Nonclassical Polyadic Algebras : Soft and Hard

Chun-Yu Lin

Institute of Computer Science, the Czech Academy of Science Department of Logic, Faculty of Arts, Charles University

Summer School on General Algebra and Ordered Sets 11 September 2025

- Introduction
- 2 Setting
- Classical Polyadic Algebras
- 4 Algebraically Implicative Logics
- 5 Representation Theorems
- 6 More Works

Introduction

J. M. Font explains in [Fon16] that :

- If we associate a class algebras with a logic, then the algebras should have the same similarity types the language of that logic. Thus, the algebraic formulation of predicate logic as cylindric or polyadic algebras is closer to AAL.
- Soft : Evaluate quantifiers as infinite lattice operations Hard : Evaluate quantifiers as unary primitive operations

Question

Can we find connection between the Soft and Hard interpretation of quantifiers ?

Answer: Yes. In [PS95], Don Pigozzi and Antonino Salibra build an equational-like logic for first-order logic through "binding", study the term algebras through polyadic algebras, and prove the completeness theorem with respect to models through functional representation theorem. In [PS93] build the connection between Rasiowa-implicative logic and Polyadic algebra through proving the representation theorems.

Setting

Give two sets I, J with $J \subseteq I$. We call a mapping $\sigma : I \to I$ a transformation of I.

Notation

- The identity transformation is denoted by ι ;
- For $\sigma, \tau \in I^I$, $\sigma J \tau$ means that $\sigma(i) = \tau(i)$ for all $i \in J$. Also, we denote $\sigma(I \setminus J)\tau$ as $\sigma J_*\tau$;
- If $\sigma J_* \iota$, we say J supports σ .

Classical Polyadic Algebras – 1

Definition 1 ([Hal54])

An (existential) quantifier on a Boolean algebra **A** is a unary operation $\exists: A \to A$ such that

- **1** $\exists 0 = 0;$
- $p \leq \exists p;$
- $\exists (p \land \exists q) = \exists p \land \exists q$

Classical Polyadic Algebras – 2

Definition 2 ([Hal54])

A (quasi-)polyadic algebra is a quadruple $\langle A, I, S, \exists \rangle$ where **A** is a Boolean algebra, I is a set (for variables), $\exists : P(I) \to A^A$ is a mapping from subsets of I to quantifiers on **A**, and $S : I^I \to Hem(A)$ such that

- $\exists (\emptyset)p = p \text{ for all } p \in A$
- $\exists (J \cup K) = \exists (J) \circ \exists (K)$ for all subsets J, K of A
- $S(1_I) = 1_A$
- $S(\sigma)(S(\tau)) = S(\sigma\tau)$
- If $J \subset I$ and σ, τ are transformations on I such that $\sigma(I J) = \tau(I J)$ then $S(\sigma) \exists (J) = S(\tau) \exists (J)$
- If $J \subseteq I$ and τ is a transformation which is injective on $\tau^{-1}J$, then $\exists (J)S(\tau) = S(\tau)\exists (\tau^{-1}J)$

Classical Polyadic Algebras - 3

Some explanations:

- no substitutions of variables, no corresponding changes to the propositional functions.
- applying substitution $\sigma \circ \tau$ of variables in a propositional function should have the same effect as applying τ first and then applying σ .
- once a variable has been quantified, the replacement of that variable by another one has no further effect.
- once the variable has been replaced by another one, quantification on the replaced variable has no further effect.

Algebraically implicative logics – 1

Definition 3 ([CN21])

A logic L is algebraically implicative if there is a binary connective \to (primitive or definable) and a set of equations $\mathcal E$ in one variable such that:

(R)
$$\vdash_{\mathsf{L}} \varphi \to \varphi$$

(MP)
$$\varphi, \varphi \to \psi \vdash_{\mathbf{L}} \psi$$

(T)
$$\varphi \to \psi, \psi \to \chi \vdash_{\mathcal{L}} \varphi \to \chi$$

(sCng)
$$\varphi \to \psi, \psi \to \varphi \vdash_{\mathbf{L}} \circ (\chi_1, \dots, \chi_i, \varphi, \dots, \chi_n) \to \circ (\chi_1, \dots, \chi_i, \psi, \dots, \chi_n)$$

for each
$$0 \in \mathcal{O}$$
 and each $0 \le i < n$

(Alg)
$$p \dashv \vdash_{\mathrm{L}} \{\mu(p) \leftrightarrow \nu(p) \mid \mu \approx \nu \in \mathcal{E}\}.$$

Algebraically implicative logics – 2

Definition 4 ([CN21])

Let L be a logic and $\mathbf{MOD}^*(L)$ is the class of reduced models of L. An algebra \boldsymbol{A} is an L-algebra, $\boldsymbol{A} \in \mathbf{ALG}^*(L)$ in symbols, if there is a set $F \subseteq A$ such that $\langle \boldsymbol{A}, F \rangle \in \mathbf{MOD}^*(L)$.

