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Basic concepts

Definition 1

(i) A unary operation on a set L is called an involution if it satisfies the
identity (x ′)′ ≈ x.

(ii) A unary operation on a poset (L,≤) is called antitone if x , y ∈ L and
x ≤ y together imply y ′ ≤ x ′.

(iii) A unary operation on a bounded lattice (L,∨,∧, 0, 1) is called a com-
plementation if it satisfies the identities x ∨ x ′ ≈ 1 and x ∧ x ′ ≈ 0.

(iv) A bounded lattice (L,∨,∧, ′, 0, 1) with a unary operation is called

a lattice with complementation if ′ is a complementation on
(L,∨,∧, 0, 1),
an ortholattice if ′ is a complementation and an antitone involution on
(L,∨,∧, 0, 1).
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Symmetric differences

Lemma 2

A lattice (L,∨,∧, ′, 0, 1) with complementation satisfying the identity x∧y ≈
x∧(x ′∨y) or the identity x∨y ≈ x∨(x ′∧y) satisfies the identity (x ′)′ ≈ x.

Definition 3

For a lattice (L,∨,∧, ′) with a unary operation we define binary operations
+1 and +2 on L by

x+1y := (x ′ ∧ y) ∨ (x ∧ y ′),

x+2y := (x ∨ y) ∧ (x ′ ∨ y ′)

for all x , y ∈ L. These operations are called symmetric differences.
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Coincidence identity
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Coincidence identity

Remark 4

If (L,∨,∧, ′) is a lattice with a unary operation then x +1 y ≤ x +2 y for all
x , y ∈ L.

For a lattice (L,∨,∧, ′) with a unary operation we call the identity x+1 y ≈
x +2 y the coincidence identity.
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Example

Example 5

The modular lattice (M3,∨,∧)

r
r r r
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a b c

1

with the complementation ′ defined by

x 0 a b c 1

x ′ 1 b c a 0

does not satisfy the coincidence identity since

a+1 b = (a′ ∧ b) ∨ (a ∧ b′) = (b ∧ b) ∨ (a ∧ c) = b ∨ 0 = b ̸= 1 =

= 1 ∧ 1 = 1 ∧ (b ∨ c) = (a ∨ b) ∧ (a′ ∨ b′) = a+2 b.
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Consequences of the coincidence identity

Lemma 6

If L = (L,∨,∧, ′, 0, 1) is a lattice with complementation satisfying the coin-
cidence identity and a ∈ L then the following holds:

(i) L satisfies the identity x ′ ∨
(
x ∧ (x ′)′

)
≈ 1,

(ii) a ∧ (a′)′ ≤ a′ if and only if a = 0.

Lemma 7

Every ortholattice (L,∨,∧, ′, 0, 1) satisfying the coincidence identity satisfies
the identities

(x ∧ y) ∨ (x ∧ y ′) ∨ (x ′ ∧ y) ∨ (x ′ ∧ y ′) ≈ 1,

(x ∨ y) ∧ (x ∨ y ′) ∧ (x ′ ∨ y) ∧ (x ′ ∨ y ′) ≈ 0.
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Example

Example 8

In Fig. 1 and 2 non-Boolean ortholattices satisfying the coincidence identity
are visualized:
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Example, continued

Example 9

As one can see, in the ortholattice depicted in Fig. 1 the elements c ′ and
d ′ are incomparable complements of c, but c ′ and d ′ are not complements
of each other. In the ortholattice visualized in Fig. 2 the elements a′ and d ′

are comparable complements of a.

Theorem 10

If (L,∨,∧, ′, 0, 1) is a non-trivial lattice with complementation satisfying the
coincidence identity and a ∈ L then there does not exist some b ∈ L being
a complement of a and a′.

Corollary 11

A lattice with complementation satisfying the coincidence identity cannot
contain a subalgebra isomorphic to (M3,∨,∧, ′, 0, 1).
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Horizontal sums of bounded chains

Theorem 12

Any ortholattice (L,∨,∧, ′, 0, 1) having the property that for all x , y ∈ L,
either x and y or x and y ′ are comparable with each other satisfies the
coincidence identity.

Definition 13

If Ci = (Ci ,≤i , 0, 1), i ∈ I , is a family of bounded chains with Ci ∩ Cj =
{0, 1} for all i , j ∈ I with i ̸= j then the bounded lattice(⋃

i∈I
Ci ,
⋃
i∈I

≤i , 0, 1

)

is called the horizontal sum of the Ci , i ∈ I .
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Horizontal sums of two bounded chains

Theorem 14

If C1 = (C1,≤, 0, 1) and C2 = (C2,≤, 0, 1) are bounded chains satisfying
C1 ∩ C2 = {0, 1}, L = (L,∨,∧, 0, 1) denotes the horizontal sum of C1 and
C2 and ′ is a unary operation on L then the following holds:

(i) The operation ′ is a complementation if and only if 0′ = 1, 1′ = 0,
(C1 \ {0, 1})′ ⊆ C2 \ {0, 1} and (C2 \ {0, 1})′ ⊆ C1 \ {0, 1},
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Example

Example 15

The non-modular lattice

r
r r
r r

r

A
AA

�
��

�
��

A
AA

0

a c

b d

1

with the complementation ′ defined by

x 0 a b c d 1

x ′ 1 d c b a 0

satisfies the coincidence identity since it is the horizontal sum of two four-
element chains.
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Associativity of the symmetric differences
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Associativity of the symmetric differences

It is well-known that in a Boolean lattice the term operations +1 and +2

coincide and these operations are associative. The question arises whether,
conversely, in a lattice with complementation, associativity of +1 or +2

implies lattice distributivity. We will show that this is indeed the case.

Theorem 17

For a lattice L = (L,∨,∧, ′, 0, 1) with complementation consider the follow-
ing statements:

(i) L satisfies the identity x ∧ y ≈ x ∧ (x ′ ∨ y),

(ii) L satisfies the identity x ∨ y ≈ x ∨ (x ′ ∧ y),

(iii) L is Boolean.

Then (i) ⇔ (ii) ⇒ (iii).
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Characterization of Boolean lattices

Theorem 18

For a lattice L with complementation the following are equivalent:

(i) +1 is associative,

(ii) +2 is associative,

(iii) L is Boolean.

Theorem 19

For a lattice L with complementation satisfying the incidence identity the
following are equivalent:

(i) (x +1 y) +1 y ≈ x,

(ii) (x +2 y) +2 y ≈ x,

(iii) L is Boolean.
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Further characterizations of Boolean lattices

Theorem 20

([7]) For a lattice L = (L,∨,∧, ′) with a unary operation the following are
equivalent:

(i) L satisfies the identities x ′ ∨ (x ∧ y) ≈ x ′ ∨ y and x ′ ∧ (x ∨ y) ≈ x ′ ∧ y,

(ii) L is Boolean.

Theorem 21

([9], Proposition 4.2.1) For a lattice L = (L,∨,∧, ′) with a unary operation
the following are equivalent:

(i) L satisfies the identity (x ∧ y) ∨ (x ∧ y ′) ≈ (x ∨ y) ∧ (x ∨ y ′),

(ii) L is Boolean.

In [6] other single identities are presented that force a lattice with a unary
operation to be Boolean.
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