Decompositions of Posets with least elements

Halimeh Moghbeli and Konrad Pióro

Friedrich-Alexander Universität Erlangen-Nürnberg

Blansko, 7-12 September 2025

Literature Review and Motivation

- It is a classical result of lattice theory that there is a bijective correspondence between direct (product) decompositions of a lattice L with a least element 0 into two components and pairs of complementary neutral elements (I, J) of the lattice of ideals Id(L) of L (see [2], Theorem III.4.2).
- An analogous result for Scott-domains has been proved in [4] (Theorem 17).
- Scott-domains and their decompositions are an important tools in the theory of generalized relational databases.

Literature Review

Lattices	Scott-Domains	Posets
• Ideal	Stable Subdomain	 Finitely stable subposet (Strongly) stable subposet (Week) schem

Aim of this talk

Let (P, \leq_P) be a poset.

Purpose: To introduce and characterize all pairs (A, B) of those subsets of P for which each element $p \in P$ has a unique representation of the form $p = a \lor b$, where $a \in A$ and $b \in B$.

Direct product of posets

Definition

The direct product of a non-empty family $\{(P_i, \leq_{P_i}): i \in I\}$ of posets is a pair $(\prod_{i \in I} P_i, \leq_{prod})$ such that:

- $\prod_{i \in I} P_i$ is the direct product of sets $\{P_i\}_{i \in I}$ and;
- •

 $(x_i)_{i \in I} \leq_{prod} (y_i)_{i \in I}$ if and only if $x_i \leq_{P_i} y_i$ for all $i \in I$.

Neutral elements

Definition

An element I of a lattice L is called neutral if, for all $x, y \in L$,

$$(I \wedge_L x) \vee_L (x \wedge_L y) \vee_L (y \wedge_L I) = (I \vee_L x) \wedge_L (x \vee_L y) \wedge_L (y \vee_L I).$$

Order ideals and Ideals

Definition

Let (P, \leq_P) be a poset.

- (a) A non-empty subset I of P is called an order ideal of P if, whenever, $x \in I, y \in P$ and $y \leq_P x$, we have $y \in I$.
- (b) An order ideal I of P is called an ideal of P if I is a upward directed set, if for every $a, b \in I$ there exists $c \in I$ such that $a, b \leq_P c$.
- (c) The set $\downarrow p := \{a \in P \mid a \leq_P p\}$ is an ideal of P for each $p \in P$. Ideals of this kind are called principal.

Lattices of order ideals and ideals

For each poset P, let $(\mathcal{OI}(P), \subseteq)$ and $(\mathcal{I}(P), \subseteq)$ denote the posets of all order ideals and ideals of P, respectively, partially ordered by inclusion \subseteq .

- The poset $\mathcal{OI}(P)$ of all order ideals of a poset P is a lattice (respectively, a complete lattice) if and only if P is a downwards directed poset (respectively, P has a least element).
- The poset $\mathcal{I}(P)$ of all ideals of a poset P is a lattice (respectively, a complete lattice) if and only if P is a downwards directed join-semilattice (respectively, P is a join-semilattice with a least element).

A variety of stable sub-posets

Definition

Let (P, \leq_P) be a poset.

- (a) A non-empty set $A \subseteq P$ is called a finitely stable subposet of P if A is an order ideal which is closed under all existing finite suprema.
- (b) A non-empty set $A \subseteq P$ is called a stable subposet of P if A is an order ideal which is closed under all existing suprema.

A variety of stable sub-posets

Definition

- (c) An order ideal A of P is a strongly stable subposet of P if, for all $p \in P$, $\downarrow p \cap A$ has a greatest element.
 - In particular, we can define the map $\pi_A \colon P \to A$, $\pi_A(p) := \bigvee \downarrow p \cap A$, for each $p \in P$.
- (d) Let $S_f(P)$, S(P) and $S_s(P)$ denote the families of all finitely stable, stable and strongly stable subposets of P, respectively.

Some facts on these special subposets

Let (P, \leq_P) be a poset and $p \in P$. Then

- (a) each ideal I of a poset P is a finitely stable subposet in P, because each finite set $F \subseteq I$ has an upper bound in I ($\mathcal{I}(P) \subseteq \mathcal{S}_f(P)$);
- (b) $S_s(P) \subseteq S(P)$;
- (c) $S(P) \subseteq S_f(P)$.

Finitely stable subposets need not be ideals

Example

The pair a, b does not have a supremum. Thus $A = \{\bot_P, a, b\}$ is a (finitely) stable subposet of P. However, A is not an ideal of P, because it is not a directed set.

