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Abelian ℓ-groups

Definition
We say that A = ⟨A,+,−,∨,∧, 0⟩ is an Abelian ℓ-group if ⟨A,+,−, 0⟩ is an
Abelian group, ⟨A,∨,∧⟩ is a lattice and A satisfies monotonicity
condition, that means x ≤ y implies x + z ≤ y + z. We denote the class of
Abelian ℓ-groups by AL.

Theorem (Khisamiev 1966)
AL is generated by Z as a quasivariety.

Corollary
AL does not contain any notrivial subquasivarieties.
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pointed Abelian ℓ-groups

Definition
We say that A = ⟨A,+,−,∨,∧, 0, f ⟩ is a pointed Abelian ℓ-group if
⟨A,+,−,∨,∧, 0⟩ is an Abelian ℓ-group. We denote the class of pointed
Abelian ℓ-groups by pAL.

HSP(Q1) - positively pointed Abelian ℓ-groups.
HSP(Q−1) - negatively pointed Abelian ℓ-groups.
HSP(Z0) - 0-pointed Abelian ℓ-groups.

Definition (Lexicographic product)
For totally ordered ℓ-groups A, B we define lexicographic product AÐ→×B
as a product A ×B with the redefined ordering as follows:
⟨a1, b1⟩ ≤ ⟨a2, b2⟩ ⇐⇒ (a1 < a2) ∨ (a1 = a2 ∧ b1 ≤ b2).
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Mundici functor

A category equivalence between the category of positively (or negatively)
pointed Abelian ℓ-groups with strong unit and the category of
MV-algebras.

Γ ∶ {Aa ∣ A ∈ AL, (∀b ∈ A)(∃n ∈ N) n ⋅ a ≥ b} →MV
Γ ∶ Aa ↦ Aa ↾ [0, a].

The functor Γ can be generalized to all positively (or negatively) pointed
Abelian ℓ-groups.
The functors Γ and Γ−1 is preserving H, S, P and partial embeddings.
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Strongly pointed Abelian ℓ-groups

Lemma

pAL0 = {A0 ∣ A ∈ AL} is the smallest nontrivial subvariety of pAL.
Alternatively, we can say that any non-trivial proper subvariety of pAL
contains pAL0 as a subvariety.

Lemma

Let Ab be a finitely generated totally ordered pointed Abelian ℓ-group
and Bb be its convex pointed ℓ-subgroup with strong unit 0 ≠ b ∈ B.
Then ISPU(Ab) = ISPU(Bb).
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Komori classification

Theorem
Every proper subvariety of MV-algebras is equal to
HSP({ Li}i∈I ∪ {Kj}j∈J) for some finite sets I, J ⊆ N ∖ {0}.

Γ(Zn) =  Ln, Γ(Zn
Ð→×Z0) = Kn.

Theorem
Every proper relative subvariety of positively pointed Abelian ℓ-groups is
generated by {Z i}i∈I ∪ {Z j

Ð→×Z0}j∈J for some finite sets I, J ⊆ N.

This approach is not giving any axiomatization!
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The equations used for axiomatization

(f − n ⋅ x) ∨ −x ≥ 0 (s-rankn)

((2n + 1) ⋅ x − 2 ⋅ f ) ∨ (f − (2n + 2) ⋅ x) ∨ −x ≥ 0. (rankn)

((k + 1) ⋅ ((p ⋅ x − f) ∨ (f − p ⋅ x)) − f) ∨ −x ≥ 0 (divp,k)

(n ⋅ ((p ⋅ x − f) ∨ (−x) ∨ (f − p ⋅ x)) − f) ∨ (n ⋅ y − f) ∨ (−y) ≥ 0 (mixp,n)
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Axiomatization of axiomatic extensions of subvarieties of
positively pointed Abelian ℓ-groups

Theorem

Any proper subvariety of pAL+ is of the form

VI,J = HSP(Z i , Z j
Ð→×Z0 ∣ i ∈ I, j ∈ J)

for some finite sets J ⊆ I ⊊ N.
Moreover, VI,J is generated by the following set SI,J of equations:

SI,J = {(rankn)} ∪ {(divp,n) ∣ p ∉ I} ∪ {(mixp,n) ∣ p ∈ I ∖ J},

where n = max I.
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pAL

V(Z0)

T

pAL+

V(Z2) V(Z3) V(Z5)

V(Z4) V(Z6) V(Z9)

V(Z12)

V(Z2
Ð→×Z0) V(Z3

Ð→×Z0) V(Z5
Ð→×Z0)

V(Z4
Ð→×Z0) V(Z6

Ð→×Z0)

V(Z12
Ð→×Z0)

pAL−

V(Z−2)V(Z−3)V(Z−5)

V(Z−4)V(Z−6)V(Z−9)

V(Z−12)

V(Z−2
Ð→×Z0)V(Z−3

Ð→×Z0)V(Z−5
Ð→×Z0)

V(Z−4
Ð→×Z0)V(Z−6

Ð→×Z0)

V(Z−12
Ð→×Z0)

Figure: A part of the lattice of join irreducible subvarieties of pAb.
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Quasivarieties generated by chains

Theorem (Gispert 2002)
Let S denote any finitely generated dense ℓ-subgroup of R such that
S ∩Q = Z. Every subquasivariety of MV -algebras generated by chains is
equal to

ISPPU({Ln ∣ n ∈ A} ∪ {Γ(Zn
Ð→×Zm) ∣ n ∈ B, m ∈ γ(n) ∪ {Γ(Sd) ∣ d ∈ C}}),

for some A, B, C ⊆ N ∖ {0}, and γ ∶ n ↦ γ(n) ⊆ div(n).
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