Semidirect and poset product of (pseudo-) hoops

Jan Kühr

Palacký University in Olomouc Czechia

> SSAOS 2025 Češkovice 11 September 2025

Motivation

Michal Botur came up with "new product of hoops" and proved that every finite hoop is product of simple hoops.

- How does this relate to "my" semidirect product of residuated structures?
- How does the decomposition relate to the Jipsen-Montagna poset product decomposition of finite hoops?

Pseudo-hoops

An integral residuated pomonoid is a structure

$$(A, \leq, \cdot, \setminus, /, 1)$$

where $(A, \leq, \cdot, 1)$ is a pomonoid with top element 1 and, for all $a, b, c \in A$:

$$a \cdot b \le c$$
 iff $a \le c / b$ iff $b \le a \setminus c$.

A pseudo-hoop is an integral residuated pomonoid satisfying

$$x \cdot (x \setminus y) \approx (x / y) \cdot y$$
.

The poset of a pseudo-hoop is a meet-semilattice with

$$a \wedge b = a \cdot (a \setminus b) = (a / b) \cdot b.$$

- A hoop is a commutative pseudo-hoop.
- A finite pseudo-hoop is a hoop.

Michal's "new product"

Let C, D be pseudo-hoops and suppose that $\mu: C \to D$ satisfies

- $\mu(1) = 1$,
- $\mu(ab) = \mu(a)\mu(b) = \mu(a) \land \mu(b)$ for all $a, b \in C$.

Then $C \ltimes_{\mu} D$ is defined as

$$\{(a, x) \in C \times D \mid \mu(a) \ge x\}$$

with pointwise multiplication and with

$$(a,x)\setminus (b,y)=(a\setminus b,\mu(a\setminus b)\wedge (x\setminus y)),$$

$$(b,y) / (a,x) = (b / a, \mu(b / a) \wedge (y / x)).$$

Decomposing finite hoops

The product is associative: $(C \ltimes_{\mu} D) \ltimes_{\nu} E \cong C \ltimes_{M} (D \ltimes_{N} E)$.

Let *A* be a finite hoop.

• For any filter $D \in \operatorname{Fil} A$,

$$A \cong A/D \ltimes_{\mu} D$$

for μ : $A/D \to D$ defined by $[a]_D \mapsto a \lor e$, where D = [e).

• Hence *A* is isomorphic to a product of simple hoops.

"My" semidirect product

Suppose C acts on D by closure endomorphisms, i.e., we are given $\lambda \colon C \curvearrowright D$ such that

- every $\lambda_a : x \mapsto a * x$ is a closure endomorphism of D, and
- 1 * x = x and $(a \setminus b) * (a * x) = (b \setminus a) * (b * x)$ for all $a, b \in C$ and $x \in D$.

Then we define the semidirect product $C \ltimes_{\lambda} D$ as

$$\{(a, x) \in C \times D \mid a * x = x\}$$

with

$$(a,x) \setminus (b,y) = (a \setminus b, a * (x \setminus y)),$$

$$(b,y) / (a,x) = (b / a, a * (y / x)),$$

and

$$(a, x) \cdot (b, y) = (ab, ab * xy).$$

"My" semidirect product

Let A be a pseudo-hoop with a fixed closure endomorphism γ . Then

$$A \cong C \ltimes_{\lambda} D$$
,

where $C = \gamma[A]$ acts on $D = \gamma^{-1}(1)$ by (left) division, i.e., $\lambda : C \curvearrowright D$ is given by $\lambda_a(x) = a \setminus x$.

Small example

• $\lambda_a(x) = a \setminus x$: $\lambda_1 = \mathrm{id}_D$ and $\lambda_a = 1_D$ for $a \neq 1$

Small example

- $\lambda_a(x) = a \setminus x$: $\lambda_1 = \mathrm{id}_D$ and $\lambda_a = 1_D$ for $a \neq 1$
- $\mu(a)$ = the bottom of $\lambda_a^{-1}(1)$: $\mu(1) = 1$ and $\mu(a) = e$ for $a \neq 1$

$C \ltimes_{\lambda} D \text{ vs } C \ltimes_{\mu} D$

$$C \ltimes_{\lambda} D = \{(a, x) \mid a * x = x\}$$
 vs $C \ltimes_{\mu} D = \{(a, x) \mid \mu(a) \ge x\}$

$C \ltimes_{\lambda} D \text{ vs } C \ltimes_{\mu} D$

$$C \bowtie_{\lambda} D = \{(a, x) \mid a * x = x\}$$
 vs $C \bowtie_{\mu} D = \{(a, x) \mid \mu(a) \ge x\}$

$$(x'', x'' \setminus x) \longleftrightarrow x \mapsto (x'', x \lor e)$$

 $C \bowtie_{\lambda} D$ might seem cumbersome, but it works in setting of the $\{\setminus, /, 1\}$ -subreducts (divisible pseudo-BCK-algebras).

