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Lecture Content - Preliminaries

We will introduce quantales, algebraic structures that generalize
frames and play a crucial role in various areas of mathematics,
including domain theory and logic. We will discuss their key
properties.

We will then turn our attention to orthomodular lattices, al-
gebraic structures that have been extensively studied in the
context of quantum mechanics.

Finally, we will introduce the concept of dagger categories, a
categorical framework that provides a powerful tool for study-
ing quantum systems. Dagger categories are equipped with a
special involution (the dagger) that allows for the representa-
tion of physical processes, including measurements and state
transformations.
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Quantales

What are Quantales?

A quantale is a complete lattice Q equipped with an associative
binary operation · (called the multiplication) that distributes
over arbitrary suprema:

a ·
⊔
i∈I

bi =
⊔
i∈I

(a · bi ) and

(⊔
i∈I

ai

)
· b =

⊔
i∈I

(ai · b)

Think of it as a generalized notion of a ”ring” where addition
is replaced by arbitrary suprema and multiplication is not nec-
essarily commutative.
Quantales provide a powerful framework for studying various
structures, including:
Frames (and hence topology)
Relations
Languages
... and many more!
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Quantales

A Brief History of Quantales

The name ”quantale” itself was coined by C.J. Mulvey (1986)
to emphasize the connection to ”quanta” and the non-commutative
nature of the multiplication.

Quantales generalize locales and various multiplicative lattices
of ideals from ring theory and functional analysis, such as C ∗-
algebras and von Neumann algebras.

Significant contributions were made by K.I. Rosenthal and
others (J.W. Pelletier, J. Rosický, J.P., D. Kruml, S. Abramsky,
S. Vickers, P. Resende), who connected quantales to various
areas like locales (and thus, pointless topology), C ∗-algebras
(study of spectra in C ∗-algebras), and theoretical computer
science (Linear Logic).
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Quantales

Examples of Quantales

The powerset of a monoid: Let (M, ·) be a monoid. The
powerset P(M) forms a quantale where multiplication is given
by

A · B = {a · b | a ∈ A, b ∈ B}
and the join is given by set union.
The set of relations: The set of all relations on a sets X ,
denoted by Rel(X ), forms a quantale where multiplication is
relation composition and the join is given by the union of rela-
tions.
Frames: A frame is a complete lattice L where the following
distributive law holds:

a ∧
⊔
i∈I

bi =
⊔
i∈I

(a ∧ bi )

Frames are quantales where the multiplication is the meet op-
eration ∧.
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Quantales

Quantale Modules

A (left) quantale module over a quantale Q is a complete lattice
M equipped with an action of Q on M, denoted by •, such that

a •
∨
i∈I

mi =
∨
i∈I

(a •mi ) and

(⊔
i∈I

ai

)
•m =

∨
i∈I

(ai •m)

(a · b) •m = a • (b •m)

for all a, b ∈ Q and m,mi ∈ M.

Modules generalize the notion of vector spaces over fields to
the setting of quantales.

The definition of right Q-modules follows analogously. It is
readily apparent that every complete lattice A is a right and
left 2-module. Here, 2 is a 2-element chain, its multiplication
is its meet and involution is the identity map on it.
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Quantales

Examples of Quantale Modules

If Q is a quantale, then Q itself is a module over itself, where
the action is the multiplication in Q.

