About the lattice of sub(quasi)varieties of the class of pointed Abelian ℓ -groups

Filip Jankovec

Institute of Computer Science of the Czech Academy of Sciences

Department of Algebra, Faculty of Mathematics and Physics of the Charles University

September 11, 2025

Abelian ℓ-groups

Definition

We say that $\mathbf{A} = \langle A, +, -, \vee, \wedge, 0 \rangle$ is an Abelian ℓ -group if $\langle A, +, -, 0 \rangle$ is an Abelian group, $\langle A, \vee, \wedge \rangle$ is a lattice and \mathbf{A} satisfies monotonicity condition, that means $x \leq y$ implies $x + z \leq y + z$. We denote the class of Abelian ℓ -groups by \mathbb{AL} .

Abelian ℓ-groups

Definition

We say that $\mathbf{A} = \langle A, +, -, \vee, \wedge, 0 \rangle$ is an Abelian ℓ -group if $\langle A, +, -, 0 \rangle$ is an Abelian group, $\langle A, \vee, \wedge \rangle$ is a lattice and \mathbf{A} satisfies monotonicity condition, that means $x \leq y$ implies $x + z \leq y + z$. We denote the class of Abelian ℓ -groups by \mathbb{AL} .

Theorem (Khisamiev 1966)

 \mathbb{AL} is generated by **Z** as a quasivariety.

Abelian ℓ-groups

Definition

We say that $\mathbf{A} = \langle A, +, -, \vee, \wedge, 0 \rangle$ is an Abelian ℓ -group if $\langle A, +, -, 0 \rangle$ is an Abelian group, $\langle A, \vee, \wedge \rangle$ is a lattice and \mathbf{A} satisfies monotonicity condition, that means $x \leq y$ implies $x + z \leq y + z$. We denote the class of Abelian ℓ -groups by \mathbb{AL} .

Theorem (Khisamiev 1966)

 \mathbb{AL} is generated by **Z** as a quasivariety.

Corollary

AL does not contain any notrivial subquasivarieties.

Definition

We say that $\mathbf{A} = \langle A, +, -, \vee, \wedge, 0, f \rangle$ is a pointed Abelian ℓ -group if $\langle A, +, -, \vee, \wedge, 0 \rangle$ is an Abelian ℓ -group. We denote the class of pointed Abelian ℓ -groups by $p\mathbb{AL}$.

Definition

We say that $\mathbf{A} = \langle A, +, -, \vee, \wedge, 0, f \rangle$ is a pointed Abelian ℓ -group if $\langle A, +, -, \vee, \wedge, 0 \rangle$ is an Abelian ℓ -group. We denote the class of pointed Abelian ℓ -groups by pAL.

 $\mathrm{HSP}({\it Q}_1)$ - positively pointed Abelian ℓ -groups.

Definition

We say that $\mathbf{A} = \langle A, +, -, \vee, \wedge, 0, f \rangle$ is a pointed Abelian ℓ -group if $\langle A, +, -, \vee, \wedge, 0 \rangle$ is an Abelian ℓ -group. We denote the class of pointed Abelian ℓ -groups by $p\mathbb{AL}$.

 $\mathrm{HSP}(\boldsymbol{Q}_1)$ - positively pointed Abelian ℓ -groups. $\mathrm{HSP}(\boldsymbol{Q}_{-1})$ - negatively pointed Abelian ℓ -groups.

Definition

We say that $\mathbf{A} = \langle A, +, -, \vee, \wedge, 0, f \rangle$ is a pointed Abelian ℓ -group if $\langle A, +, -, \vee, \wedge, 0 \rangle$ is an Abelian ℓ -group. We denote the class of pointed Abelian ℓ -groups by $p\mathbb{AL}$.

 $\mathrm{HSP}({\it Q}_1)$ - positively pointed Abelian ℓ -groups.

 $\mathrm{HSP}(extbf{\emph{Q}}_{-1})$ - negatively pointed Abelian ℓ -groups.

 $\mathrm{HSP}(\boldsymbol{Z}_0)$ - 0-pointed Abelian ℓ -groups.

Definition

We say that $\mathbf{A} = \langle A, +, -, \vee, \wedge, 0, f \rangle$ is a pointed Abelian ℓ -group if $\langle A, +, -, \vee, \wedge, 0 \rangle$ is an Abelian ℓ -group. We denote the class of pointed Abelian ℓ -groups by pAL.

 $\mathrm{HSP}(extbf{ extit{Q}}_1)$ - positively pointed Abelian ℓ -groups.

 $\mathrm{HSP}(oldsymbol{Q}_{-1})$ - negatively pointed Abelian ℓ -groups.

 $\mathrm{HSP}(\boldsymbol{Z}_0)$ - 0-pointed Abelian ℓ -groups.

