Meet-irreducibility of congruence lattices of prime-cycled algebras

Juraj Hirjak, Lucia Kőszegyová

Pavol Jozef Šafárik University in Košice

SSAOS 2025, Češkovice, 7.9.-12.9.2025

Content

- ► Introduction/definitions
- Preliminaries
- ► Aim
- Prime-cycled algebras
- Examples of algebras
- Sources

Supported by VEGA 1/0152/22

Introduction

- \blacktriangleright The set of all congruences on a algebra (A, F) (ordered by inclusion) forms a lattice, denoted by Con(A, F).
- The set of all congruence lattices of all algebras defined on a fixed base set A forms a lattice, denoted $\mathcal{E}_{\mathbf{A}}$. I.e. $\mathcal{E}_A = \{ \operatorname{Con}(A, F) : F \subseteq A^A \}$
- Let L be a lattice. A nonunit element $a \in L$ is called **meet-irreducible** (shortly \wedge -irreducible) if $a = b_1 \wedge b_2$ implies $a \in \{b_1, b_2\}.$

Introduction

We denote monounary algebra: (A, f)

Introduction

- ▶ Distance from cycle: $t_f(a)$
- ▶ For $x, y \in A$ let $\theta_f(x, y)$ denote the smallest congruence of (A, f) such that $(x, y) \in \theta_f(x, y)$.
- A cyclic element x' is a colleague of x iff $f^{t_f(x')} = f^{t_f(x)}$.

Preliminaries

Lemma 1

Let $f,g \in A^A$ be nontrivial operations such that $\operatorname{Con}(A,f) \subseteq \operatorname{Con}(A,g)$. Then we have

- 1. $\forall x, y \in A : (x, y) \in \alpha \in \text{Con}(A, f) \Longrightarrow (g(x), g(y)) \in \alpha$, in particular we have $(g(x), g(y)) \in \theta_f(x, y)$ and $\theta_g(x, y) \subseteq \theta_f(x, y)$.
- 2. Let B be a subalgebra of (A, f). Then either B is also a subalgebra of (A, g) or g is constant on B, where the constant does not belong to B.

Corollary 2

Let $g_i, i \in I$, be nontrivial operations on A. Then

$$\operatorname{Con}(A, f) = \bigcap_{i \in I} \operatorname{Con}(A, g_i) \Longleftrightarrow \forall x, y \in A : \theta_f(x, y) = \bigvee_{i \in I} \theta_{g_i}(x, y).$$

Preliminaries

$$Con(A, f) = \bigcap_{i \in I} Con(A, g_i) \iff \forall x, y \in A : \theta_f(x, y) = \bigvee_{i \in I} \theta_{g_i}(x, y)$$

How to prove meet-reducibility: find $q_i, i \in I$, verify that the equation holds

How to prove meet-irreducibility: prove that there are no such $q_i, i \in I$

Preliminaries

Known:

connected algebras, algebras with small cycles, algebras with short tails

Unknown:

non-connected algebras with at least one cycle with at least 3 elements and there exists element x such that f(x) is nocyclic

Aim

In this talk, we will focus on prime-cycled algebras.

Definition 3

Let (A, f) be a monounary algebra. (A, f) is said to be a **prime-cycled algebra** if each cycle of (A, f) contains a prime number of elements.

Prime-cycled algebras

Theorem 4

Let (A, f) be a prime-cycled algebra such that each cycle of (A, f) is a p-cycle. Con(A, f) is \wedge -irreducible in \mathcal{E}_A iff one of the following holds:

- 1. (A, f) is a permutation algebra with |A| = 2, or
- 2. (A, f) is a permutation algebra with short tails such that $|A| \ge 3$ and there are at least two cycles in (A, f), or
- 3. (A, f) contains a connected subalgebra B such that there is $x \in B$ with $t_f(x) \ge 2$ and $\operatorname{Con}(B, f \upharpoonright B)$ is \land -irreducible in \mathcal{E}_B , or
- 4. (A,f) is non-connected algebra and there are distinct noncyclic elements $a,b,c,d\in A$ such that f(a),f(c) are cyclic, f(b)=a, f(d)=c and $f(a)\neq f(c)$, or
- 5. (A,f) is non-connected algebra and there are distinct noncyclic elements $a,b,c,d,e\in A$ such that f(a),f(c) are cyclic, f(b)=a, f(d)=c, f(e)=d and f(a)=f(c).

Prime-cycled algebras

Examples of algebras

(a) meet-irreducible

(b) meet-irreducible

Prime-cycled algebras

Meet-irreducibility of congruence lattices of prime-cycled algebras

Lemma 5

Let (A, f) be a monounary algebra and $g \in A^A$: g(x) = f(x'). Then for every $x, y \in A$: $\theta_g(x, y) \subseteq \theta_f(x, y)$.

(b) g(x)

Proposition 6

Let (A, f) be a algebra with at least one long tail, such that each cycle of (A, f) is a n-cycle, $n \geq 2, n \in \mathbb{N}$ and $t_f(x) \leq 2$ for every $x \in A$. If for every $x, y \in A$: $t_f(x) = t_f(y) = 2$ implies that $f^2(x) = f^2(y)$, then Con(A, f) is \land -reducible in \mathcal{E}_A .

Supported by VEGA 1/0152/22

Proposition 7

Let (A,f) be a monounary algebra such that it contains subalgebras B and $C=A\setminus B$. Let $(B,f\upharpoonright B)$ be a algebra with at least one long tail, such that each cycle of $(B,f\upharpoonright B)$ is a n-cycle, $n\geq 2$ and $t_f(x)\leq 2$ for every $x\in B$. Let $(C,f\upharpoonright C)$ be algebra with short tails. If for every $x,y\in A:t_f(x)=t_f(y)=2$ implies that $f^2(x)=f^2(y)$, then $\operatorname{Con}(A,f)$ is \land -reducible in \mathcal{E}_A .

Proposition 8

Let (A,f) be a monounary algebra such that it contains subalgebras B and $C=A\setminus B$. Let $(B,f\upharpoonright B)$ be a conected algebra with at least one long tail, such that its cycle is a p-cycle, p is odd prime and $t_f(x)\leq p$ for every $x\in B$. Let $(C,f\upharpoonright C)$ be algebra with short tails, such that each cycle of $(C,f\upharpoonright C)$ has prime length and these lengths are coprime with p. If for every $x,y\in A:t_f(x)=t_f(y)=2$ implies that $f^2(x)=f^2(y)$, then $\operatorname{Con}(A,f)$ is \land -reducible in \mathcal{E}_A .

Supported by VEGA 1/0152/22

Proposition 9

Let (A,f) be a prime-cycled algebra with a component B such that $(B,f\upharpoonright B)$ is a permutation-algebra with short tails and $p\geq 3$ cyclic elements. If there is no other cycle of (A,f) with p elements, then $\operatorname{Con}(A,f)$ is \wedge -reducible in \mathcal{E}_A .

Sources

- JAKUBÍKOVÁ-STUDENOVSKÁ D., PÖSCHEL R., RADELECZKI S., 2018. The lattice of congruence lattices of algebras on a finite set. In: *Algebra Universalis*. Vol. 79(4). ISSN 1420-8911.
- Jakubíková-Studenovská D., Janičková L., 2018. Meet-irreducible congruence lattices. In: Algebra Universalis. Vol. 79(89). ISSN 1420-8911.
- JAKUBÍKOVÁ-STUDENOVSKÁ D., JANIČKOVÁ L., 2020. Congruence lattices of connected monounary algebras. In: Algebra Universalis. Vol. 81(54). ISSN 1420-8911.

Thank you for your attention.