Let Q be a quantale and X be a set. The set of functions from
X to Q, denoted by QX , is a Q-module where the action is
given by pointwise multiplication:

(a • f )(x) = a · f (x)

for a ∈ Q, f ∈ QX , and x ∈ X .
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Orthomodular lattices

Origins in Quantum Logic

Orthomodular lattices emerged from Birkhoff and von Neu-
mann’s work (1936) on quantum mechanics

They sought to understand the algebraic structure of quantum
propositions

Classical logic wasn’t sufficient to capture quantum phenomena

Led to development of quantum logic as an alternative to Boolean
logic

An orthomodular lattice is a bounded lattice (L,≤, 0, 1) with:

An orthocomplementation operation ′ satisfying:
x ′′ = x
If x ≤ y then y ′ ≤ x ′

x ∧ x ′ = 0 and x ∨ x ′ = 1

The orthomodular law: if x ≤ y then y = x ∨ (y ∧ x ′)
We write x ⊥ y if and only if x ≤ y⊥.
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Dagger categories

Origins and Motivation, Definition

Dagger categories emerged from mathematical physics in the
2000s

Key early work by Abramsky and Coecke (2004)

Developed to capture quantum mechanical structures categor-
ically

Provides abstract framework for quantum processes and proto-
cols

A dagger category is a category C equipped with a contravari-
ant functor (−)† : Cop → C such that:
On objects: A† = A
On morphisms: f †† = f , id†A = idA
Functoriality: (g ◦ f )† = f † ◦ g†

Think of f † as an abstract adjoint/conjugate/reverse
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Dagger categories

Key Examples

Dagger categories are a categorical generalization of involutive
semigroups in that involutive monoids are precisely the dagger
categories with one object.

Hilb: Category of Hilbert spaces
Morphisms are bounded linear operators
Dagger is the adjoint operator

Rel: Category of sets and relations
Dagger is relation inverse

FdVectC: Finite-dimensional complex vector spaces
Dagger is conjugate transpose
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Dagger categories

Dagger categories

Achievements: a purely categorical characterization of a com-
plex Hilbert space by Heunen and Kornell.

The present paper continues the study of dagger categories in
relation to orthomodular lattices in the spirit of Jacobs [Jac].
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Dagger categories

Example 1 (Our guiding example)

The collection C(H) of closed subspaces of a Hilbert space H is the
prototypical example of a complete orthomodular lattice such that
∧ = ∩ and P⊥ is the orthogonal complement of a closed subspace
P of H.
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Linear maps between orthomodular lattices

Linear maps

Definition 2

The category SupOMLatLin has complete orthomodular lattices as
objects.
A morphism f : X → Y in SupOMLatLin is a function f : X → Y
between the underlying sets such that there is a function h : Y → X
and, for any x ∈ X and y ∈ Y ,

f (x) ⊥ y if and only if x ⊥ h(y).

We say that h is an adjoint of a linear map f . It is clear that
adjointness is a symmetric property: if a map f possesses an adjoint
h, then f is also an adjoint of h, and that it is uniquely determined
(we write f ∗ for g).
Moreover, a map f : X → X is called self-adjoint if f is an adjoint
of itself.
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Linear maps between orthomodular lattices

Linear maps

The identity morphism on X is the self-adjoint identity map
id : X → X . Composition of X f→ Y

g→ Z is given by usual
composition of maps.
We denote Lin(X ,Y ) the set of all linear maps from X to Y . If
X = Y we put Lin(X ) = Lin(X ,X ). Evidently, Lin(X ) is a
semigroup with an involution.

Example 3 (Our guiding example - continuation)

Let f : H1 → H2 be a bounded linear map between Hilbert spaces
and let f ⋆ be the usual adjoint of f given by ⟨f (x), y⟩ = ⟨x , f ⋆(y)⟩.

Then the induced map C (H1) → C (H2), ⟨S⟩ 7→ ⟨f (S)⟩ has the
adjoint C (H2) → C (H1), ⟨T ⟩ 7→ ⟨f ⋆(T )⟩.
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Linear maps between orthomodular lattices

Properties of the category SupOMLatLin

Lemma 4

Let f : X → Y be a map between complete orthomodular lattices.
The following three key properties of f are equivalent:
1 f possesses a right order-adjoint;
2 f admits an adjoint in the sense of Definition 2;
3 f preserves arbitrary joins (i.e., is join-complete).

