# Effect Algebras as a Simplicially Enriched Category SSAOS 2025

Dominik Lachman

Palacký University Olomouc

September 9, 2025

#### Two structures

## Definition (Foulis and Bennett 1994)

We call a partial algebra  $(E, \oplus, ', 0, 1)$  of signature (2, 1, 0, 0) an effect algebra if for each  $a, b, c \in E$ :

- (i)  $(E, \oplus, 0)$  is a partial commutative monoid;
- (ii) a' is the unique element such that  $a \oplus a' = 1$ ,
- (iii) if  $a \oplus 1$  is defined, then a = 0 and  $a \oplus 1 = 1$ .

An effect algebra admits a natural partial order.

**Example:** Orthomodular posets, MV-algebras.

Effect algebras with structure-preserving maps form a category **EA**.

#### Definition

We call a small nonempty category G a groupoid if each arrow in G is an isomorphism.

Groupoids with functors form a category GR.

#### Both GR and EA live together in one "hotel"



which we call Frobenius algebras in Rel.

Heunen, Contreras, and Cattaneo 2013 (**GR**) Pavlovic and Seidel 2016 (**EA**).

# The rich and the poor

#### **Rich Homo:**

Given two groupoids G,H, we can equip the set of natural transformations  ${\rm Hom}(G,H)$  with a structure of a groupoid.

# The rich and the poor

#### Rich Homo:

Given two groupoids G, H, we can equip the set of natural transformations  $\mathrm{Hom}(G,H)$  with a structure of a groupoid.

#### Poor Homo:

Given two effect algebras E, F, the set of morphisms  $\operatorname{Hom}(E, F)$  is just a set:

For  $f, g: E \to F$  (unless in a trivial situation):

- ▶ There is no  $f \oplus g$  since  $f(1) \not\perp g(1)$ .
- ► There is no obvious ordering, since

$$f(a) \le g(a) \implies f(a') \ge g(a').$$

# The rich and the poor

#### Rich Homo:

Given two groupoids G, H, we can equip the set of natural transformations  $\mathrm{Hom}(G,H)$  with a structure of a groupoid.

#### Poor Homo:

Given two effect algebras E, F, the set of morphisms  $\operatorname{Hom}(E, F)$  is just a set:

For  $f, g \colon E \to F$  (unless in a trivial situation):

- ▶ There is no  $f \oplus g$  since  $f(1) \not\perp g(1)$ .
- There is no obvious ordering, since

$$f(a) \le g(a) \implies f(a') \ge g(a').$$

# One should somehow enrich the poor EA!

# Jump to combinatorial topology

#### Simplicial sets:



There is a fully faithful functor  $N \colon \mathbf{GR} \to \operatorname{Set}_{\Delta}$ .

#### $\epsilon$ -simplicial sets



There is a fully faithful functor  $N \colon \mathbf{EA} \to \mathrm{Set}_{\Delta}^{\epsilon}$ . (Lachman 2025)

# Effect algebra $E \mapsto \epsilon$ -simplicial set N(E)

| $a = a_1 \oplus \cdots \oplus a_n$ | $\longleftrightarrow$ | n-simplices |
|------------------------------------|-----------------------|-------------|
|------------------------------------|-----------------------|-------------|

n = 0 0 = 0

the zero element gives the only vertex

n=1 a=a

 $\{\text{elements of }E\}\cong\{\text{edges}\}$ 

$$\{1\}\cong\{\epsilon\mathrm{-edges}\}$$

$$n=2$$
  $c=a\oplus b$ 

$$n=3$$
  $a=a_1\oplus a_2\oplus a_3$ 



# Lifting properties

For two morphisms  $f \colon X \to Y$  and  $g \colon W \to Z$  in  $\operatorname{Set}_{\Delta}$  or  $\operatorname{Set}_{\Delta}^{\epsilon}$ , we set:



We say g has the right lifting property (RLP) with respect to f.

**Kan fibration:**  $g \colon X \to Y$  is called *Kan fibration* if  $(\Lambda_i^n \hookrightarrow \Delta^n) \boxtimes g$  for each  $1 \le n$ ,  $0 \le i \le n$ .

**Trivial fibration:**  $g \colon X \to Y$  is called *trivial fibration* if  $(\partial \Delta^n \hookrightarrow \Delta^n) \boxtimes g$  for each  $0 \le n$ .