Definition (Lexicographic product)

For totally ordered ℓ -groups \mathbf{A}, \mathbf{B} we define lexicographic product $\mathbf{A} \times \mathbf{B}$ as a product $\mathbf{A} \times \mathbf{B}$ with the redefined ordering as follows:

$$\langle a_1, b_1 \rangle \leq \langle a_2, b_2 \rangle \iff (a_1 < a_2) \lor (a_1 = a_2 \land b_1 \leq b_2).$$

A category equivalence between the category of positively (or negatively) pointed Abelian ℓ -groups with strong unit and the category of MV-algebras.

A category equivalence between the category of positively (or negatively) pointed Abelian ℓ -groups with strong unit and the category of MV-algebras.

$$\Gamma : \{ \mathbf{A}_a \mid \mathbf{A} \in \mathbb{AL}, (\forall b \in A)(\exists n \in \mathbb{N}) \ n \cdot a \ge b \} \to \mathsf{MV}$$
$$\Gamma : \mathbf{A}_a \mapsto \mathbf{A}_a \upharpoonright [0, a].$$

A category equivalence between the category of positively (or negatively) pointed Abelian ℓ -groups with strong unit and the category of MV-algebras.

$$\Gamma : \{ \mathbf{A}_a \mid \mathbf{A} \in \mathbb{AL}, (\forall b \in A)(\exists n \in \mathbb{N}) \ n \cdot a \ge b \} \to \mathsf{MV}$$
$$\Gamma : \mathbf{A}_a \mapsto \mathbf{A}_a \upharpoonright [0, a].$$

The functor Γ can be generalized to all positively (or negatively) pointed Abelian ℓ -groups.

A category equivalence between the category of positively (or negatively) pointed Abelian ℓ -groups with strong unit and the category of MV-algebras.

$$\Gamma: \{\mathbf{A}_a \mid \mathbf{A} \in \mathbb{AL}, (\forall b \in A)(\exists n \in \mathbb{N}) \ n \cdot a \geq b\} \to \mathsf{MV}$$

 $\Gamma: \mathbf{A}_a \mapsto \mathbf{A}_a \upharpoonright [0, a].$

The functor Γ can be generalized to all positively (or negatively) pointed Abelian ℓ -groups.

The functors Γ and Γ^{-1} is preserving $\mathbf{H}, \mathbf{S}, \mathbf{P}$ and partial embeddings.

Strongly pointed Abelian ℓ-groups

Lemma

 $p\mathbb{AL}^0 = \{\mathbf{A}_0 \mid \mathbf{A} \in \mathbb{AL}\}$ is the smallest nontrivial subvariety of $p\mathbb{AL}$. Alternatively, we can say that any non-trivial proper subvariety of $p\mathbb{AL}$ contains $p\mathbb{AL}^0$ as a subvariety.

Strongly pointed Abelian ℓ-groups

Lemma

 $pAL^0 = \{ \mathbf{A}_0 \mid \mathbf{A} \in AL \}$ is the smallest nontrivial subvariety of pAL. Alternatively, we can say that any non-trivial proper subvariety of pAL contains pAL^0 as a subvariety.

Lemma

Let \mathbf{A}_b be a finitely generated totally ordered pointed Abelian ℓ -group and \mathbf{B}_b be its convex pointed ℓ -subgroup with strong unit $0 \neq b \in B$. Then $\mathrm{ISP_U}(\mathbf{A}_b) = \mathrm{ISP_U}(\mathbf{B}_b)$.

Theorem

Every proper subvariety of MV-algebras is equal to $\mathbf{HSP}(\{ E_i \}_{i \in I} \cup \{ K_j \}_{j \in J}) \text{ for some finite sets } I, J \subseteq \mathbb{N} \setminus \{0\}.$

Theorem

Every proper subvariety of MV-algebras is equal to

HSP $(\{L_i\}_{i\in I} \cup \{K_j\}_{j\in J})$ for some finite sets $I, J \subseteq \mathbb{N} \setminus \{0\}$.

$$\Gamma(\mathbf{Z}_n) = \mathcal{L}_n, \quad \Gamma(\mathbf{Z}_n \overrightarrow{\times} \mathbf{Z}_0) = K_n.$$

Theorem

Every proper subvariety of MV-algebras is equal to

HSP $(\{L_i\}_{i\in I} \cup \{K_j\}_{j\in J})$ for some finite sets $I, J \subseteq \mathbb{N} \setminus \{0\}$.

$$\Gamma(\boldsymbol{Z}_n) = \boldsymbol{L}_n, \quad \Gamma(\boldsymbol{Z}_n \overrightarrow{\times} \boldsymbol{Z}_0) = K_n.$$

Theorem

Every proper relative subvariety of positively pointed Abelian ℓ -groups is generated by $\{Z_i\}_{i\in I}\cup\{Z_j\overrightarrow{\times}Z_0\}_{j\in J}$ for some finite sets $I,J\subseteq\mathbb{N}$.

