N}_+)$

Definition

Let $\varrho \subseteq A^m$ (*m*-ary relation)

- reflexive : $\iff \forall a \in A : (a, ..., a) \in \varrho$.
- transitive

$$:\iff \forall (a_{ij})_{i,j\in\{1,\ldots,m\}}: \varrho \models (a_{ij}) \implies (a_{11},\ldots,a_{mm}) \in \varrho$$

$$\varrho \models (a_{ij}) =
\begin{matrix}
a_{11} & a_{1m} \in \varrho \\
\vdots & \vdots & \vdots \\
a_{m1} & a_{mn} \in \varrho \\
\vdots & \vdots & \vdots \\
\vdots$$

- generalized quasiorder : ← reflexive & transitive
- $gQuord(A) := all generalized quasiorders on <math>A \ (m \in \mathbb{N}_+)$

Definition

Let $\varrho \subseteq A^m$ (*m*-ary relation)

- reflexive : $\iff \forall a \in A : (a, ..., a) \in \varrho$.
- transitive

$$:\iff \forall (a_{ij})_{i,j\in\{1,\ldots,m\}}: \varrho\models (a_{ij})\implies (a_{11},\ldots,a_{mm})\in\varrho$$

$$\varrho \models (a_{ij}) =
\begin{matrix}
a_{1n} & a_{1m} \in \varrho \\
\vdots & \vdots & \vdots \\
a_{m1} & a_{mn} \in \varrho \\
\vdots & \vdots & \vdots \\
\vdots$$

- generalized quasiorder : ← reflexive & transitive
- $gQuord(A) := all generalized quasiorders on <math>A \ (m \in \mathbb{N}_+)$

Definition

Let $\varrho \subseteq A^m$ (*m*-ary relation)

- reflexive : $\iff \forall a \in A : (a, ..., a) \in \varrho$.
- transitive

$$:\iff \forall (a_{ij})_{i,j\in\{1,\ldots,m\}}: \varrho \models (a_{ij}) \implies (a_{11},\ldots,a_{mm}) \in \varrho$$

$$\varrho \models (a_{ij}) =
\begin{matrix}
a_{11} & a_{1m} \in \varrho \\
\vdots & \vdots & \vdots \\
a_{m1} & a_{mn} \in \varrho \\
\vdots & \vdots & \vdots \\
\vdots$$

- generalized quasiorder : ← reflexive & transitive
- gQuord(A) := all generalized quasiorders on A $(m \in \mathbb{N}_+)$

Partial orders $\varrho \subseteq A^2$ on A (reflexive, antisymmetric, transitive) clearly are quasiorders. Antisymmetry $((x,y),(y,x)\in\varrho\implies x=y)$ is equivalent to

- (i) $\cos(\varrho) := \{(a_1, a_2) \in A^2 \mid \forall \pi \in \operatorname{Sym}(2) : (a_{\pi 1}, a_{\pi 2}) \in \varrho\} = \Delta_A$ (totally symmetric part of ϱ is trivial)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^2 \subseteq \varrho\} = \Delta_A$ (binary symmetric part of ϱ is trivial)

Observation: here $\cos(\varrho)=\varrho^{[2]}=\varrho\cap\varrho^{-1}$ (symmetric part of ϱ) Generalization:

A generalized quasiorder (reflexive, transitive) $\varrho \subseteq A^m$ is a generalized partial order if it satisfies one of the following equivalent conditions:

- (i) $\cos(\varrho) := \{(a_1, \dots, a_m) \in A^m \mid \forall \pi \in \operatorname{Sym}(m) : (a_{\pi 1}, \dots, a_{\pi m}) \in \varrho\} = \Delta_A^{(m)}$ (totally symmetric part is trivial $\Delta_A^{(m)} = \{(a_1, \dots, a_m) \mid a \in A\}$)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^m \subseteq \varrho\} = \Delta_A$ (binary symmetric part is trivial)

Remark: it is not trivial to show that (i) and (ii) are equivalent for generalized quasiorders ρ .

