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Literature Review and Motivation

It is a classical result of lattice theory that there is a bijective corre-
spondence between direct (product) decompositions of a lattice L with
a least element 0 into two components and pairs of complementary neu-
tral elements (I , J) of the lattice of ideals Id(L) of L (see [2], Theorem
III.4.2).
An analogous result for Scott-domains has been proved in [4] (Theorem
17).
Scott-domains and their decompositions are an important tools in the
theory of generalized relational databases.
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Literature Review

Lattices Scott-Domains Posets

• Ideal • Stable Subdomain • Finitely stable
subposet

• (Strongly) stable
subposet

• (Week) schem
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Aim of this talk

Let (P,≤P) be a poset.
Purpose: To introduce and characterize all pairs (A,B) of those subsets of
P for which each element p ∈ P has a unique representation of the form
p = a ∨ b, where a ∈ A and b ∈ B .
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Direct product of posets

Definition
The direct product of a non-empty family {(Pi ,≤Pi

) : i ∈ I} of posets is a
pair (

∏
i∈I Pi ,≤prod) such that:∏
i∈I Pi is the direct product of sets {Pi}i∈I and;

(xi )i∈I ≤prod (yi )i∈I if and only if xi ≤Pi
yi for all i ∈ I .
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Neutral elements

Definition
An element l of a lattice L is called neutral if, for all x , y ∈ L,

(l ∧L x) ∨L (x ∧L y) ∨L (y ∧L l) = (l ∨L x) ∧L (x ∨L y) ∧L (y ∨L l).
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Order ideals and Ideals

Definition
Let (P,≤P) be a poset.
(a) A non-empty subset I of P is called an order ideal of P if, whenever,

x ∈ I , y ∈ P and y ≤P x , we have y ∈ I .
(b) An order ideal I of P is called an ideal of P if I is a upward directed

set, if for every a, b ∈ I there exists c ∈ I such that a, b ≤P c .
(c) The set ↓p := {a ∈ P | a ≤P p} is an ideal of P for each p ∈ P .

Ideals of this kind are called principal.
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Lattices of order ideals and ideals

For each poset P , let (OI(P),⊆) and (I(P),⊆) denote the posets of all
order ideals and ideals of P , respectively, partially ordered by inclusion ⊆.

The poset OI(P) of all order ideals of a poset P is a lattice (respec-
tively, a complete lattice) if and only if P is a downwards directed poset
(respectively, P has a least element).
The poset I(P) of all ideals of a poset P is a lattice (respectively, a
complete lattice) if and only if P is a downwards directed join-semilattice
(respectively, P is a join-semilattice with a least element).
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A variety of stable sub-posets

Definition
Let (P,≤P) be a poset.
(a) A non-empty set A ⊆ P is called a finitely stable subposet of P if A is

an order ideal which is closed under all existing finite suprema.
(b) A non-empty set A ⊆ P is called a stable subposet of P if A is an order

ideal which is closed under all existing suprema.
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A variety of stable sub-posets

Definition
(c) An order ideal A of P is a strongly stable subposet of P if, for all p ∈ P ,

↓ p ∩ A has a greatest element.
• In particular, we can define the map πA : P → A, πA(p) :=

∨
↓ p∩A,

for each p ∈ P .
(d) Let Sf (P), S(P) and Ss(P) denote the families of all finitely stable,

stable and strongly stable subposets of P , respectively.
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Some facts on these special subposets

Let (P,≤P) be a poset and p ∈ P . Then
(a) each ideal I of a poset P is a finitely stable subposet in P , because each

finite set F ⊆ I has an upper bound in I (I(P) ⊆ Sf (P));
(b) Ss(P) ⊆ S(P);
(c) S(P) ⊆ Sf (P).
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Finitely stable subposets need not be ideals

Example
The pair a, b does not have a supremum. Thus A = {⊥P , a, b} is a
(finitely) stable subposet of P . However, A is not an ideal of P , because it
is not a directed set.
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Finitely stable subposets (ideals) are not stable subposets

Example
Let P = N ∪ {∞}. Then N = {0, 1, 2, . . .} is finitely stable but not stable,
since ∞ =

∨
N /∈ N.
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Stable subposets are not necessarily stongly stable

Take the three-element poset P = {a, b,⊤P} with the greatest element
⊤P such that elements a and b are not comparable, i.e., the set {a, b}
form two-element antichain. Then OI(P) = {↓P a, ↓P b, {a, b},P}. Next,
↓P a ∩ ↓P b = ∅ which implies that ↓P a and ↓P b are not strongly stable
subposets of P . Moreover, ↓P⊤P ∩{a, b} = {a, b} does not have a greatest
element.

Thus Ss(P) = {P}.
Sf (P) = S(P) = I(P) = {↓P a, ↓P b,P}.
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Strongly stable subposets-stable subposets

Theorem
Let (P,≤P) be a poset. Then a set A ⊆ P is a strongly stable subposet of
P if and only if A is a stable subposet of P and the supremum

∨
P(↓p ∩ A)

exists for each p ∈ P .
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Projections

Definition
Let (P,≤P) be a poset. Then a map π : P −→ P is called a projection if:

π is monotone (i.e., p1 ≤P p2 implies π(p1) ≤P π(p2));
π is idempotent (i.e., π(π(p)) = π(p) for all p ∈ P);
π(p) ≤P p, for all p ∈ P .
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Characterization of projections

Theorem
Let (P,≤P) be a poset. Then an order ideal A of P is a strongly stable
subsposet of P if and only if there is a projection π : P −→ P with
π(P) = A.
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Projections do not preserve existing suprema

Example
Take the five element lattice M3 and let A = {⊥M3 , a}. The subposet A is
a strongly stable subposet of M3 while πA does not preserve suprema. In
fact,
πA(b ∨M3 c) = πA(⊤M3) = a ̸= ⊥M3 = ⊥M3 ∨M3 ⊥M3 = πA(b) ∨M3 πA(c).
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Schems

Definition
Let (P,≤P) be a poset and A a strongly stable subposet of P . Then
(a) A is called a scheme if the projection πA : P −→ A preserves all existing

suprema, i.e., for each subset X ⊆ P , if the supremum
∨

P X exists,
then the supremum

∨
P πA(X ) exists and

∨
P πA(X ) = πA(

∨
P X ).

