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Generalized quasiorders and generalized partial orders Rectangular algebras

A nice property: When translations are enough!?

f : An → A (n-ary operation), ϱ ⊆ Am (m-ary relation)

∀f : f ▷ ϱ ⇐⇒ trl(f) ▷ ϱ (Ξ) Def ▷

trl(f) := {f(c1, . . . , ci−1, x, ci+1, . . . , cn) | i ∈ {1, . . . , n}, c1, . . . , cn ∈ A}
(unary translations of f)

(Ξ) holds for

• equivalence relations ϱ ∈ Eq(A) (reflexiv, symmetric, transitive)

• quasiorder relations ϱ ∈ Quord(A) (binary, reflexive, transitive)

• generalized quasiorders (m-ary, reflexive, transitive)

JPR 2022 (published in Algebra Universalis 2024)

history (JPR = D. Jakub́ıková-Studenovská, R.P., S. Radeleczki):
investigation of (the lattice of) congruence and quasiorder lattices
Con(A,F ), Quord(A,F ), (since 2007)
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Generalized quasiorders

Definition
Let ϱ ⊆ Am (m-ary relation)

• reflexive : ⇐⇒ ∀a ∈ A : (a, . . . , a) ∈ ϱ.

• transitive
: ⇐⇒ ∀(aij)i,j∈{1,...,m} : ϱ |= (aij) =⇒ (a11, . . . , amm) ∈ ϱ

a1ma11

ammam1

∈ ϱ

∈ ϱ ∈ ϱ
∈ ϱ

∈ ϱ

∈ ϱϱ |= (aij) =

am1

∈ ϱ

∈ ϱ ∈ ϱ
∈ ϱ

∈ ϱ

a1m
∈ ϱ

a11

amm

=⇒

∈ ϱ

• generalized quasiorder : ⇐⇒ reflexive & transitive

• gQuord(A) := all generalized quasiorders on A (m ∈ N+)

Remark: gQuord(2)(A) = Quord(A)

Blansko, September 8, 2025 R. Pöschel, generalized quasiorders in rectangular algebras (5/15)
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Generalized partial orders
Partial orders ϱ ⊆ A2 on A (reflexive, antisymmetric, transitive) clearly are
quasiorders. Antisymmetry ((x, y), (y, x) ∈ ϱ =⇒ x = y) is equivalent to

(i) tos(ϱ) := {(a1, a2) ∈ A2 | ∀π ∈ Sym(2) : (aπ1, aπ2) ∈ ϱ} = ∆A

(totally symmetric part of ϱ is trivial)

(ii) ϱ[2] := {(a, b) ∈ A2 | {a, b}2 ⊆ ϱ} = ∆A

(binary symmetric part of ϱ is trivial)

Observation: here tos(ϱ) = ϱ[2] = ϱ ∩ ϱ−1 (symmetric part of ϱ)
Generalization:

A generalized quasiorder (reflexive, transitive) ϱ ⊆ Am is a generalized
partial order if it satisfies one of the following equivalent conditions:

(i) tos(ϱ) := {(a1, . . . , am) ∈ Am | ∀π ∈ Sym(m) :

(aπ1, . . . , aπm) ∈ ϱ} = ∆
(m)
A

(totally symmetric part is trivial, ∆
(m)
A = {(a, . . . , a) | a ∈ A})

(ii) ϱ[2] := {(a, b) ∈ A2 | {a, b}m ⊆ ϱ} = ∆A

(binary symmetric part is trivial)

Remark: it is not trivial to show that (i) and (ii) are equivalent for generalized
quasiorders ϱ.

Blansko, September 8, 2025 R. Pöschel, generalized quasiorders in rectangular algebras (6/15)
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Rectangular bands

A rectangular band is a semigroup (A, ∗) satisfying

x ∗ x ≈ x (idempotence)

x ∗ y ∗ z ≈ x ∗ z (absorption)

Proposition

Let (A, ∗) be a rectangular band. Then the graph of ∗

ϱ := {(a1, a2, b) ∈ A3 | a1 ∗ a2 = b}

is a ternary generalized partial order.