Partial orders $\varrho \subseteq A^2$ on A (reflexive, antisymmetric, transitive) clearly are quasiorders. Antisymmetry $((x,y),(y,x)\in\varrho\implies x=y)$ is equivalent to

- (i) $\cos(\varrho) := \{(a_1, a_2) \in A^2 \mid \forall \pi \in \operatorname{Sym}(2) : (a_{\pi 1}, a_{\pi 2}) \in \varrho\} = \Delta_A$ (totally symmetric part of ϱ is trivial)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^2 \subseteq \varrho\} = \Delta_A$ (binary symmetric part of ϱ is trivial)

Observation: here $tos(\varrho) = \varrho^{[2]} = \varrho \cap \varrho^{-1}$ (symmetric part of ϱ)

Generalization:

A generalized quasiorder (reflexive, transitive) $\varrho \subseteq A^m$ is a generalized partial order if it satisfies one of the following equivalent conditions:

- (i) $\cos(\varrho) := \{(a_1, \dots, a_m) \in A^m \mid \forall \pi \in \operatorname{Sym}(m) : (a_{\pi 1}, \dots, a_{\pi m}) \in \varrho\} = \Delta_A^{(m)}$ (totally symmetric part is trivial, $\Delta_A^{(m)} = \{(a, \dots, a) \mid a \in A\}$)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^m \subseteq \varrho\} = \Delta_A$ (binary symmetric part is trivial)

Remark: it is not trivial to show that (i) and (ii) are equivalent for generalized quasiorders ρ .

Partial orders $\varrho \subseteq A^2$ on A (reflexive, antisymmetric, transitive) clearly are quasiorders. Antisymmetry $((x,y),(y,x)\in \varrho \implies x=y)$ is equivalent to

- (i) $\cos(\varrho) := \{(a_1, a_2) \in A^2 \mid \forall \pi \in \operatorname{Sym}(2) : (a_{\pi 1}, a_{\pi 2}) \in \varrho\} = \Delta_A$ (totally symmetric part of ϱ is trivial)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^2 \subseteq \varrho\} = \Delta_A$ (binary symmetric part of ϱ is trivial)

Observation: here $\cos(\varrho)=\varrho^{[2]}=\varrho\cap\varrho^{-1}$ (symmetric part of ϱ) Generalization:

A generalized quasiorder (reflexive, transitive) $\varrho \subseteq A^m$ is a generalized partial order if it satisfies one of the following equivalent conditions:

- (i) $\cos(\varrho) := \{(a_1, \dots, a_m) \in A^m \mid \forall \pi \in \operatorname{Sym}(m) : (a_{\pi 1}, \dots, a_{\pi m}) \in \varrho\} = \Delta_A^{(m)}$ (totally symmetric part is trivial, $\Delta_A^{(m)} = \{(a, \dots, a) \mid a \in A\}$)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^m \subseteq \varrho\} = \Delta_A$ (binary symmetric part is trivial)

Remark: it is not trivial to show that (i) and (ii) are equivalent for generalized quasiorders a

Partial orders $\varrho\subseteq A^2$ on A (reflexive, antisymmetric, transitive) clearly are quasiorders. Antisymmetry $((x,y),(y,x)\in\varrho\implies x=y)$ is equivalent to

- (i) $\cos(\varrho) := \{(a_1, a_2) \in A^2 \mid \forall \pi \in \operatorname{Sym}(2) : (a_{\pi 1}, a_{\pi 2}) \in \varrho\} = \Delta_A$ (totally symmetric part of ϱ is trivial)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^2 \subseteq \varrho\} = \Delta_A$ (binary symmetric part of ϱ is trivial)

Observation: here $\cos(\varrho) = \varrho^{[2]} = \varrho \cap \varrho^{-1}$ (symmetric part of ϱ) Generalization:

