Orthoset spectra of C*-algebras

David Kruml¹

Blansko, 11.9.2025

¹Supported by project GAČR 25-20013L.

C*-algebras

C*-algebra:

- ▶ Banach algebra over C,
- involution,
- $||a^*a|| = ||a||^2,$
- assume unit element 1.

Examples:

- ▶ \mathbb{C}^n , $C(X,\mathbb{C})$ \mathbb{C} -valued continuous functions on compact Hausdorff space,
- \triangleright $\mathcal{B}(H)$. . . bounded operators on Hilbert space,
- ▶ $M_n\mathbb{C}$, $C(X, M_n\mathbb{C})$ matrix algebras, matrix-valued cont. functions.

Commutative C*-algebras

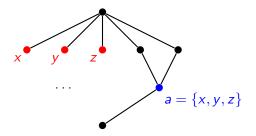
Gelfand-Naimark duality:

- ▶ Every commutative C*-algebra is of the form $C(X, \mathbb{C})$
- Moreover, there is a duality of categories CC*Alg and KHausTop:

$$\frac{C(X,\mathbb{C})\to C(Y,\mathbb{C})}{X\leftarrow Y}$$

► The space *X* can be obtained from frame of closed (in the norm topology) ideals Idl *A*.

Frame of closed ideals



- ▶ In Idl A, maximal elements (coatoms) are the only prime elements = points of topology
- p ∈ a ⇔ a ≰ p

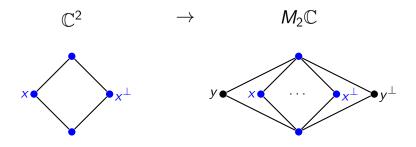
q-frames and q-topology

- Closed right-sided ideals RIdl A (70's, Akemann, Giles, Kummer, Rosický ,...).
- ▶ Other attempts: topologies on pure state spaces, quantales of all subspaces (Mulvey).
- ▶ RIdI A (as a lattice) is not a frame and does not determine A.
- ▶ However, together with embedding RIdI $A \rightarrow \prod P(H_i)$ it is a full invariant of A.
- Idea of reconstruction:
 - ▶ Elements of RIdI A are assembled to projections on H_i ,
 - ▶ hermitean element $a \in \mathcal{B}(H)$ is called *q-open* if its carrier is a such projection,
 - and A is determined by its hermitean elements.

q-frames and orthosets

- ▶ Rldl A is a "q-frame", it is "spatial" but needs more structure.
- ▶ It is very promissing to consider orthogonality relation on the points (orthoset, Vetterlein).
- ▶ $p \in a \Leftrightarrow a \nleq p \text{ and } p \perp q \text{ for every } q \geq a$
- ▶ a is central . . . $a \nleq p, a \leq q \Rightarrow p \perp q$.
- Central elements correspond to two-sided ideals.
- ▶ central cover: a → â.
- ▶ quantale structure: $p \in a, q \in \hat{b}, p \not\perp q \Rightarrow p \in ab$.
- ▶ quantum frame structure: $p \in a, q \in b, p \not\perp q \Rightarrow p, q \in a \circ b$ and $a \circ b$ is central.
- ▶ new operation: $p \in a, q \in b, p \not\perp q \Rightarrow p, q \in a \star b$.

Elementary example

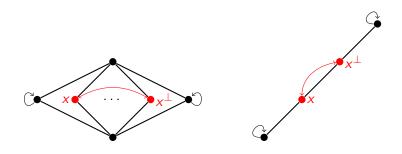


- ▶ ⊥ is preserved and reflected.
- ▶ The adjoint "map of q-spaces" must be partial.

Representations

- ▶ Every C*-algebra A can be represented in $\mathcal{B}(H)$.
- ▶ Irreducible representations are of special interest (correspond to $A \to \mathbb{C}$ in comm. case).
- ▶ A has enough irreducible representations $A \to \prod_i \mathcal{B}(H_i)$.
- ▶ The irr. reps induce an embedding of Rldl A to orthomodular lattice $\prod_i L(H_i)$.
- A can be reconstructed from this embedding.
- ➤ The main question: Could we construct "the correct" embedding just from RIdI A?
- ► First step is easy: a family of equivalent and orthogonal coatoms = othonormal basis of H_i, and Hilbert space is determined by cardinality of the basis.

Bad automorphisms of RIdI $M_2\mathbb{C}$



- ▶ Points p, q, r are collinear. $p \land q = p \land r = q \land r$.
- ▶ Points p, q are equivalent if there is the third point r that p, q, r are collinear.
- ▶ The example displays an automorphism of Rldl $M_2\mathbb{C}$ which is not induced by automorphism of $M_2\mathbb{C}$.
- ► The lines are complex and projective, the picture is only an illustration.

Automorphisms in higher dimensions

- ▶ In higher dimensions, there are more lines and they "control" affinity of the automorphisms.
- Collinear automorphisms are always "good".
- ► The property is known as *fundamental theorem of affine geometry.*

Conclusion

- ▶ All irreducible representations except of dimension 2 can be obtained from RIdI $M_2\mathbb{C}$.
- ► The problem can be reduced to study of 2-homogeneous C*-algebras (those that have only irr. reps of dim 2).
- ► The 2-homogeneous C*-algebras are classified by bundle theory.
- ▶ Trivial algebras are of the form $C(X, M_2\mathbb{C})$, every algebra is "glued" from a finite number of trivial algebras (thank to compactness of the base space).
- Example of a non-trivial algebra: X is a sphere, consider it is made from two discs, the trivial algebras on the discs are glued by automorphism induced by matrices $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$.
- ► There are no other algebras on the sphere than this and the trivial one.
- Nothing is lost: The trivial algebra has two disjoint non-orthogonal global sections, but the non-trivial does not have, and this difference is still visible on RIdl A.

Thank you for attention!