Theorem 5 ([CN21])

Let L be a algebraically implicative logic. Then for any set Γ of formulas and any formula φ the following holds:

$$\Gamma \vdash_{\mathrm{L}} \varphi \quad \textit{iff} \quad \Gamma \models_{\mathsf{MOD}^*(\mathrm{L})} \varphi.$$

Algebraically implicative logics – 3

Applying Proposition 2.9.11 in [CN21], we can have the following definition

Definition 6 ([CN21])

A is algebra of truth values for L, or L-algebra, if there is a set of equations $\mathcal E$ such that the following quasi-equations hold in **A** for each $\alpha\approx\beta\in\mathcal E$:

- $\alpha(\varphi) \approx \beta(\varphi)$, for each axiom φ of L
- $\bigwedge \mathcal{E}[\Gamma] \Rightarrow \alpha(\varphi) \approx \beta(\varphi)$ for each rule $\Gamma \vdash_{\mathbf{L}} \varphi$ of \mathbf{L}

Toward first-order language

Definition 7

Let $\mathcal{L}_{\forall \exists} = \langle \mathcal{O}, \forall, \exists, \mathbf{P}, \mathbf{F}, \mathit{Var}, \rho \rangle$ be a first-order language where $\{ \rightarrow \} \subseteq \mathcal{O}$ is a set of propositional connectives, $\mathbf{P}(\mathbf{F})$ is a set of relation (functional) symbols, Var is a set of variables, and $\rho : \mathcal{O} \to \omega$ is an arity function.

Definition 8 ([CN21])

The minimum first-order logic over an algebraically implicative logic L is the consequence relation $\vdash_{L\forall^m}$ defined by the following axioms over $\mathcal{L}_{\forall \exists}\text{-formulas}$:

$(P_{ m L})$	$ au[\Gamma] dash_{\mathrm{L}orall^m} au(arphi)$	whenever $\Gamma dash_{\mathrm{L}} arphi$
$(\mathit{Ib}^{orall})$	$\vdash_{\mathrm{L}orall^m} orall x arphi(x) ightarrow arphi(t)$	where t is substitutable for x in φ
(ub^{\exists})	$dash_{\mathrm{L}orall^m}arphi(t) ightarrow\exists xarphi(x)$	where t is substitutable for x in φ
(Inf^{\forall})	$\chi \to \varphi \vdash_{L \forall^m} \chi \to \forall x \varphi$	where x is not free in χ
(Sup [∃])	$\varphi \to \chi \vdash_{\mathrm{L}\forall^m} \exists x \varphi \to \chi$	where x is not free in χ
(PGen)	$\varphi(x) \vdash_{\mathrm{L} orall^m} \varphi(t)$	where t is substitutable for x in φ

Definition 9 ([CN21])

A structure \mathfrak{M} is a pair $\langle \mathbf{A}, \mathbf{M} \rangle$ for a logic L where

- $A \in MOD^*(L)$
- $\mathbf{M} = \langle M, \langle P_{\mathbf{M}} \rangle_{P \in \mathbf{P}}, \langle f_{\mathbf{M}} \rangle_{f \in \mathbf{F}} \rangle \ (M \neq \emptyset)$
- $P_{\mathbf{M}} \colon M^n \to A$, for each n-ary $P \in \mathbf{P}$ with $n \ge 1$; $P_{\mathbf{M}} \in A$ if P is a propositional constant.
- $f_{\mathbf{M}} \colon M^n \to M$ for each n-ary $f \in \mathbf{F}$ with $n \ge 1$; $f_{\mathbf{M}} \in M$ if f is an object constant.