A generalized quasiorder (reflexive, transitive) $\varrho \subseteq A^m$ is a *generalized* partial order if it satisfies one of the following equivalent conditions:

- (i) $\cos(\varrho) := \{(a_1, \dots, a_m) \in A^m \mid \forall \pi \in \operatorname{Sym}(m) : (a_{\pi 1}, \dots, a_{\pi m}) \in \varrho\} = \Delta_A^{(m)}$ (totally symmetric part is trivial, $\Delta_A^{(m)} = \{(a, \dots, a) \mid a \in A\}$)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^m \subseteq \varrho\} = \Delta_A$ (binary symmetric part is trivial)

Remark: it is not trivial to show that (i) and (ii) are equivalent for generalized quasiorders α

Partial orders $\varrho \subseteq A^2$ on A (reflexive, antisymmetric, transitive) clearly are quasiorders. Antisymmetry $((x,y),(y,x)\in \varrho \implies x=y)$ is equivalent to

- (i) $\cos(\varrho) := \{(a_1, a_2) \in A^2 \mid \forall \pi \in \operatorname{Sym}(2) : (a_{\pi 1}, a_{\pi 2}) \in \varrho\} = \Delta_A$ (totally symmetric part of ϱ is trivial)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^2 \subseteq \varrho\} = \Delta_A$ (binary symmetric part of ϱ is trivial)

Observation: here $\cos(\varrho)=\varrho^{[2]}=\varrho\cap\varrho^{-1}$ (symmetric part of ϱ) Generalization:

A generalized quasiorder (reflexive, transitive) $\varrho \subseteq A^m$ is a *generalized* partial order if it satisfies one of the following equivalent conditions:

- (i) $\operatorname{\mathsf{tos}}(\varrho) := \{(a_1, \dots, a_m) \in A^m \mid \forall \pi \in \operatorname{Sym}(m) : (a_{\pi 1}, \dots, a_{\pi m}) \in \varrho\} = \Delta_A^{(m)}$
 - (totally symmetric part is trivial, $\Delta_A^{(m)} = \{(a,\ldots,a) \mid a \in A\}$)
- (ii) $\varrho^{[2]} := \{(a,b) \in A^2 \mid \{a,b\}^m \subseteq \varrho\} = \Delta_A$ (binary symmetric part is trivial)

Remark: it is not trivial to show that (i) and (ii) are equivalent for generalized quasiorders ρ .

Outline

Generalized quasiorders and generalized partial orders

Rectangular algebras

Rectangular bands

A rectangular band is a semigroup (A,*) satisfying

$$x*x \approx x$$
 (idempotence)
 $x*y*z \approx x*z$ (absorption)

Proposition

Let (A, *) be a rectangular band. Then the graph of *

$$\varrho := \{(a_1, a_2, b) \in A^3 \mid a_1 * a_2 = b\}$$

is a ternary generalized partial order.

Generalization: Rectangular algebras

Definition (cf.,e.g., [PösR1993]))

An algebra $(A,(f_i)_{i\in I})=(A,F)$ (of finite type) is called *rectangular algebra* if for all fundamental operations $f,g\in F$ (f n-ary, g m-ary) the following identities are satisfied:

$$\begin{split} (\mathbf{ID}_f) & \ f(x,x,\ldots,x) \approx x & \text{(idempotence)} \\ \mathbf{AB}_f^i) & \ f(x_1,\ldots,x_{i-1},f(y_1,\ldots,y_{i-1},x_i,y_{i+1},\ldots,y_n),x_{i+1},\ldots,x_n) \approx \\ & \ f(x_1,\ldots,x_n) & \text{(absorption in each place } i \in \{1,\ldots,n\}) \\ (\mathbf{C}_{f,g}) & \ f(g(x_{11},\ldots,x_{1m}),\ldots,g(x_{n1},\ldots,x_{nm})) & \\ & \ \approx g(f(x_{11},\ldots,x_{n1}),\ldots,f(x_{1m},\ldots,x_{nm})) & \text{(commuting operations)} \end{split}$$

