On fuzzy Galois connections between *L*-fuzzy posets

M. Kondo

Tokyo Denki University

SSAOS 2025, 7-12 Sep., Blansko, Czech Republic

Results:

(1) A pair $(f^{\rightarrow}, f^{\leftarrow})$ of maps is a fuzzy Galois connection between (L^X, S_X) and (L^Y, S_Y) : $f^{\rightarrow} \dashv f^{\leftarrow}$, i.e.,

$$S_Y(f^{\rightarrow}A, B) = S_X(A, f^{\leftarrow}B) \quad (\forall A \in L^X, B \in L^Y).$$

(2) A pair (\sqcup, \downarrow) of maps is a fuzzy Galois connection between (L^X, S) and (X, e): $\sqcup \dashv \downarrow$, i.e.,

$$e(\sqcup A, t) = S(A, \downarrow t) \quad (\forall t \in X, A \in L^X),$$

(3) For a map $f:(X,e_X)\to (Y,e_Y)$, we have

$$\exists g: (Y, e_Y) \to (X, e_X); f \dashv g$$

$$\iff \forall y \in Y \exists a \in X; f^{\leftarrow}(\downarrow y) = \downarrow a.$$

(complete) residuated lattice

Let $\mathcal{L}=< L, \wedge, \vee, \odot, 0, 1>$ be a complete residuated lattice, i.e.,

- (i) $< L, \land, \lor, 0, 1 >$ is a complete lattice;
- (ii) $< L, \odot, 1 >$ is a commutative monoid;
- (iii) For all $a, b, c \in L$,

$$a \odot b \le c \iff a \le b \to c$$
.

Proposition 1.([3]) For all $a, b, c, a_i, b_i \in L$, we have

- (1) $a \odot a' = 0$, where $a' = a \rightarrow 0$;
- (2) $a \le b \iff a \to b = 1$;
- (3) $a \odot (a \rightarrow b) \leq b$;
- (4) $a \le b \implies a \odot c \le b \odot c, c \rightarrow a \le c \rightarrow b, b \rightarrow c \le a \rightarrow c;$
- (5) $1 \to a = a$;
- (6) $a \lor (b \rightarrow c) \le b \rightarrow a \lor c$;
- (7) $a \odot (\bigvee_i b_i) = \bigvee_i (a \odot b_i);$
- (8) $(\bigvee_i a_i)' = \bigwedge_i a_i';$
- (9) $a \to (\bigwedge_i b_i) = \bigwedge_i (a \to b_i), (\bigvee_i a_i) \to b = \bigwedge_i (a_i \to b).$

L-fuzzy poset (X, e)

(X, e) is called an L-fuzzy poset if X is a non-empty set and $e: X \times X \to L$ (L-fuzzy partial order) is a map satisfying:

(e1)
$$e(x,x) = 1$$
;

(e2)
$$e(x,y) = e(y,x) = 1 \Rightarrow x = y;$$

(e3)
$$e(x,y) \odot e(y,z) \leq e(x,z)$$
.

$$e(x,t) = \bigwedge_{s \in X} (e(s,x) \to e(s,t))$$

Example For a complete residuated lattice L and a non-empty set X, we define

$$L^X = \{A \mid A : X \to L\}.$$

For L^X , we define a map $S: L^X \times L^X \to L$ by

$$S(A,B) = \bigwedge_{x \in X} (A(x) \to B(x)) \ (A,B \in L^X).$$

From the definition, we have

(e1)
$$S(A, A) = 1$$
;

(e2)
$$S(A, B) = S(B, A) = 1 \Rightarrow A = B;$$

(e3)
$$S(A,B) \odot S(B,C) \leq S(A,C)$$
.

 (L^X, S) is an L-fuzzy poset.

Let (X, e_X) and (Y, e_Y) be *L*-fuzzy posets.

A map $f:(X,e_X) \to (Y,e_Y)$ is called **order-preserving** if $e_X(x_1,x_2) \le e_Y(f(x_1),f(x_2)) \quad (\forall x_1,x_2 \in X).$

For $f:(X,e_X)\to (Y,e_Y)$ and $g:(Y,e_Y)\to (X,e_X)$, a pair (f,g) is called a **fuzzy Galois connection (fGc)** $(f\dashv g)$ if

$$e_Y(fx,y) = e_X(x,gy) \quad (\forall x \in X, \ \forall y \in Y).$$

Let (X, e) be an L-fuzzy poset and $a \in X$.

