About the lattice of sub(quasi)varieties of the class of
pointed Abelian ¢-groups

Filip Jankovec

Institute of Computer Science of the Czech Academy of Sciences

Department of Algebra, Faculty of Mathematics and Physics of the Charles University

September 11, 2025

1/10



Abelian ¢-groups

Definition

We say that A = (A, +,-,V,A,0) is an Abelian {-group if (A, +,-,0) is an
Abelian group, (A, Vv, A) is a lattice and A satisfies monotonicity
condition, that means x <y implies x + z < y + z. We denote the class of
Abelian ¢-groups by AL.
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Abelian ¢-groups

Definition

We say that A = (A, +,-,V,A,0) is an Abelian {-group if (A, +,-,0) is an
Abelian group, (A, Vv, A) is a lattice and A satisfies monotonicity
condition, that means x < y implies x + z < y + z. We denote the class of
Abelian ¢-groups by AL.

v

Theorem (Khisamiev 1966)
AlL is generated by Z as a quasivariety.

Corollary

AlL does not contain any notrivial subquasivarieties.
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pointed Abelian /-groups

Definition

We say that A = (A, +,—,V,A,0, f) is a pointed Abelian (-group if
(A,+,-,V,A,0) is an Abelian (-group. We denote the class of pointed
Abelian ¢-groups by pAL.
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pointed Abelian /-groups

Definition

We say that A = (A, +,—,V,A,0, f) is a pointed Abelian (-group if
(A,+,-,V,A,0) is an Abelian (-group. We denote the class of pointed
Abelian ¢-groups by pAL.

HSP(Q1) - positively pointed Abelian ¢-groups.
HSP(Q-1) - negatively pointed Abelian ¢-groups.
HSP(Zy) - 0-pointed Abelian ¢-groups.

Definition (Lexicographic product)

For totally ordered ¢-groups A, B we define lexicographic product AX B
as a product A x B with the redefined ordering as follows:
(31,b1> < <32, b2> — (al < 32) \VJ (31 =a A b1 < bz).
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Mundici functor

A category equivalence between the category of positively (or negatively)
pointed Abelian ¢-groups with strong unit and the category of
MV-algebras.
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Mundici functor

A category equivalence between the category of positively (or negatively)
pointed Abelian ¢-groups with strong unit and the category of
MV-algebras.

M {A,|AcAL, (VbeA)(TneN) n-a2 b} - MV
M:A,~A;[0,al.

The functor ' can be generalized to all positively (or negatively) pointed

Abelian ¢-groups.
The functors I and ! is preserving H, S, P and partial embeddings.
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Strongly pointed Abelian /-groups

Lemma

pALL® = {Aq | A € ALL} is the smallest nontrivial subvariety of pAL.
Alternatively, we can say that any non-trivial proper subvariety of pAlL
contains pALL® as a subvariety.
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Strongly pointed Abelian /-groups

Lemma

pALL® = {Aq | A € ALL} is the smallest nontrivial subvariety of pAL.
Alternatively, we can say that any non-trivial proper subvariety of pAlL
contains pALL® as a subvariety.

Lemma

Let Ay, be a finitely generated totally ordered pointed Abelian £-group
and By, be its convex pointed (-subgroup with strong unit 0 # b € B.
Then ISPU(Ab) = ISPU(Bb)
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Komori classification

Theorem

Every proper subvariety of MV-algebras is equal to
HSP({L;}ic) U {Kj}jcs) for some finite sets |,J < N\ {0}.
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Komori classification

Every proper subvariety of MV-algebras is equal to

Theorem
HSP({L;}ic) U {Kj}jcs) for some finite sets |,J < N\ {0}. ‘

M(Z,))=t, T[(Z,X2Zy)=K,.

Theorem

Every proper relative subvariety of positively pointed Abelian £-groups is
generated by {Z;}c; U {Zj720}jej for some finite sets I, J € N.

This approach is not giving any axiomatization!
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The equations used for axiomatization

(f-n-x)v-x2=>0 (s-rankp)
(2n+1)-x=2-f)v(f-(2n+2)-x)v-x2>0. (rank,)
(k+1)-((p-x-f)v(f-p-x))-f)v-x20 (divp k)

(n-((p-x =)V (=) v (£=p-x)) = £) v (n-y =) v (~y) > 0 (mixy,n)
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Axiomatization of axiomatic extensions of subvarieties of
positively pointed Abelian /-groups

Theorem
Any proper subvariety of pAIL" is of the form
V), =HSP(Z;,Z;XZg|icljeJ)

for some finite sets J € | ¢ N.
Moreover, V) ; is generated by the following set S; ; of equations:

Siy={(ranky,)} u{(divpn) | p € I} U{(mixp ) | pel~J},

where n = max /.
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Figure: A part of the lattice of join irreducible subvarieties of pAb.
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Quasivarieties generated by chains
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Quasivarieties generated by chains

Theorem (Gispert 2002)

Let S denote any finitely generated dense ¢-subgroup of R such that
SnQ =2Z. Every subquasivariety of MV -algebras generated by chains is
equal to

ISPPy({Ly | ne A} U{T(Z, % Zm) | ne B,me~(n) U{T(Sq) |d e C}}),

for some A, B, C c N~ {0}, and v : n— ~(n) cdiv(n).
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Quasivarieties generated by chains

Theorem (Gispert 2002) |

Let S denote any finitely generated dense ¢-subgroup of R such that
SnQ =2Z. Every subquasivariety of MV -algebras generated by chains is
equal to

ISPPy({Ly | ne A} U{T(Z, % Zm) | ne B,me~(n) U{T(Sq) |d e C}}),

for some A, B, C c N~ {0}, and v : n— ~(n) cdiv(n).

Theorem |

Let S denote any finitely generated dense ¢-subgroup of R such that
SnQ =Z. Every subquasivariety of pAb generated by chains is equal to

ISPPy({Z,|ne A} u{Z,XZ,|neB,me~(n)u{Syq|deC}}),

for some A, B, C € Z, and 7y : n— ~(n) < div(n).
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