This equivalence provides multiple perspectives for understanding
linear maps in the context of complete orthomodular lattices.
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Sasaki projection

Principal downsets in orthomodular lattices

Lemma 5

[Jac, Lemma 3.4] Let X be an orthomodular lattice and a ∈ X .
The (principal) downset ↓a = {u ∈ X | u ≤ a} is again an ortho-
modular lattice, with order, meets and joins as in X , but with its
own orthocomplement ⊥a given by u⊥a = a ∧ u⊥, where ⊥ is the
orthocomplement from X .

Lemma 6 (Sasaki projection)

Let X be an orthomodular lattice and a ∈ X . There is a dagger
monomorphism ↓a ↣ X in OMLatLin, for which we also write a,
with a(u) = u and a∗(x) = πa(x) = a ∧ (x ∨ a⊥).

Foulis Quantales Jan Paseka Masaryk University 19/35



Introduction Preliminaries Category SupOMLatLin Foulis quantales Conclusion References

Quantaloid SupOMLatLin

Dagger category SupOMLatLin

The category of complete orthomodular lattices with linear maps is
shown to constitute a dagger category by the following theorem.

Theorem 7

SupOMLatLin is a dagger category. Here † = ∗.

Definition 8

1 A quantaloid is a locally small category whose hom-sets are
complete lattices and whose composition preserves joins in both
variables.

2 An involutive quantaloid is both a quantaloid and a dagger
category C such that, for all X ,Y ∈ C and all S ⊆ Hom(X ,Y ),

(
∨

S)† =
∨

{s† | s ∈ S}.
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Quantaloid SupOMLatLin

Involutive quantales

Definition 9

By an involutive quantale will be meant a quantale Q together
with a semigroup involution ∗ satisfying

(
⊔

ai )
∗ =

⊔
a∗i

for all ai ∈ Q. In the event that Q is also unital, then necessarily e
is selfadjoint, i.e.,

e = e∗.

We denote by ⊑ the order relation on Q.
We also define s ≤ t if and only if s = t · s, and s ⊥ t if and only if
0 = s∗ · t for all s, t ∈ Q.
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Quantaloid SupOMLatLin

Involutive quantaloid SupOMLatLin

Quantaloid

Category Quantale

Monoid

Involutive quantaloid

Dagger category Involutive quantale

Involutive monoid

Theorem 10

SupOMLatLin is an involutive quantaloid. Here † = ∗.
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Foulis semigroups

Definition 11

A Foulis semigroup consists of a monoid (S , ·, 1) together with two
endomaps (−)∗ : S → S and ⊥ : S → S satisfying:
(1) 1∗ = 1 and (s · t) = t∗ · s∗ and s∗∗ = s, making S an involutive
monoid;

(2) s⊥ is a self-adjoint idempotent, i.e., s⊥ · s⊥ = s⊥ = (s⊥)∗;
(3) 0

def
= 1⊥ is a zero element: 0 · s = 0 = s · 0;

(4) s∗ · x = 0 iff ∃y . x = s⊥ · y .

Theorem 12 ([Kal, Chapter 5, §§18])

Let X be a complete orthomodular lattice and let us define the
endomap ⊥ : Lin(X ) → Lin(X ) by s⊥ = πs(1)⊥ for all s ∈ Lin(X ).
Then (Lin(X ), ◦, id) is a Foulis semigroup with respect to taking
adjoints ∗ and ⊥.
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Foulis quantales

The Foulis quantales we introduce here can be characterized
precisely as unital involutive quantales that additionally exhibit the
structural properties of Foulis semigroups.

Definition 13

A Foulis quantale is a unital involutive quantale Q together with
an endomap ⊥ : Q → Q such that Q is a Foulis semigroup with
respect to involution ∗ and operation ⊥.
We will call elements of [Q ] = {u⊥ | u ∈ Q} Sasaki projections.
A homomorphism of Foulis quantales is a map h : Q1 → Q2 between
Foulis quantales that preserves arbitrary joins, multiplication, unit,
involution, and ⊥. In particular, h maps Sasaki projections to Sasaki
projections.
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Foulis quantale (Lin(X ),
⊔
, ◦, ∗, ⊥, id)

Proposition 14

(Lin(X ),
⊔
, ◦, ∗,⊥, id) is a Foulis quantale.