Blansko, September 8, 2025 R. Pöschel, generalized quasiorders in rectangular algebras (8/15)



Generalized quasiorders and generalized partial orders Rectangular algebras

Generalization: Rectangular algebras
Definition (cf.,e.g., [PösR1993]))
An algebra (A, (fi)i∈I) = (A,F ) (of finite type) is called rectangular
algebra if for all fundamental operations f, g ∈ F (f n-ary, g m-ary) the
following identities are satisfied:

(IDf ) f(x, x, . . . , x) ≈ x (idempotence)

(ABi
f ) f(x1, . . . , xi−1, f(y1, . . . , yi−1, xi, yi+1, . . . , yn), xi+1, . . . , xn) ≈

f(x1, ..., xn)
(absorption in each place i ∈ {1, . . . , n})

(Cf,g) f(g(x11, . . . , x1m), . . . , g(xn1, . . . , xnm))
≈ g(f(x11, . . . , xn1), . . . , f(x1m, . . . , xnm))

(commuting operations)

Remark: if f is idempotent, then the absorption identities together are
equivalent to the following single identity

(ABf ) f(f(x11, . . . , x1n), f(x21, . . . , x2n), . . . , f(xn1, . . . , xnn)) ≈
f(x11, . . . , xnn).

Blansko, September 8, 2025 R. Pöschel, generalized quasiorders in rectangular algebras (9/15)
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Remark: if f is idempotent, then the absorption identities together are
equivalent to the following single identity

(ABf ) f(f(x11, . . . , x1n), f(x21, . . . , x2n), . . . , f(xn1, . . . , xnn)) ≈
f(x11, . . . , xnn).
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Generalization: Rectangular algebras
Definition (cf.,e.g., [PösR1993]))
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Generalized partial orders in rectangular algebras

Proposition

(i) Let f : An → A satisfy (IDf ) and (Cf,f ).
Then f satisfies (ABf ) if and only if the graph f• of f ,

f• := {(a1, . . . , an, b) ∈ An+1 | f(a1, . . . , an) = b},

is an (n+ 1)-ary generalized quasiorder.

(ii) The graph t• of each term operation t of a rectangular
algebra (A,F ) is a generalized partial order.
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Proof

(i): Let f• |= M for a matrix M =

 a11 ... a1n b1
...

...
...

an1 ... ann bn
c1 ... cn d

,

Thus f(ai1, . . . , ain) = bi and f(a1i, . . . , ani) = ci for
i ∈ {1, . . . , n} (first n rows and columns).

Condition (Cf,f ) says that f commutes with itself. Thus we
automatically also have the condition for the last column and row:
f(b1, . . . , bn) = d = f(c1, . . . , cn), i.e., they also belong to f•.

Therefore, in M , the aij can be chosen arbitrarily.

Consequently, the diagonal of M belongs to f•, i.e.,
f(a11, . . . , ann) = d, if and only if f satisfies (ABf ).

(ABf ): f(f(a11, . . . , a1n), f(a21, . . . , a2n), . . . , f(an1, . . . , ann)) ≈ f(a11, . . . , ann).
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Proof (continued)

(ii): The variety of rectangular algebras is a so-called solid variety,
i.e., each identity for the fundamental operations is also an identity
for arbitrary term operations (of the corresponding arities).

Thus, in particular, each term operation t of a rectangular algebra
satisfies the identities (IDt), (Ct,t) and (ABt).

From (i) we can conclude that t• is a generalized quasiorder.
it remains to show that it is a generalized partial order

Note {a, b}n+1 ∈ f• implies (a, . . . , a, a), (a, . . . , a, b) ∈ f•,
i.e., a = f(a, . . . , a) = b

Therefore (f•)[2] = ∆A, i.e., f
• is a generalized partial order.
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Function f preserves relation ϱ

function f (n-ary) preserves relation ϱ (m-ary): f ▷ ϱ

∈ ϱ⇒∈ ϱ ∈ ϱ ∈ ϱ. . .

f(

f( ) =
) =

) =am1

a21 a22

am2

a2n

amn

a12 a1na11
. . .
. . .

. . .

f(

F ⊆ Op(A) (set of all finitary operations f : An → A)
Q ⊆ Rel(A) (set of all finitary relations ϱ ⊆ Am)

InvF := {ϱ ∈ RA | ∀f ∈ F : f ▷ ϱ} invariant relations

PolQ := {f ∈ Op(A) | ∀ϱ ∈ Q : f ▷ ϱ} polymorphisms

(Galois connection Pol− Inv) back1
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