Definition 10 ([CN21])

A \mathfrak{M} -evaluation v: a mapping v: $Var \to M$. For $x \in Var, m \in M$, and \mathfrak{M} -evaluation v, we define $v[x \to m]$ as

$$v[x \rightarrow m](x) = m \text{ and } v[x \rightarrow m](y) = v(y) \text{ for } y \neq x.$$

We can inductively extend a \mathfrak{M} -evaluation v to all \mathcal{L} -terms by setting

$$v^{\mathfrak{M}}(f(t_1,\ldots,t_n))=f_{\mathbf{M}}(v^{\mathfrak{M}}(t_1),\ldots,v^{\mathfrak{M}}(t_n))$$

for each *n*-ary $f \in \mathbf{F}$.

Definition 11 ([CN21])

Let L be an algebraically implicative logic. We define values of the terms and truth values of the $\mathcal L\text{-formulas}$ in structure $\mathfrak M$ for an evaluation v recursively as

$$\begin{aligned} \|x\|_{\mathbf{v}}^{\mathfrak{M}} &= \mathbf{v}(x) & \text{for } x \in Var \\ \|P(t_{1}, \dots, t_{n})\|_{\mathbf{v}}^{\mathfrak{M}} &= P_{\mathbf{M}}(\mathbf{v}^{\mathfrak{M}}(t_{1}), \dots, \mathbf{v}^{\mathfrak{M}}(t_{n})) & \text{for } P \in \mathcal{P} \\ \|\circ(\varphi_{1}, \dots, \varphi_{n}\|_{\mathbf{v}}^{\mathfrak{M}} &= \circ^{\mathbf{A}}(\|\varphi_{1}\|_{\mathbf{v}}^{\mathfrak{M}}, \dots, \|\varphi_{n}\|_{\mathbf{v}}^{\mathfrak{M}}) & \text{for } \circ \in \mathcal{O} \\ \|(\forall x)\varphi\|_{\mathbf{v}}^{\mathfrak{M}} &= \inf_{\leq_{\mathbf{A}}}\{\|\varphi\|_{\mathbf{v}[x \to m]}^{\mathfrak{M}} \mid m \in M\} \\ \|(\exists x)\varphi\|_{\mathbf{v}}^{\mathfrak{M}} &= \sup_{\leq_{\mathbf{A}}}\{\|\varphi\|_{\mathbf{v}[x \to m]}^{\mathfrak{M}} \mid m \in M\} \end{aligned}$$

If the infimum/supremum does not exist, the value is undefined. A structure $\mathfrak M$ is safe if $\|\varphi\|_{v}^{\mathfrak M}$ is defined for each φ and v.

Polyadic L-Algebras – 1

Definition 12

Let I be a nonempty set. A polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ - algebra **A** is of the form

$$\langle A, (\circ^{\mathbf{A}} : \circ \in \mathcal{O}), \forall^{\mathbf{A}}, \exists^{\mathbf{A}}, S^{\mathbf{A}} \rangle$$

where $\circ^{\mathbf{A}}: A^n \to A$ if $\rho(\circ) = n$, $\forall^{\mathbf{A}}, \exists^{\mathbf{A}}: \mathcal{P}_{\omega}(I) \to A^A$, and $S^{\mathbf{A}}: I^I \to A^A$ such that the following axioms are satisfied:

- $S_{\iota}^{\mathbf{A}} x = x$;
- $S_{\sigma}^{\mathbf{A}}(S_{\tau}^{\mathbf{A}}x) = S_{\sigma\tau}^{\mathbf{A}}x$, for all $\sigma, \tau \in I^{I}$;
- $S_{\sigma}^{\mathbf{A}}(\circ^{\mathbf{A}}(x_1,\ldots,x_{\rho(\circ)})) = \circ^{\mathbf{A}}(S_{\sigma}^{\mathbf{A}}x_1,\ldots,S_{\sigma}^{\mathbf{A}}x_n)$, for all $\circ \in \mathcal{O}$, $\sigma \in I^I$;
- $S_{\sigma}^{\mathbf{A}}Q_{J}^{\mathbf{A}}x = S_{\tau}^{\mathbf{A}}Q_{J}^{\mathbf{A}}x$ for all $Q \in \{\forall, \exists\}, J \subseteq_{\omega} I$, and $\sigma, \tau \in I^{I}$ such that $\sigma J_{*}\tau$;
- $Q_J^{\mathbf{A}} S_{\sigma}^{\mathbf{A}} x = S_{\sigma}^{\mathbf{A}} Q_{\sigma^{-1}(J)}^{\mathbf{A}} x$ for all $Q \in \{ \forall, \exists \}$, $J \subseteq_{\omega} I$, and $\sigma, \tau \in I^I$ such that σ is injective on $\sigma^{-1}(J)$.

