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Palacký University Olomouc

September 9, 2025

Dominik Lachman Effect Algebras as a Simplicially Enriched Category 1 / 15



Two structures

Definition (Foulis and Bennett 1994)

We call a partial algebra (E,⊕,′ , 0, 1) of signature (2, 1, 0, 0) an
effect algebra if for each a, b, c ∈ E:

(i) (E,⊕, 0) is a partial commutative monoid;

(ii) a′ is the unique element such that a⊕ a′ = 1,

(iii) if a⊕ 1 is defined, then a = 0 and a⊕ 1 = 1.

An effect algebra admits a natural partial order.
Example: Orthomodular posets, MV-algebras.
Effect algebras with structure-preserving maps form a category EA.

Definition

We call a small nonempty category G a groupoid if each arrow in
G is an isomorphism.

Groupoids with functors form a category GR.
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Both GR and EA live together in one “hotel”

which we call Frobenius algebras in Rel.

Heunen, Contreras, and Cattaneo 2013 (GR)
Pavlovic and Seidel 2016 (EA).
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The rich and the poor

Rich Homo:
Given two groupoids G,H, we can equip the set of natural
transformations Hom(G,H) with a structure of a groupoid.

Poor Homo:
Given two effect algebras E,F , the set of morphisms Hom(E,F )
is just a set:
For f, g : E → F (unless in a trivial situation):

▶ There is no f ⊕ g since f(1) ̸⊥ g(1).

▶ There is no obvious ordering, since

f(a) ≤ g(a) =⇒ f(a′) ≥ g(a′).

One should somehow enrich the poor EA!
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Jump to combinatorial topology

Simplicial sets:

X0 X1 X2 X3 · · ·

There is a fully faithful functor N : GR→ Set∆.

ϵ-simplicial sets

X0 X1 X2 X3 · · ·

Xϵ

There is a fully faithful functor N : EA→ Setϵ∆. (Lachman 2025)
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Effect algebra E 7→ ϵ-simplicial set N(E)

a = a1 ⊕ · · · ⊕ an ←→ n-simplices

n = 0 0 = 0 the zero element gives the only vertex

n = 1 a = a {elements of E} ∼= {edges}

{1} ∼= {ϵ−edges}

n = 2 c = a⊕ b

2

0 1

c

b

a

n = 3 a = a1 ⊕ a2 ⊕ a3

3

2

0 1

a1

a

a3

a2
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Lifting properties

For two morphisms f : X → Y and g : W → Z in Set∆ or Setϵ∆,
we set:

f � g ⇐⇒

X W

Y Z

f

∀p

g

∀q

∃l

We say g has the right lifting property (RLP) with respect to f .

Kan fibration: g : X → Y is called Kan fibration if
(Λn

i ↪→ ∆n) � g for each 1 ≤ n, 0 ≤ i ≤ n.

Trivial fibration: g : X → Y is called trivial fibration if
(∂∆n ↪→ ∆n) � g for each 0 ≤ n.
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Characterisation theorems

Theorem (folklore)

A simplicial set X is isomorphic to N(G) for a groupoid G iff it
admits the unique right lifting property w.r.t. all horns Λn

i ⊂ ∆n,
1 ≤ n, 0 ≤ i ≤ n.

Theorem (L.)

Let E ∈ EA. Then N(E) admits the unique RLP with respect to
all horns Λn

i ⊂ ∆n for n ≥ 3.

Λ3
0 N(E)

∆3

:

3

2

0 1

c

a

b

↪→

3

2

0 1

c

a

b
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Mapping space

Theorem (L.)

Let E and F be two effect algebras. Then there is a Frobenius
algebra H, such that

N(H) ∼= Map(N(E), N(F )). (1)

Theorem (L.)

There is a category EA of effect algebras, enriched over the
category Setϵ∆ with the cartesian monoidal structure. Moreover,
the underlying category EA0 coincides with the ordinary category
of effect algebras.

EA0(E,F ) ∼= Hom( 0,Map(N(E), N(F ))). (2)
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0 → Map(N(E), N(F ))

• • · ·

•

• • ·

· ·

{vertices} ∼= {partial monoid morphisms E → F},
{loops over h : E → F} ∼= elements of the interval [0, h(1)′].
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Pseudo effect algebras (another “hotel” resident )

Commutativity ⇝ braiding ∼ EA⇝ PEA

0 0 0

0 0 0 0

b

b

a⊕b a a a⊕b

b

a

a⊕ b = b⊕ a

1 1 1 1 1

0 0 0 0 0

b2 b2

b1

a⊕b1 a a a⊕b1

b1

a a a⊕b2

a⊕ b1 = b2 ⊕ a (3)

In this situation, we say that b1 and b2 are conjugate.
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Let E,F ∈ PEA. In the mapping space Map(N(E), N(F )), we have:

{vertices} ∼= {partial monoid morphisms E → F},
arrows between vertices f : E → F and g : E → F corresponds to
conjugation.

Observation

Let f : E → F be a morphism and g be a pointwise conjugation, that
is b⊕ f(−) = g(−)⊕ b, for some b ∈ F . Then g is a morphism.

Proof:
2′

0′ 1′

2

0 1

g(a2)

g(a) g(a1)

b

b

f(a2)

f(a)

b

f(a1)

f(a) = f(a1)⊕ f(a2) =⇒ g(a) = g(a1)⊕ g(a2)
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Main theorem

Theorem (L.)

Let E,F ∈ PEA and f : 1→ E be the unique morphism from the
initial (two-elements) PEA 1. Then the restriction morphism

p : Map(N(E), N(F ))→ Map(N(1), N(F ))

is a Kan fibration. Moreover (∂∆n ⊂ ∆n) � p for each n ≥ 2.
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Thank you for your attention!