(b) A is called a weak scheme if the projection πA : P −→ A preserves all
existing finite suprema.
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Lattice of stable subposets

Let (P,≤P) be a poset with a least element ⊥P .
(a) S(P) (respectively, Sf (P)) partially ordered by inclusion is a complete

lattice in which the meet of an arbitrary non-empty family of stable (re-
spectively, finitely stable) subposets is given by its intersection. More-
over, {⊥P} is the least and P is the greatest element of this lattice.

(c) For each two strongly stable subposets A and B of P , the intersection
A ∩ B is also a strongly stable subposet, and moreover, πA∩B = πA ◦
πB = πB ◦ πA.

(d) For each two schemes (respectively, weak schemes) A and B of P , the
intersection A ∩ B is also a scheme (respectively, a weak scheme).

(e) Ss(P), Cw (P) and C (P) partially ordered by inclusion are meet-semilattices.
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Three sorts of decomposition

Definition
Let (P,≤P) be a poset with a least element ⊥P . Then
(a) A pair (A,B) of strongly stable subposets of P is called a quasi-general

decomposition of P (into two factors) if each p ∈ P has a unique
representation as p = a ∨P b such that a ∈ A and b ∈ B .

(b) A quasi-general decomposition (A,B) of P is called a weak general
decomposition of P (into two factors) if A and B are weak schemes of
P .

(c) A quasi-general decomposition (A,B) of P is called a general decom-
position of P (into two factors) if A and B are schemes of P .
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Properties of quasi-general decomposition

Theorem
Let (P,≤P) be a poset with a least element ⊥P , and let (A,B) be a quasi-
general decomposition of P . Then the following conditions are satisfied.
(a) A ∩ B = {⊥P}, i.e., A ∧S(P) B = {⊥P} and A ∧Sf (P) B = {⊥P}.
(b) {a∨P b : a ∈ A, b ∈ B and the join a ∨P b exists } = P . In particular,

A ∨S(P) B = P and A ∨Sf (P) B = P .
(c) For each a ∈ A and b ∈ B , πA(b) = ⊥P and πB(a) = ⊥P .
(d) For every a ∈ A and b ∈ B , if the supremum a ∨P b exists, then

πA(a ∨P b) = a and πB(a ∨P b) = b.
(e) For each p ∈ P , the supremum πA(p)∨P πB(p) exists and equals p. In

particular, πA(p) ∨P πB(p) is the unique representation of p.
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Uniqueness of representation of element of a poset via
singleton-set intersection

Theorem
Let (P,≤P) be a poset with a least element ⊥P . Then the pair (A,B)
of strongly stable subposets of P is a general (respectively, weak general)
decomposition of P if and only if A and B are schemes (respectively, weak
schemes) of P such that A∩B = {⊥P}, and each p ∈ P has a representation
as p = a ∨P b where a ∈ A and b ∈ B .
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Necessary and sufficient condition for (week/quasi-) general
decomposition to be the direct decomposition

Theorem
Let (P,≤P) be a poset with a least element ⊥P . Then the following condi-
tions are equivalent:
(a) P is isomorphic to the direct product A× B of posets A and B ,
(b) the pair (A,B) is (up to isomorphism) a general decomposition of P

such that the supremum a ∨P b exists for all a ∈ A and b ∈ B .
(c) the pair (A,B) is (up to isomorphism) a weak general decomposition of

P such that the supremum a ∨P b exists for all a ∈ A and b ∈ B .
(d) the pair (A,B) is (up to isomorphism) a quasi-general decomposition

of P such that the supremum a ∨P b exists for all a ∈ A and b ∈ B .
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Bijective correspondence (week-) general decompositions
and neutral elements of (Sf (P)) S(P)

Theorem
Let (P,≤P) be a poset with a least element ⊥P . Then a pair (A,B) is a
general decomposition (respectively, a weak general decomposition) of P if
and only if the following conditions hold:
(a) A and B are strongly stable subposets of P ,
(b) A and B are neutral elements of the lattice S(P) of all stable

subposets of P (respectively, of the lattice Sf (P) of all finitely stable
subposets of P) complementing each other.
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Main result

Theorem
Let (P,≤P) be a poset with a least element ⊥P . Then the following condi-
tions are equivalent:
(a) P is isomorphic to the direct product A× B of two posets.
(b) A and B are (up to isomorphism) strongly stable subposets of P , which

are also neutral elements of S(P) complementing each other, and the
supremum a ∨P b exists for all a ∈ A and b ∈ B .

(c) A and B are (up to isomorphism) strongly stable subposets of P , which
are also neutral elements of Sf (P) complementing each other, and the
supremum a ∨P b exists for all a ∈ A and b ∈ B .
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Thank you!
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