Remark: if f is idempotent, then the absorption identities together are equivalent to the following single identity

(AB_f)
$$f(f(x_{11},...,x_{1n}), f(x_{21},...,x_{2n}),..., f(x_{n1},...,x_{nn})) \approx f(x_{11},...,x_{nn}).$$

Generalization: Rectangular algebras

Definition (cf.,e.g., [PösR1993]))

An algebra $(A,(f_i)_{i\in I})=(A,F)$ (of finite type) is called *rectangular algebra* if for all fundamental operations $f,g\in F$ (f n-ary, g m-ary) the following identities are satisfied:

$$(\mathbf{ID}_f) \ f(x, x, \dots, x) \approx x$$
 (idempotence)

$$(\mathsf{AB}_f^i) \ f(x_1, \dots, x_{i-1}, f(y_1, \dots, y_{i-1}, x_i, y_{i+1}, \dots, y_n), x_{i+1}, \dots, x_n) \approx f(x_1, \dots, x_n)$$
(absorption in each place $i \in \{1, \dots, n\}$)

(absorption in each place
$$t \in \{1, \dots, n\}$$

$$\begin{aligned} (\mathbf{C}_{f,g}) & & f(g(x_{11},\ldots,x_{1m}),\ldots,g(x_{n1},\ldots,x_{nm})) \\ & & \approx g(f(x_{11},\ldots,x_{n1}),\ldots,f(x_{1m},\ldots,x_{nm})) \end{aligned}$$
 (commuting operations)

Remark: if f is idempotent, then the absorption identities together are equivalent to the following single identity

(AB_f)
$$f(f(x_{11},...,x_{1n}),f(x_{21},...,x_{2n}),...,f(x_{n1},...,x_{nn})) \approx f(x_{11},...,x_{nn}).$$

Generalization: Rectangular algebras

Definition (cf.,e.g., [PösR1993]))

An algebra $(A,(f_i)_{i\in I})=(A,F)$ (of finite type) is called *rectangular* algebra if for all fundamental operations $f,g\in F$ (f n-ary, g m-ary) the following identities are satisfied:

$$(\mathbf{ID}_f) \ f(x, x, \dots, x) \approx x$$
 (idempotence)

$$(\mathbf{AB}_{f}^{i})$$
 $f(x_{1},...,x_{i-1},f(y_{1},...,y_{i-1},x_{i},y_{i+1},...,y_{n}),x_{i+1},...,x_{n}) \approx f(x_{1},...,x_{n})$

(absorption in each place $i \in \{1,\dots,n\}$)

$$\begin{aligned} (\mathbf{C}_{f,g}) & & f(g(x_{11},\ldots,x_{1m}),\ldots,g(x_{n1},\ldots,x_{nm})) \\ & & \approx g(f(x_{11},\ldots,x_{n1}),\ldots,f(x_{1m},\ldots,x_{nm})) \end{aligned}$$
 (commuting operations)

Remark: if f is idempotent, then the absorption identities together are equivalent to the following single identity

(AB_f)
$$f(f(x_{11},...,x_{1n}),f(x_{21},...,x_{2n}),...,f(x_{n1},...,x_{nn})) \approx f(x_{11},...,x_{nn}).$$

Generalized partial orders in rectangular algebras

Proposition

(i) Let $f: A^n \to A$ satisfy (\mathbf{ID}_f) and $(\mathbf{C}_{f,f})$. Then f satisfies (\mathbf{AB}_f) if and only if the graph f^{\bullet} of f,

$$f^{\bullet} := \{(a_1, \dots, a_n, b) \in A^{n+1} \mid f(a_1, \dots, a_n) = b\},\$$

is an (n+1)-ary generalized quasiorder.

(ii) The graph t^{\bullet} of each term operation t of a rectangular algebra (A, F) is a generalized partial order.