Polyadic L-Algebras – 2

Definition 13

A polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ -algebra is called a polyadic L-algebra if it satisfies the following equations and quasi-equations :

- Axioms of L-algebras;
- Axioms (T1)-(T8) for all $\sigma \in I^I$ and $J \subseteq_{\omega} I$

$$(T_1)$$
 $x \leq y$ implies $S_{\sigma}x \leq S_{\sigma}y$;

$$(T_2) \ \forall_{\emptyset} x = x;$$

$$(T_3) \exists_{\emptyset} x = x ;$$

$$(T_4) \ \forall_J x \leq x;$$

$$(T_5)$$
 $x \leq \exists_J x;$

$$(T_6)$$
 $x \leq S_{\sigma}x$;

$$(T_7)$$
 $x \le y, \forall_J x = x$ implies $x \le \forall_J y$;

$$(T_8)$$
 $x \le y, \exists_J y = y$ implies $\exists_J x \le y$.

Functional Polyadic L-algebras – 1

Definition 14

A value $\mathcal{L}_{\forall \exists}$ -algebra V is of the form

$$\langle V, (\circ^{\boldsymbol{V}}: \circ \in \mathcal{O}), \forall^{\boldsymbol{V}}, \exists^{\boldsymbol{V}} \rangle$$

where $\circ^{\mathbf{V}}: V^{\rho(\circ)} \to V$ is a $\rho(\circ)$ -ary operation on V for each $\circ \in \mathcal{O}$, and $Q^{\mathbf{V}}: \mathcal{P}(V) \rightharpoonup V$ is a partial unary second-order operation on V for each $Q \in \{\forall, \exists\}$.

Functional Polyadic L-algebras – 2

Definition 15

Given a value $\mathcal{L}_{\forall \exists}$ -algebra \mathbf{V} and two sets X,I. A partial functional polyadic $\langle \mathcal{L},I \rangle$ - algebra $\mathbf{\bar{V}}$ is of the form

$$\langle V^{X'}, (\circ^{\bar{\mathbf{V}}}: \circ \in \mathcal{O}), \forall^{\bar{\mathbf{V}}}, \exists^{\bar{\mathbf{V}}}, S^{\bar{\mathbf{V}}} \rangle$$

where $\circ^{\bar{\mathbf{V}}}: (V^{X^I})^{\rho(\circ)} \to V^{X^I}$, $\forall^{\bar{\mathbf{V}}}, \exists^{\bar{\mathbf{V}}}: \mathcal{P}_{\omega}(I) \to [V^{X^I}, V^{X^I}]$, and $S^{\bar{\mathbf{V}}}: I^I \to End(\mathbf{V})$ are defined as follows:

- $(\circ^{\mathbf{V}}(p_1,\ldots,p_{\rho(\circ)}))(\vec{x}) = \circ^{\mathbf{V}}(p_1(\vec{x}),\ldots,p_{\rho(\circ)}(\vec{x}))$ for all $p_1,\ldots,p_{\rho(\circ)} \in V^{X^I}$ and $\vec{x} \in X^I$;
- $(\forall_J^{\mathbf{\bar{V}}}p)(\vec{x}) = \forall^{\mathbf{\bar{V}}}(\{p(\vec{y}): \vec{x}J_*\vec{y}\})$, for all $p \in V^{X^I}$, $J \subseteq_{\omega} I$, and $\vec{x}, \vec{y} \in X^I$; similarly for $\exists^{\mathbf{\bar{V}}}$
- $(S_{\sigma}^{\mathbf{V}}p)(\vec{x}) = p(\sigma_*x)$ where $(\sigma_*\vec{x})_i = (\vec{x})_{\sigma(i)}$ for all $\sigma \in I^I$ and $\vec{x} \in X^I$.

Functional Polyadic L-algebras – 3

Definition 16

A subalgebra $\bar{\mathbf{U}}$ of $\bar{\mathbf{V}}$ such that $\forall_J^{\bar{\mathbf{V}}}p$ and $\exists_J^{\bar{\mathbf{V}}}$ are total functions from X^I to \mathbf{V} is called a functional polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ - algebra.