Finitely stable subposets (ideals) are not stable subposets

Example

Let $P = \mathbb{N} \cup \{\infty\}$. Then $\mathbb{N} = \{0, 1, 2, \ldots\}$ is finitely stable but not stable, since $\infty = \bigvee \mathbb{N} \notin \mathbb{N}$.

Stable subposets are not necessarily stongly stable

Take the three-element poset $P=\{a,b,\top_P\}$ with the greatest element \top_P such that elements a and b are not comparable, i.e., the set $\{a,b\}$ form two-element antichain. Then $\mathcal{OI}(P)=\{\downarrow_P a, \downarrow_P b, \{a,b\}, P\}$. Next, $\downarrow_P a \cap \downarrow_P b=\emptyset$ which implies that $\downarrow_P a$ and $\downarrow_P b$ are not strongly stable subposets of P. Moreover, $\downarrow_P \top_P \cap \{a,b\} = \{a,b\}$ does not have a greatest element.

- Thus $S_s(P) = \{P\}.$
- $\bullet \ \mathcal{S}_f(P) = \mathcal{S}(P) = \mathcal{I}(P) = \{ \downarrow_P a, \ \downarrow_P b, P \}.$

Strongly stable subposets-stable subposets

Theorem

Let (P, \leq_P) be a poset. Then a set $A \subseteq P$ is a strongly stable subposet of P if and only if A is a stable subposet of P and the supremum $\bigvee_{P} (\downarrow_{P} \cap A)$ exists for each $p \in P$.

Projections

Definition

Let (P, \leq_P) be a poset. Then a map $\pi: P \longrightarrow P$ is called a projection if:

- π is monotone (i.e., $p_1 \leq_P p_2$ implies $\pi(p_1) \leq_P \pi(p_2)$);
- π is idempotent (i.e., $\pi(\pi(p)) = \pi(p)$ for all $p \in P$);
- \bullet $\pi(p) \leq_P p$, for all $p \in P$.

Characterization of projections

Theorem

Let (P, \leq_P) be a poset. Then an order ideal A of P is a strongly stable subsposet of P if and only if there is a projection $\pi: P \longrightarrow P$ with $\pi(P) = A$.

Projections do not preserve existing suprema

Example

Take the five element lattice M_3 and let $A = \{\bot_{M_3}, a\}$. The subposet A is a strongly stable subposet of M_3 while π_A does not preserve suprema. In fact,

$$\pi_A(b \vee_{M_3} c) = \pi_A(\top_{M_3}) = a \neq \bot_{M_3} = \bot_{M_3} \vee_{M_3} \bot_{M_3} = \pi_A(b) \vee_{M_3} \pi_A(c).$$

Schems

Definition

Let (P, \leq_P) be a poset and A a strongly stable subposet of P. Then

- (a) A is called a scheme if the projection $\pi_A \colon P \longrightarrow A$ preserves all existing suprema, i.e., for each subset $X \subseteq P$, if the supremum $\bigvee_P X$ exists, then the supremum $\bigvee_P \pi_A(X)$ exists and $\bigvee_P \pi_A(X) = \pi_A(\bigvee_P X)$.
- (b) A is called a weak scheme if the projection $\pi_A \colon P \longrightarrow A$ preserves all existing finite suprema.

Lattice of stable subposets

Let (P, \leq_P) be a poset with a least element \perp_P .

- (a) S(P) (respectively, $S_f(P)$) partially ordered by inclusion is a complete lattice in which the meet of an arbitrary non-empty family of stable (respectively, finitely stable) subposets is given by its intersection. Moreover, $\{\bot_P\}$ is the least and P is the greatest element of this lattice.
- (c) For each two strongly stable subposets A and B of P, the intersection $A \cap B$ is also a strongly stable subposet, and moreover, $\pi_{A \cap B} = \pi_A \circ \pi_B = \pi_B \circ \pi_A$.
- (d) For each two schemes (respectively, weak schemes) A and B of P, the intersection $A \cap B$ is also a scheme (respectively, a weak scheme).
- (e) Ss(P), $C_w(P)$ and C(P) partially ordered by inclusion are meet-semilattice.

Three sorts of decomposition

Definition

Let (P, \leq_P) be a poset with a least element \perp_P . Then

- (a) A pair (A, B) of strongly stable subposets of P is called a quasi-general decomposition of P (into two factors) if each $p \in P$ has a unique representation as $p = a \vee_P b$ such that $a \in A$ and $b \in B$.
- (b) A quasi-general decomposition (A, B) of P is called a weak general decomposition of P (into two factors) if A and B are weak schemes of P.
- (c) A quasi-general decomposition (A, B) of P is called a general decomposition of P (into two factors) if A and B are schemes of P.