Generalized partial orders in rectangular algebras

Proposition

(i) Let $f: A^n \to A$ satisfy (\mathbf{ID}_f) and $(\mathbf{C}_{f,f})$. Then f satisfies (\mathbf{AB}_f) if and only if the graph f^{\bullet} of f,

$$f^{\bullet} := \{(a_1, \dots, a_n, b) \in A^{n+1} \mid f(a_1, \dots, a_n) = b\},\$$

is an (n+1)-ary generalized quasiorder.

(ii) The graph t^{\bullet} of each term operation t of a rectangular algebra (A, F) is a generalized partial order.

(i): Let
$$f^{ullet}\models M$$
 for a matrix $M=\begin{pmatrix} a_{11}&\ldots&a_{1n}&b_1\\ \vdots&&\vdots&\vdots\\ a_{n1}&\ldots&a_{nn}&b_n\\ c_1&\ldots&c_n&d \end{pmatrix}$,

Thus $f(a_{i1}, \ldots, a_{in}) = b_i$ and $f(a_{1i}, \ldots, a_{ni}) = c_i$ for $i \in \{1, \ldots, n\}$ (first n rows and columns).

Condition $(\mathbf{C}_{f,f})$ says that f commutes with itself. Thus we automatically also have the condition for the last column and row: $f(b_1, \ldots, b_n) = d = f(c_1, \ldots, c_n)$, i.e., they also belong to f^{\bullet} .

Therefore, in M, the a_{ij} can be chosen arbitrarily.

Consequently, the diagonal of M belongs to f^{\bullet} , i.e., $f(a_{11}, \ldots, a_{nn}) = d$, if and only if f satisfies (AB_f)

$$(\mathsf{AB}_f): \ f(f(a_{11},\ldots,a_{1n}),f(a_{21},\ldots,a_{2n}),\ldots,f(a_{n1},\ldots,a_{nn})) pprox f(a_{11},\ldots,a_{nn}).$$

(i): Let
$$f^{ullet}\models M$$
 for a matrix $M=\begin{pmatrix} a_{11}&\ldots&a_{1n}&b_1\\ \vdots&&\vdots&\vdots\\ a_{n1}&\ldots&a_{nn}&b_n\\ c_1&\ldots&c_n&d \end{pmatrix}$,

Thus $f(a_{i1},...,a_{in})=b_i$ and $f(a_{1i},...,a_{ni})=c_i$ for $i\in\{1,...,n\}$ (first n rows and columns).

Condition ($\mathbf{C}_{f,f}$) says that f commutes with itself. Thus we automatically also have the condition for the last column and row: $f(b_1, \ldots, b_n) = d = f(c_1, \ldots, c_n)$, i.e., they also belong to f^{\bullet} .

Therefore, in M, the a_{ij} can be chosen arbitrarily.

Consequently, the diagonal of M belongs to f^{\bullet} , i.e., $f(a_{11}, \ldots, a_{nn}) = d$, if and only if f satisfies (\mathbf{AB}_f)

(AB_f):
$$f(f(a_{11}, \ldots, a_{1n}), f(a_{21}, \ldots, a_{2n}), \ldots, f(a_{n1}, \ldots, a_{nn})) \approx f(a_{11}, \ldots, a_{nn})$$

(i): Let
$$f^{ullet}\models M$$
 for a matrix $M=\begin{pmatrix} a_{11}&\ldots&a_{1n}&b_1\\ \vdots&&\vdots&\vdots\\ a_{n1}&\ldots&a_{nn}&b_n\\ c_1&\ldots&c_n&d \end{pmatrix}$,

Thus $f(a_{i1},...,a_{in})=b_i$ and $f(a_{1i},...,a_{ni})=c_i$ for $i \in \{1,...,n\}$ (first n rows and columns).