Definition 17

A functional polyadic L-algebra is a total functional polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ -algebra whose value algebra is of the form $\langle \mathbf{V}, \forall^{\mathbf{V}}, \exists^{\mathbf{V}} \rangle$ where $\mathbf{V} \in \mathbf{ALG}^*(L)$ and $\forall^{\mathbf{V}}$ and $\exists^{\mathbf{V}}$ are respectively the generalized meet and join operations.

Representation Theorems – 1

Theorem 18

Every functional polyadic L-algebra is a polyadic L-algebra.

Proof.

Verify all the axioms.

Representation Theorems – 2

For the converse, as the classical case in [Hal54], we need to make some restrictions. An element a of a polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ -algebra has a finite support $J \subseteq I$ if $S_{\sigma}a = S_{\tau}a$ for all $\sigma, \tau \in I^I$ such that $\sigma J\tau$. A polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ -algebra is locally finite if every element has a finite support.

Representation Theorems – 3

Theorem 19

Every locally finite polyadic L-algebra of infinite dimension is isomorphic to a functional polyadic L-algebra.

Proof.

Let $\mathbf{A} = \langle A, \rightarrow^{\mathbf{A}} \ (\circ^{\mathbf{A}} : \circ \in \mathcal{O}), \forall^{\mathbf{A}}, \exists^{\mathbf{A}}, S^{\mathbf{A}} \rangle$ be a locally finite polyadic L-algebra of infinite dimension. By Theorem 1.12 in [PS93], \mathbf{A} is isomorphic to a functional polyadic $\langle \mathcal{L}_{\forall \exists}, I \rangle$ -algebra whose domain is I and whose value algebra is $\mathbf{V} = \langle A, \rightarrow^{\mathbf{A}}, (\circ^{\mathbf{A}} : \circ \in \mathcal{O}), \forall^{\mathbf{V}}, \exists^{\mathbf{V}} \rangle$, where $\forall^{\mathbf{V}}, \exists^{\mathbf{V}} : \mathcal{P}(A) \rightarrow A$ with the common domain being the set of all subsets of A of the form $\{S_{\lambda}^{\mathbf{A}}a : \lambda \in I^{I}, \lambda J_{*}\sigma\}$ for some $a \in A$, $J \subseteq_{\omega} I$, and $\sigma \in I^{I}$. Then show that $\forall^{\mathbf{V}}$ and $\exists^{\mathbf{V}}$ are actually generalized meets and joins.

More works

Many possible direction for further investigations

- Polyadic relevant algebras and MG structures (jww. Nickolas Ferenz and Andrew Tedder)
- Connection with variable binding algebras[FPT99],[GP02].
- Relation algebras [Ság12]
- Presheaf theoretic formulation (work in progress based on [KP10])
- 2-categorical topoi (based on [LY25] and [Mar21])

Thank you!

- Joseph. M. Font, Abstract algebraic logic: An introductory textbook, Studies in logic and the foundations of mathematics, College Publications, 2016.
- Marcelo Fiore. Gordon Plotkin, and Daniele Turi, Abstract syntax and variable binding, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158), IEEE, 1999. pp. 193-202.
- Murdoch J Gabbay and Andrew M Pitts, A new approach to abstract syntax with variable binding, Formal aspects of computing 13 (2002), 341–363.
- Paul R Halmos, Polyadic boolean algebras, Proceedings of the National Academy of Sciences 40 (1954), no. 5, 296-301.
- Alexander Kurz and Daniela Petrisan, Presenting functors on many-sorted varieties and applications, Information and Computation 208 (2010), no. 12, 1421-1446.
- Ivan Di Liberti and Lingyuan Ye, Logic and concepts in the 2-category of topoi, 2025.
- Yoshihiro Maruyama. Fibred algebraic semantics for a variety of non-classical first-order logics and topological logical translation, The Journal of Symbolic Logic 86 (2021), no. 3, 1189-1213.
- Don Pigozzi and Antonino Salibra, Polyadic algebras over nonclassical logics, Banach Center Publications 28 (1993), no. 1, 51-66.
- , The abstract variable-binding calculus, Studia Logica 55 (1995), no. 1, 129–179.

Gábor Sági, *Polyadic algebras*, Cylindric-like algebras and algebraic logic, Springer, 2012, pp. 367–389.