Properties of quasi-general decomposition

Theorem

Let (P, \leq_P) be a poset with a least element \perp_P , and let (A, B) be a quasigeneral decomposition of P. Then the following conditions are satisfied.

- (a) $A \cap B = \{\bot_P\}$, i.e., $A \wedge_{S(P)} B = \{\bot_P\}$ and $A \wedge_{S_f(P)} B = \{\bot_P\}$.
- (b) $\{a \lor_P b: a \in A, b \in B \text{ and the join } a \lor_P b \text{ exists }\} = P$. In particular, $A \lor_{S(P)} B = P \text{ and } A \lor_{S_f(P)} B = P$.
- (c) For each $a \in A$ and $b \in B$, $\pi_A(b) = \bot_P$ and $\pi_B(a) = \bot_P$.
- (d) For every $a \in A$ and $b \in B$, if the supremum $a \vee_P b$ exists, then $\pi_A(a \vee_P b) = a$ and $\pi_B(a \vee_P b) = b$.
- (e) For each $p \in P$, the supremum $\pi_A(p) \vee_P \pi_B(p)$ exists and equals p. In particular, $\pi_A(p) \vee_P \pi_B(p)$ is the unique representation of p.

Uniqueness of representation of element of a poset via singleton-set intersection

Theorem

Let (P, \leq_P) be a poset with a least element \perp_P . Then the pair (A, B) of strongly stable subposets of P is a general (respectively, weak general) decomposition of P if and only if A and B are schemes (respectively, weak schemes) of P such that $A \cap B = \{ \perp_P \}$, and each $p \in P$ has a representation as $p = a \vee_P b$ where $a \in A$ and $b \in B$.

Necessary and sufficient condition for (week/quasi-) general decomposition to be the direct decomposition

Theorem

Let (P, \leq_P) be a poset with a least element \perp_P . Then the following conditions are equivalent:

- (a) P is isomorphic to the direct product $A \times B$ of posets A and B,
- (b) the pair (A, B) is (up to isomorphism) a general decomposition of P such that the supremum $a \vee_P b$ exists for all $a \in A$ and $b \in B$.
- (c) the pair (A, B) is (up to isomorphism) a weak general decomposition of P such that the supremum $a \vee_P b$ exists for all $a \in A$ and $b \in B$.
- (d) the pair (A, B) is (up to isomorphism) a quasi-general decomposition of P such that the supremum $a \vee_P b$ exists for all $a \in A$ and $b \in B$.

Bijective correspondence (week-) general decompositions and neutral elements of $(S_f(P))$ S(P)

Theorem

Let (P, \leq_P) be a poset with a least element \perp_P . Then a pair (A, B) is a general decomposition (respectively, a weak general decomposition) of P if and only if the following conditions hold:

- (a) A and B are strongly stable subposets of P,
- (b) A and B are neutral elements of the lattice S(P) of all stable subposets of P (respectively, of the lattice $S_f(P)$ of all finitely stable subposets of P) complementing each other.

Main result

Theorem

Let (P, \leq_P) be a poset with a least element \perp_P . Then the following conditions are equivalent:

- (a) P is isomorphic to the direct product $A \times B$ of two posets.
- (b) A and B are (up to isomorphism) strongly stable subposets of P, which are also neutral elements of S(P) complementing each other, and the supremum $a \lor_P b$ exists for all $a \in A$ and $b \in B$.
- (c) A and B are (up to isomorphism) strongly stable subposets of P, which are also neutral elements of $S_f(P)$ complementing each other, and the supremum $a \vee_P b$ exists for all $a \in A$ and $b \in B$.

References

Buneman, P., Jung, A., Ohori, A., *Using Powerdomains to Generalize Relational Databases*, Theoretical Computer Science, 91(1991), 23-55.

Grätzer G., General Lattice Theory, 2nd edition, Birkhäuser Verlag 1998.

Grätzer G., Lattice Theory: Foundation, Birkhäuser 2011.

Jung, A., Libkin, L., Puhlmann, H., *Decomposition of Domains*. In: Brookes S., Main M., Melton A., Mislove M., Schmidt D. (eds) Mathematical Foundations of Programming Semantics. MFPS 1991. Lecture Notes in Computer Science, vol 598. Springer, Berlin, Heidelberg, 1992.

Thank you!