$$C \ltimes_{\mu} D \cong C \ltimes_{\lambda} D$$

 $C \ltimes_{\mu} D$ always induces $\lambda \colon C \curvearrowright D$ such that $C \ltimes_{\mu} D \cong C \ltimes_{\lambda} D$:

- the elements $\mu(a) \in D$ are idempotent, hence the maps $\lambda_a \colon x \mapsto \mu(a) \setminus x$ are closure endomorphisms of D, with $\lambda_a^{-1}(1) = [\mu(a))$, and
- the map

$$(a, x) \mapsto (a, \mu(a) \setminus x)$$

is an isomorphism $C \ltimes_{\mu} D \cong C \ltimes_{\lambda} D$.

 $C \ltimes_{\lambda} D \cong C \ltimes_{\mu} D$ if C acts on D by "principal" endom.

 $C \ltimes_{\lambda} D$ induces $\mu \colon C \to D$ such that $C \ltimes_{\lambda} D \cong C \ltimes_{\mu} D$ if the kernels of the closure endomorphisms λ_a are principal filters:

- if $\lambda_a^{-1}(1) = [\mu(a))$ for all $a \in C$, then the map $a \mapsto \mu(a)$ is a "weak morphism", and
- the map

$$(a, x) \mapsto (a, \mu(a) \land x)$$

is an isomorphism $C \ltimes_{\lambda} D \cong C \ltimes_{\mu} D$.

Poset product [Jipsen 2009, Jipsen-Montagna 2009]

Given $(A_p \mid p \in P)$ a family of bounded pseudo-hoops, $f \in \prod_P A_p$ is called an antichain labeling if

for all
$$p < q$$
 in (P, \leq) , $f(p) = 0_p$ or $f(q) = 1_q$,

or, equivalently, if

$$\begin{aligned} \{p \in P \mid f(p) = 0_p\} \text{ is a down-set, } \{p \in P \mid f(p) = 1_p\} \text{ is an up-set,} \\ \text{and } \{p \in P \mid 0_p < f(p) < 1_p\} \text{ is an antichain in } (P, \leq). \end{aligned}$$

The poset product $\prod_{(P,\leq)} A_p$ is the set of all antichain labelings with pointwise multiplication and with divisions defined by

$$(f \setminus g)(p) = \begin{cases} f(p) \setminus_p g(p) & \text{if } f(q) \leq_q g(q) \text{ for all } q > p, \\ 0_p & \text{otherwise,} \end{cases}$$

and

$$(q / f)(p) = \dots$$

Decomposition of finite hoops [Jipsen-Montagna 2009]

If A is a finite hoop, then

$$A\cong \prod_{(E,\leq^{\mathrm{op}})} B_e\cong \prod_{(P,\subseteq)} U_p,$$

where

- (E, \leq^{op}) is the dual poset of \vee -irreducible idempotent elements $e \neq 0$, and for each e, B_e is the interval $[e_*, e]$, where e_* is the lower cover of e;
- (P, \subseteq) is the poset of \cap -irreducible filters $p \ne A$, and for each p, U_p is the "upper part" of the ordinal sum decomposition $A/p = L_p \oplus U_p$:

$$\left.\begin{array}{c} \uparrow \\ \\ \end{array}\right\} \ U_p\cong [e_*,e] \ \text{for} \ p=[e)$$

$$\left.\begin{array}{c} \\ \\ \end{array}\right\} \ L_p$$

$C \ltimes_{\mu} D$ is poset product (sometimes)

Given $C \ltimes_{\mu} D$, where

$$C = C_1 \times \cdots \times C_n$$
 and $D = \prod_{(S, \leq)} D_s$

with all the algebras C_i and D_s simple, we extend the partial order from S to $T = \{1, ..., n\} \cup S$ by letting, for $i \in \{1, ..., n\}$ and $s \in S$,

$$i > s$$
 iff $\mu(1_1, \ldots, 0_i, \ldots, 1_n)(s) = 0_s$.

Then

$$C \ltimes_{\mu} D \cong \prod_{(T,\leq)} A_t,$$

where

$$A_t = \begin{cases} C_t & \text{for } t \in \{1, \dots, n\}, \\ D_t & \text{for } t \in S. \end{cases}$$

Example (contd): $C \ltimes_{\mu} D$ as a poset product

Example (contd): $C \ltimes_{\mu} D$ as a poset product

Example (contd): $C \ltimes_{\mu} D$ as a poset product

Conclusion

- $C \ltimes_{\mu} D$ is $C \ltimes_{\lambda} D$ when C acts on D by "principal" closure endomorphisms
- Decomposition of finite hoops as product of simple hoops is the Jipsen-Montagna poset product decomposition

The end