Condition ($C_{f,f}$) says that f commutes with itself. Thus we automatically also have the condition for the last column and row: $f(b_1, \ldots, b_n) = d = f(c_1, \ldots, c_n)$, i.e., they also belong to f^{\bullet} .

Therefore, in M, the a_{ij} can be chosen arbitrarily.

Consequently, the diagonal of M belongs to f^{\bullet} , i.e., $f(a_{11}, \ldots, a_{nn}) = d$, if and only if f satisfies (\mathbf{AB}_f)

(AB_f): $f(f(a_{11},...,a_{1n}),f(a_{21},...,a_{2n}),...,f(a_{n1},...,a_{nn})) \approx f(a_{11},...,a_{nn})$

(i): Let
$$f^{\bullet} \models M$$
 for a matrix $M = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} & b_n \\ c_1 & \dots & c_n & d \end{pmatrix}$,

Thus $f(a_{i1},...,a_{in})=b_i$ and $f(a_{1i},...,a_{ni})=c_i$ for $i\in\{1,...,n\}$ (first n rows and columns).

Condition $(\mathbf{C}_{f,f})$ says that f commutes with itself. Thus we automatically also have the condition for the last column and row: $f(b_1, \ldots, b_n) = d = f(c_1, \ldots, c_n)$, i.e., they also belong to f^{\bullet} .

Therefore, in M, the a_{ij} can be chosen arbitrarily.

Consequently, the diagonal of M belongs to f^{\bullet} , i.e., $f(a_{11}, \ldots, a_{nn}) = d$, if and only if f satisfies (\mathbf{AB}_f)

(AB_f):
$$f(f(a_{11},...,a_{1n}),f(a_{21},...,a_{2n}),...,f(a_{n1},...,a_{nn})) \approx f(a_{11},...,a_{nn}).$$

(i): Let
$$f^{\bullet} \models M$$
 for a matrix $M = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} & b_n \\ c_1 & \dots & c_n & d \end{pmatrix}$,

Thus $f(a_{i1},...,a_{in})=b_i$ and $f(a_{1i},...,a_{ni})=c_i$ for $i\in\{1,...,n\}$ (first n rows and columns).

Condition $(\mathbf{C}_{f,f})$ says that f commutes with itself. Thus we automatically also have the condition for the last column and row: $f(b_1, \ldots, b_n) = d = f(c_1, \ldots, c_n)$, i.e., they also belong to f^{\bullet} .

Therefore, in M, the a_{ij} can be chosen arbitrarily.

Consequently, the diagonal of M belongs to f^{\bullet} , i.e., $f(a_{11},\ldots,a_{nn})=d$, if and only if f satisfies (\mathbf{AB}_f)

$$(\mathsf{AB}_f): f(f(a_{11},\ldots,a_{1n}),f(a_{21},\ldots,a_{2n}),\ldots,f(a_{n1},\ldots,a_{nn})) \approx f(a_{11},\ldots,a_{nn}).$$

(i): Let
$$f^{ullet}\models M$$
 for a matrix $M=\begin{pmatrix} a_{11}&\ldots&a_{1n}&b_1\\ \vdots&&\vdots&\vdots\\ a_{n1}&\ldots&a_{nn}&b_n\\ c_1&\ldots&c_n&d \end{pmatrix}$,

Thus $f(a_{i1}, \ldots, a_{in}) = b_i$ and $f(a_{1i}, \ldots, a_{ni}) = c_i$ for $i \in \{1, \ldots, n\}$ (first n rows and columns).

Condition ($\mathbf{C}_{f,f}$) says that f commutes with itself. Thus we automatically also have the condition for the last column and row: $f(b_1,\ldots,b_n)=d=f(c_1,\ldots,c_n)$, i.e., they also belong to f^{\bullet} .

Therefore, in M, the a_{ij} can be chosen arbitrarily.

Consequently, the diagonal of M belongs to f^{\bullet} , i.e., $f(a_{11},\ldots,a_{nn})=d$, if and only if f satisfies (\mathbf{AB}_f) .