Theorem

Every proper subvariety of MV-algebras is equal to

HSP $(\{L_i\}_{i\in I} \cup \{K_j\}_{j\in J})$ for some finite sets $I, J \subseteq \mathbb{N} \setminus \{0\}$.

$$\Gamma(\boldsymbol{Z}_n) = \boldsymbol{L}_n, \quad \Gamma(\boldsymbol{Z}_n \overrightarrow{\times} \boldsymbol{Z}_0) = K_n.$$

Theorem

Every proper relative subvariety of positively pointed Abelian ℓ -groups is generated by $\{Z_i\}_{i\in I} \cup \{Z_j \times Z_0\}_{j\in J}$ for some finite sets $I, J \subseteq \mathbb{N}$.

This approach is not giving any axiomatization!

The equations used for axiomatization

$$(\mathbf{f} - n \cdot x) \vee -x \ge 0 \qquad (\mathbf{s} - \mathbf{rank}_n)$$

$$((2n+1) \cdot x - 2 \cdot f) \vee (f - (2n+2) \cdot x) \vee -x \ge 0. \qquad (\mathbf{rank}_n)$$

$$((k+1) \cdot ((p \cdot x - \mathbf{f}) \vee (\mathbf{f} - p \cdot x)) - \mathbf{f}) \vee -x \ge 0 \qquad (\mathbf{div}_{p,k})$$

 $(n \cdot ((p \cdot x - f) \vee (-x) \vee (f - p \cdot x)) - f) \vee (n \cdot y - f) \vee (-y) \ge 0 \pmod{p,n}$

Axiomatization of axiomatic extensions of subvarieties of positively pointed Abelian ℓ -groups

Theorem

Any proper subvariety of pAL^+ is of the form

$$V_{I,J} = \mathrm{HSP}(\boldsymbol{Z}_i, \boldsymbol{Z}_j \overrightarrow{\times} \boldsymbol{Z}_0 \mid i \in I, j \in J)$$

for some finite sets $J \subseteq I \subsetneq \mathbb{N}$.

Moreover, $V_{I,J}$ is generated by the following set $S_{I,J}$ of equations:

$$S_{I,J} = \left\{ \left(\mathrm{rank_n} \right) \right\} \cup \left\{ \left(\mathrm{div_{p,n}} \right) \mid p \notin I \right\} \cup \left\{ \left(\mathrm{mix_{p,n}} \right) \mid p \in I \smallsetminus J \right\},$$

where $n = \max I$.

Figure: A part of the lattice of join irreducible subvarieties of pAb.

Quasivarieties generated by chains

Quasivarieties generated by chains

Theorem (Gispert 2002)

Let **S** denote any finitely generated dense ℓ -subgroup of **R** such that $\mathbf{S} \cap \mathbf{Q} = \mathbf{Z}$. Every subquasivariety of MV-algebras generated by chains is equal to

$$ISPP_{\mathrm{U}}(\{\mathbf{L}_{n}\mid n\in A\}\cup\{\Gamma(\mathbf{Z}_{n}\overrightarrow{\times}\mathbf{Z}_{m})\mid n\in B, m\in\gamma(n)\cup\{\Gamma(\mathbf{S}_{d})\mid d\in C\}\}),$$
 for some $A,B,C\subseteq\mathbb{N}\setminus\{0\}$, and $\gamma:n\mapsto\gamma(n)\subseteq\mathrm{div}(n)$.

Quasivarieties generated by chains

Theorem (Gispert 2002)

Let **S** denote any finitely generated dense ℓ -subgroup of **R** such that $\mathbf{S} \cap \mathbf{Q} = \mathbf{Z}$. Every subquasivariety of MV-algebras generated by chains is equal to

$$ISPP_{\mathrm{U}}(\{\mathbf{L}_{n} \mid n \in A\} \cup \{\Gamma(\mathbf{Z}_{n} \overrightarrow{\times} \mathbf{Z}_{m}) \mid n \in B, m \in \gamma(n) \cup \{\Gamma(\mathbf{S}_{d}) \mid d \in C\}\}),$$
for some $A, B, C \subseteq \mathbb{N} \setminus \{0\}$, and $\gamma : n \mapsto \gamma(n) \subseteq \operatorname{div}(n)$.

Theorem

Let **S** denote any finitely generated dense ℓ -subgroup of **R** such that $\mathbf{S} \cap \mathbf{Q} = \mathbf{Z}$. Every subquasivariety of pAb generated by chains is equal to

$$\mathrm{ISPP_U}(\{\boldsymbol{Z}_n \mid n \in A\} \cup \{\boldsymbol{Z}_n \overrightarrow{\times} \boldsymbol{Z}_m \mid n \in B, m \in \gamma(n) \cup \{\boldsymbol{S}_d \mid d \in C\}\}),$$

for some $A, B, C \subseteq \mathbb{Z}$, and $\gamma : n \mapsto \gamma(n) \subseteq \text{div}(n)$.