## Characterisation theorems

# Theorem (folklore)

A simplicial set X is isomorphic to N(G) for a groupoid G iff it admits the unique right lifting property w.r.t. all horns  $\Lambda^n_i \subset \Delta^n$ ,  $1 \leq n, \ 0 \leq i \leq n$ .

## Theorem (L.)

Let  $E \in \textbf{EA}$ . Then N(E) admits the unique RLP with respect to all horns  $\Lambda^n_i \subset \Delta^n$  for  $n \geq 3$ .



# Mapping space

## Theorem (L.)

Let E and F be two effect algebras. Then there is a Frobenius algebra H, such that

$$N(H) \cong \operatorname{Map}(N(E), N(F)). \tag{1}$$

# Mapping space

## Theorem (L.)

Let E and F be two effect algebras. Then there is a Frobenius algebra H, such that

$$N(H) \cong \operatorname{Map}(N(E), N(F)).$$
 (1)

## Theorem (L.)

There is a category **EA** of effect algebras, enriched over the category  $\operatorname{Set}_{\Delta}^{\epsilon}$  with the cartesian monoidal structure. Moreover, the underlying category **EA** $_0$  coincides with the ordinary category of effect algebras.

$$\mathsf{EA}_0(E,F) \cong \mathrm{Hom}(\Delta^0, \mathrm{Map}(N(E), N(F))). \tag{2}$$

## $\triangle^0 \to \operatorname{Map}(N(E), N(F))$



 $\{\text{vertices}\}\cong \{\text{partial monoid morphisms }E\to F\},$   $\{\text{loops over }h\colon E\to F\}\cong \text{elements of the interval }[0,h(1)'].$ 

# Pseudo effect algebras (another "hotel" resident )

Commutativity  $\leadsto$  braiding  $\sim$  EA  $\leadsto$  PEA

$$a \oplus b_1 = b_2 \oplus a \tag{3}$$

In this situation, we say that  $b_1$  and  $b_2$  are conjugate.

Let  $E, F \in \mathbf{PEA}$ . In the mapping space  $\mathrm{Map}(N(E), N(F))$ , we have:

 $\{\text{vertices}\}\cong \{\text{partial monoid morphisms }E\to F\},$  arrows between vertices  $f\colon E\to F$  and  $g\colon E\to F$  corresponds to conjugation.

Let  $E, F \in \textbf{PEA}$ . In the mapping space Map(N(E), N(F)), we have:

 $\{\text{vertices}\}\cong \{\text{partial monoid morphisms }E\to F\},$  arrows between vertices  $f\colon E\to F$  and  $g\colon E\to F$  corresponds to conjugation.

#### Observation

Let  $f \colon E \to F$  be a morphism and g be a pointwise conjugation, that is  $b \oplus f(-) = g(-) \oplus b$ , for some  $b \in F$ . Then g is a morphism.

Proof:



$$f(a) = f(a_1) \oplus f(a_2) \implies g(a) = g(a_1) \oplus g(a_2)$$

### Main theorem

## Theorem (L.)

Let  $E, F \in \textbf{PEA}$  and  $f \colon \underline{1} \to E$  be the unique morphism from the initial (two-elements) PEA  $\underline{1}$ . Then the restriction morphism

$$p \colon \operatorname{Map}(N(E), N(F)) \to \operatorname{Map}(N(\underline{1}), N(F))$$

is a Kan fibration. Moreover  $(\partial \Delta^n \subset \Delta^n) \boxtimes p$  for each  $n \geq 2$ .

## References

- Foulis, D. J. and M. K. Bennett (1994). "Effect algebras and unsharp quantum logics". In: Found. Phys. 24, pp. 1325–1346. DOI: https://doi.org/10.1007/BF02283036.
- Heunen, C., I. Contreras, and A. S. Cattaneo (2013). "Relative Frobenius algebras are groupoids". In: *Journal of Pure and Applied Algebra* 217.1, pp. 114–124. DOI: https://doi.org/10.1016/j.jpaa.2012.04.002.
- Lachman, D. (2025). "Simplicial Approach to Frobenius Algebras in the Category of Relations". Preprint, submitted to arXiv. DOI: https://doi.org/10.48550/arXiv.2509.06193.
- Pavlovic, D. and P. M. Seidel (2016). "(Modular) Effect Algebras are Equivalent to (Frobenius) Antispecial Algebras". In: *Proceedings of QPL 2016*. Vol. 236. Electronic Proceedings in Theoretical Computer Science. CC BY-NC-ND, pp. 108–123. DOI: 10.4204/EPTCS.236.10.

Thank you for your attention!