We define special maps $\uparrow a, \downarrow a: X \to L$ (i.e., $\uparrow a, \downarrow a \in L^X$) by

$$(\uparrow a)(x) = e(a,x);$$

$$(\downarrow a)(x)=e(x,a).$$

For a map $f:(X,e_X)\to (Y,e_Y)$, we also define

$$f^{
ightarrow}:(L^X,S_X)
ightarrow(L^Y,S_Y)$$
 and $f^{\leftarrow}:(L^Y,S_Y)
ightarrow(L^X,S_X)$ by

$$(f^{\rightarrow}A)(y) = \bigvee_{f(x)=y} A(x) \quad (y \in Y, \ A \in L^X);$$

$$(f^{\leftarrow}B)(x) = B(f(x)) \quad (x \in X, \ B \in L^Y).$$

$$\downarrow \downarrow$$

$$f \dashv g \iff e_X(x, gy) = e_Y(fx, y) \quad (\forall x, y \in X)$$

$$\iff \downarrow (gy)(x) = (\downarrow y)(fx) = f^{\leftarrow}(\downarrow y)(x) \quad (\forall x, y \in X)$$

$$\iff \downarrow (gy) = f^{\leftarrow}(\downarrow y) \quad (\forall y \in X)$$

$$\iff \uparrow (fx) = g^{\leftarrow}(\uparrow x) \quad (\forall x \in X).$$

Lemma 2. For a map $f:(X,e_X)\to (Y,e_Y)$, we have

(i) f^{\rightarrow} and f^{\leftarrow} are order-preserving;

(ii)
$$S_X(A, f^{\leftarrow}(f^{\rightarrow}A)) = 1$$
 i.e., $Id_{L^X} \leq f^{\leftarrow}f^{\rightarrow}$;

(iii)
$$B = f^{\rightarrow}(f^{\leftarrow}B)$$
 $(\forall B \in L^{Y})$, thus $f^{\rightarrow}f^{\leftarrow} = Id_{L^{Y}}$.

Theorem 3.

A pair $(f^{\rightarrow}, f^{\leftarrow})$ of maps is a fuzzy Galois connection between (L^X, S_X) and (L^Y, S_Y) , i.e.,

$$S_Y(f^{\rightarrow}A, B) = S_X(A, f^{\leftarrow}B) \quad (\forall A \in L^X, B \in L^Y).$$

$$f^{\rightarrow} \dashv f^{\leftarrow}$$

Let (X, e) be an L-fuzzy poset and $A \in L^X$.

An element $x_0 \in X$ is called a **join** of A denoted by

$$x_0 = \sqcup A$$

if

(1)
$$A(x) \le e(x, x_0)$$
 $(\forall x \in X)$, hence $e(x, \sqcup \downarrow x) = 1$;

(2)
$$\bigwedge_{x \in X} (A(x) \to e(x,t)) \le e(x_0,t) \quad (\forall t \in X).$$

Proposition ([5]) If $\sqcup A$ exists, then we have

$$e(\sqcup A, t) = \bigwedge_{x \in X} (A(x) \to e(x, t)) \ (\forall t \in X).$$

In the following, we assume that $\Box A$ exists for any $A \in L^X$.

We have a new fuzzy Galois connection between (L^X, S) and (X, e).

Theorem 4. Let (X, e) be an L-fuzzy poset. For the map $\sqcup : (L^X, S) \to (X, e)$, we have

$$S(A_1,A_2) \leq e(\sqcup A_1,\sqcup A_2) \ (\forall A_1,A_2 \in L^X),$$

Moreover,

$$e(\sqcup A, t) = S(A, \downarrow t) \ (\forall t \in X, A \in L^X),$$

Corollary

(1)
$$S(A, \downarrow \sqcup A) = 1 \ (\forall A \in L^X);$$

(2)
$$e(x, \sqcup \downarrow x) = e(\sqcup(\downarrow x), x) = 1 \ (\forall x \in X)$$
, hence
$$\sqcup \downarrow = Id_X.$$

Corollary For all $x, t \in X$,

$$e(x, t) = S(\downarrow x, \downarrow t) = S(\uparrow t, \uparrow x).$$

Theorem (Yao and Lu, 2009) Let $f:(X,e_X)\to (Y,e_Y)$ be a map.

f is order-preserving and has a right adjoint (i.e., $f \dashv g$ for some g)

$$\iff f(\sqcup A) = \sqcup f^{\to}(A) \quad (\forall A \in L^X).$$

We give a simple characterization of fuzzy Galois connections, which says that the assumption of order-preserving of f above is redundant.

We recall the definition $f \dashv g$ for $f : (X, e_X) \rightarrow (Y, e_Y)$ and $g : (Y, e_Y) \rightarrow (X, e_X)$.

It has several representations as follows:

$$f \dashv g \iff e_X(x, gy) = e_Y(fx, y)$$

$$\iff \downarrow (gy)(x) = (\downarrow y)(fx) = f^{\leftarrow}(\downarrow y)(x)$$

$$\iff \downarrow (gy) = f^{\leftarrow}(\downarrow y)$$

$$\iff \uparrow (fx) = g^{\leftarrow}(\uparrow x).$$

$$\Downarrow$$

Theorem 5. Let L be a residuated lattice and $f:(X,e_X)\to (Y,e_Y)$ a map between (X,e_X) and (Y,e_Y) .