Theorem 15

Let Q be a Foulis quantale. Then, for all t, r ∈ Q and k ∈ [Q ],

r ⊥ t⇐⇒ r∗ · t = 0⇐⇒ t = r⊥ · t⇐⇒ t ≤ r⊥ (∗)

t ≤ r =⇒ r⊥ ≤ t⊥ and k⊥⊥ = k, (∗∗)

t ≤ r⊥ ⇐⇒ r ≤ t⊥. (∗ ∗ ∗)

and the subset [Q ] is an orthomodular lattice with the following
structure.
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Foulis quantale Q and its Sasaki projections [Q ]

Order k1 ≤ k2 ⇔ k1 = k2 · k1
Top 1 = 0⊥

Orthocomplement k⊥ = k⊥

Finite binary meet k1 ∧ k2 =
(
k1 ·

(
k1 · k⊥2

)⊥ )⊥⊥

Arbitrary join
∨
X = (

⊔
X )⊥⊥ .
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Foulis quantales and complete OMLs

Complete ortho-
modular lattices

Foulis quantales

X 7→ Lin(X )

Q 7→ [Q ]

Here Lin(X ) is the Foulis quantale of linear maps on a complete
OML X , and

[Q ] = {[ t ] | t ∈ Q} ⊆ Q,

is the complete OML constructed from Foulis quantale Q.
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Complete OMLs are quantale modules

The following statement says that a complete orthomodular lattice
X can be acted upon from the left by its linear transformations
and from the right by a 2-element chain, giving it two different but
compatible ways of being transformed or modified.

Proposition 16

Let X be a complete orthomodular lattice. Then X is a left Lin(X )-
module and also a right 2-module.

Theorem 17

Let Q be a Foulis quantale. Then [Q ] is a left Q-module with
action • defined as u • k = (u · k)⊥⊥ for all u ∈ Q and k ∈ [Q ] and
also a right 2-module.
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Sasaki actions

Definition 18

Let Q be a Foulis quantale and u ∈ Q. The map σu : [Q ] → [Q ],
y 7→ u • y is called the Sasaki action to u ∈ Q.

Evidently, σu ∈ Lin([Q ]). Moreover, if u ∈ [Q ] then σu is
self-adjoint linear, idempotent and imσu = ↓u in [Q ].

The following theorem establishes a canonical correspondence
between elements of a Foulis quantale and linear transformations
acting on its Sasaki projections, illuminating the structural
relationship between these components.
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Sasaki actions

Theorem 19

Let Q be a Foulis quantale. Then there is a natural homomorphism
h : Q → Lin([Q ]) of Foulis quantales such that h(u) = σu for all
u ∈ Q. Moreover, we have a factorization

Qα Lin([Q ])

Q

h|Qα

jα
h

Here u ∼α v iff σu = σv , jα(u) =
⊔
{v ∈ Q | u ∼α v} ∼α u,

Qα = {jα(u) | u ∈ Q} is a Foulis quantale with induced operations
such that [Q ] = [Qα ], jα is a surjective homomorphism of Foulis
quantales, and h|Qα is an embedding of Foulis quantales.
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Conclusion

Final remarks

This presentation introduced a novel method for structuring com-
plete orthomodular lattices as dagger categories.

Leveraging this framework, we established a connection between
complete orthomodular lattices and quantales, demonstrating that
every complete orthomodular lattice can be represented as a quan-
tale module over a Foulis quantale.

Conversely, we show that each Foulis quantale generates a complete
orthomodular lattice, which is also a quantale module over the
original Foulis quantale.
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Thank you for your attention!
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