(AB_f):
$$f(f(a_{11},...,a_{1n}),f(a_{21},...,a_{2n}),...,f(a_{n1},...,a_{nn})) \approx f(a_{11},...,a_{nn}).$$

(ii): The variety of rectangular algebras is a so-called *solid variety*, i.e., each identity for the fundamental operations is also an identity for arbitrary term operations (of the corresponding arities).

Thus, in particular, each term operation t of a rectangular algebra satisfies the identities (\mathbf{ID}_t) , $(\mathbf{C}_{t,t})$ and (\mathbf{AB}_t) .

From (i) we can conclude that t^{\bullet} is a generalized quasiorder. it remains to show that it is a generalized partial order

Note
$$\{a,b\}^{n+1}\in f^{\bullet}$$
 implies $(a,\ldots,a,a),(a,\ldots,a,b)\in f^{\bullet}$, i.e., $a=f(a,\ldots,a)=b$

(ii): The variety of rectangular algebras is a so-called *solid variety*, i.e., each identity for the fundamental operations is also an identity for arbitrary term operations (of the corresponding arities).

Thus, in particular, each term operation t of a rectangular algebra satisfies the identities (\mathbf{ID}_t) , $(\mathbf{C}_{t,t})$ and (\mathbf{AB}_t) .

From (i) we can conclude that t^{ullet} is a generalized quasiorder. it remains to show that it is a generalized partial order

Note
$$\{a,b\}^{n+1} \in f^{\bullet}$$
 implies $(a,\ldots,a,a), (a,\ldots,a,b) \in f^{\bullet}$, i.e., $a=f(a,\ldots,a)=b$

(ii): The variety of rectangular algebras is a so-called *solid variety*, i.e., each identity for the fundamental operations is also an identity for arbitrary term operations (of the corresponding arities).

Thus, in particular, each term operation t of a rectangular algebra satisfies the identities (\mathbf{ID}_t), ($\mathbf{C}_{t,t}$) and (\mathbf{AB}_t).

From (i) we can conclude that t^{ullet} is a generalized quasiorder. it remains to show that it is a generalized partial order

Note
$$\{a,b\}^{n+1}\in f^{\bullet}$$
 implies $(a,\ldots,a,a),(a,\ldots,a,b)\in f^{\bullet}$, i.e., $a=f(a,\ldots,a)=b$

(ii): The variety of rectangular algebras is a so-called *solid variety*, i.e., each identity for the fundamental operations is also an identity for arbitrary term operations (of the corresponding arities).

Thus, in particular, each term operation t of a rectangular algebra satisfies the identities (\mathbf{ID}_t), ($\mathbf{C}_{t,t}$) and (\mathbf{AB}_t).

From (i) we can conclude that t^{ullet} is a generalized quasiorder. it remains to show that it is a generalized partial order

Note
$$\{a,b\}^{n+1} \in f^{\bullet}$$
 implies $(a,\ldots,a,a), (a,\ldots,a,b) \in f^{\bullet}$, i.e., $a=f(a,\ldots,a)=b$

(ii): The variety of rectangular algebras is a so-called *solid variety*, i.e., each identity for the fundamental operations is also an identity for arbitrary term operations (of the corresponding arities).

Thus, in particular, each term operation t of a rectangular algebra satisfies the identities (\mathbf{ID}_t), ($\mathbf{C}_{t,t}$) and (\mathbf{AB}_t).

From (i) we can conclude that t^{ullet} is a generalized quasiorder. it remains to show that it is a generalized partial order

Note
$$\{a,b\}^{n+1}\in f^{\bullet}$$
 implies $(a,\ldots,a,a),(a,\ldots,a,b)\in f^{\bullet}$, i.e., $a=f(a,\ldots,a)=b$

(ii): The variety of rectangular algebras is a so-called *solid variety*, i.e., each identity for the fundamental operations is also an identity for arbitrary term operations (of the corresponding arities).