Then

$$\exists g: (Y, e_Y) \to (X, e_X) \text{ s.t. } f \dashv g$$
 $\iff f(\sqcup A) = \sqcup f^{\to}(A) \quad (\forall A \in L^X).$

Proof. (\Leftarrow) We assume $f(\sqcup A) = \sqcup f^{\to}(A)$ for all $A \in L^X$.

We define a map $g:(Y,e_Y)\to (X,e_X)$ by

$$g(y) = \sqcup f^{\leftarrow}(\downarrow y) \ (\forall y \in Y).$$

Since $S_X(A,\downarrow \sqcup A) = e_X(\sqcup A,\sqcup A) = 1$ for any $A \in L^X$, regarding A as $f^{\leftarrow}(\downarrow y)$, we get

$$S_X(f^{\leftarrow}(\downarrow y),\downarrow \sqcup (f^{\leftarrow}(\downarrow y)))=1.$$

On the other hand,

$$S_{X}(\downarrow \sqcup (f^{\leftarrow}(\downarrow y)), f^{\leftarrow}(\downarrow y)) \stackrel{f^{\rightarrow} \dashv f^{\leftarrow}}{=} S_{Y}(f^{\rightarrow}(\downarrow \sqcup (f^{\leftarrow}(\downarrow y))), \downarrow y)$$

$$\stackrel{\sqcup \dashv \downarrow}{=} e_{Y}(\sqcup f^{\rightarrow}(\downarrow \sqcup (f^{\leftarrow}(\downarrow y))), y)$$

$$\stackrel{assumption}{=} e_{Y}(f(\sqcup (\downarrow \sqcup (f^{\leftarrow}(\downarrow y))), y)$$

$$\stackrel{\sqcup \downarrow = l}{=} e_{Y}(f(\sqcup (f^{\leftarrow}(\downarrow y))), y)$$

$$\stackrel{assumption}{=} e_{Y}(\sqcup (f^{\rightarrow}f^{\leftarrow}(\downarrow y)), y)$$

$$\stackrel{f^{\rightarrow} f^{\leftarrow} = ld}{=} e_{Y}(\sqcup \downarrow y, y) \stackrel{\sqcup \downarrow = ld}{=} e_{Y}(y, y) = 1$$

Therefore, we have

$$f^{\leftarrow}(\downarrow y) = \downarrow \sqcup (f^{\leftarrow}(\downarrow y)) = \downarrow (gy) \qquad \therefore f \dashv g.$$

(⇒) We suppose that f ⊢ g for some $g : (Y, e_Y) → (X, e_X)$. Since

$$e_{Y}(f(\sqcup A), y) \stackrel{f \to g}{=} e_{X}(\sqcup A, gy)$$

$$\stackrel{\sqcup \dashv \downarrow}{=} S_{X}(A, \downarrow (gy)) = S_{X}(A, f^{\leftarrow}(\downarrow y))$$

$$\stackrel{f \to \dashv f^{\leftarrow}}{=} S_{Y}(f^{\to}A, \downarrow y)$$

$$\stackrel{\sqcup \dashv \downarrow}{=} e_{Y}(\sqcup f^{\to}A, y)$$

$$\therefore e_{Y}(f(\sqcup A), y) = e_{Y}(\sqcup f^{\to}A, y) \quad (\forall y \in Y)$$

This implies

$$f(\sqcup A) = \sqcup f^{\rightarrow} A \quad (\forall A \in L^X).$$

We give another simple condition for the existence of the right adjoint.

Theorem 6. Let $f:(X,e_X)\to (Y,e_Y)$ be a map. Then

$$\exists g : (Y, e_Y) \to (X, e_X) \text{ s.t. } f \dashv g$$

$$\iff \forall y \in Y \ \exists a \in X \text{ s.t. } f^{\leftarrow}(\downarrow y) = \downarrow a.$$

Roughly, every inverse image of down-set $\downarrow y$ can be represented by a certain down-set $\downarrow a$ of X.

- R. Bêlohlávek, Fuzzy Galois Connections, Math. Log. Q., **45** (1999), 497-504.
- I.P. Cabrera et al., On the existence of right adjoints for surjective mappings between fuzzy structures, Proc. CLA 2016, pp.97-108 (2016).
- N. Galatos et al., Residuated Lattices: an algebraic glimpse at substructural logics, Studies in Logic and the Foundations of Mathematics, **151** (2007), Elsevier.
- J.G. Garcia et al., Fuzzy Galois connections on fuzzy sets, Fuzzy Sets Syst., **352** (2018), 26-55.
- W. Yao and L.X. Lu, Fuzzy Galois connections on fuzzy posets, Math. Log. Q., **55** (2009), 105-112.

Thank you for your attention!