Thus, in particular, each term operation t of a rectangular algebra satisfies the identities (\mathbf{ID}_t) , $(\mathbf{C}_{t,t})$ and (\mathbf{AB}_t) .

From (i) we can conclude that t^{ullet} is a generalized quasiorder. it remains to show that it is a generalized partial order

Note
$$\{a,b\}^{n+1} \in f^{\bullet}$$
 implies $(a,\ldots,a,a), (a,\ldots,a,b) \in f^{\bullet}$, i.e., $a=f(a,\ldots,a)=b$

References

- D. Jakubíková-Studenovská, R. Pöschel, and S. Radeleczki, Generalized quasiorders and the Galois connection End – gQuord . Algebra Universalis 85(2), (2024), Paper No. 23, (26 pages). (open access) arXiv(2023) http://arxiv.org/abs/2307.01868
- R. PÖSCHEL AND S. RADELECZKI, Endomorphisms of quasiorders and related lattices. In: G. Dorfer, G. Eigenthaler, H. Kautschitsch, W. More, and W.B. Müller (Eds.), Contributions to General Algebra 18, Verlag Johannes Heyn, Klagenfurt, 2008, pp. 113-128, (Proceedings of the Klagenfurt Conference 2007 (AAA73+CYA22), Febr. 2007).
- R. PÖSCHEL AND M. REICHEL, Projection algebras and rectangular algebras. In: K. DENECKE AND H.-J. VOGEL (Eds.), General Algebra and Applications, vol. 20 of Research and Exposition in Math., Heldermann Verlag, Berlin, 1993, pp. 180–194.

Function f preserves relation ϱ

function f (n-ary) preserves relation ϱ (m-ary):

$$f(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n}) = & \bigcirc \\ f(\begin{array}{cccc} a_{21} & a_{22} & \dots & a_{2n}) = & \bigcirc \\ \end{array}$$

$$f(\begin{array}{cccc} a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = \bigcirc$$

$$(\overbrace{\in \varrho}) (\overbrace{\in \varrho}) & \dots & (\overbrace{\in \varrho}) \Rightarrow (\overbrace{e\varrho})$$

$$F \subseteq \operatorname{Op}(A)$$
 (set of all finitary operations $f: A^n \to A$) $Q \subseteq \operatorname{Rel}(A)$ (set of all finitary relations $\varrho \subseteq A^m$)

Inv
$$F := \{ \varrho \in R_A \mid \forall f \in F : f \triangleright \varrho \}$$

Pol $Q := \{ f \in \operatorname{Op}(A) \mid \forall \varrho \in Q : f \triangleright \varrho \}$

invariant relations polymorphisms

Function f preserves relation ϱ

function f (n-ary) preserves relation ϱ (m-ary):

$$\bar{f} \triangleright \varrho$$

$$f(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n}) = & \bigcirc \\ f(\begin{array}{cccc} a_{21} & a_{22} & \dots & a_{2n}) = & \bigcirc \\ \end{array}$$

$$f(\begin{array}{cccc} a_{m1} & a_{m2} & \dots & a_{mn}) = & \bigcirc \\ \in \varrho & \in \varrho & \dots & \in \varrho \Rightarrow \in \varrho$$

$$F \subseteq \operatorname{Op}(A)$$
 (set of all finitary operations $f: A^n \to A$) $Q \subseteq \operatorname{Rel}(A)$ (set of all finitary relations $\varrho \subseteq A^m$)

$$\begin{array}{ll} \operatorname{Inv} F := \{\varrho \in R_A \mid \forall f \in F : f \rhd \varrho\} & \text{invariant relations} \\ \operatorname{Pol} Q := \{f \in \operatorname{Op}(A) \mid \forall \varrho \in Q : f \rhd \varrho\} & \text{polymorphisms} \end{array}$$

(Galois connection Pol - Inv) $\bullet back1$