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Solving diagrams

INPUT: a diagram: some finite nonempty sets and some maps between
them

TASK: Pick one element out of each set, compatibly with all maps

{solutions} = {(xi ∈ Fi )i | ∀gi : Fh → Fk : g(xh) = xk}
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Kőnig’s tree lemma

Lemma (Kőnig, 1927)

Any finitely branching infinite tree contains an infinite path.

infinite paths ⇐⇒ solutions

Kőnig’s Lemma (rephrased)

Every diagram in the shape of (N,≤)op has a solution.
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Example: 3-colouring

Example:

A countable graph G is 3-colourable if all its finite subgraphs are
3-colourable.

Proof.

If G countable:
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Improvements?

Lemma (Kőnig, 1927), rephrased

Every diagram in the shape of (N,≤)op has a solution.

Definition

Call a category C Kőnig if every diagram in the shape of Cop has a solution.
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Theorem (H.)

For a small, locally finite category C, TFAE:
1 C is confluent and Ramsey

2 C is Kőnig, i.e. every diagram in the shape of Cop has a solution
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Obstacles for being Kőnig

Forks

Parallel arrows

Max Hadek (Charles University) Kőnig = Ramsey SSAOS 2025 7 / 15



Obstacles: Forks

Definition

A category is called confluent if every two objects with a common lower
bound also have a common upper bound.
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Solving parallel arrows: ignorance

Lemma

Posets (no parallel arrows) are Kőnig if and only if they are confluent.

Example

A graph G is 3-colourable if all its finite subgraphs are 3-colourable.

Proof.
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Solving parallel arrows: cheating

Potential fix

Require that for any two arrows f , g there is h ”equalizing” them.

Proposition

this + confluent =⇒ Kőnig
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Solving parallel arrows: Ramsey

Theorem (Ramsey 1928)

For any k there exists n such that any 2-edge coloring of the complete n
element graph contains a monochromatic subgraph of size k .

k = 3, n = 6
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Solving parallel arrows: Ramsey

Morally

For any colouring of arrows, there is h such that h ◦ f and h ◦ g have the
same colour.
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The Ramsey Property

Morally

For any colouring of arrows, there is h such that h ◦ f and h ◦ g have the
same colour.

Definition

A category C is called Ramsey if for all A,B ∈ C, there is C ∈ C such that
for all χ : Hom(A,C ) → {0, 1} there is h : B → C such that

Hom(A,B)
h∗−→ Hom(A,C )

χ−→ {0, 1}

is constant.

This is enough to fix parallel arrows!
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Whats the point?

Corollaries

improved canonization lemma (infinite CSPs)

understanding minimal Ramsey expansions

new Ramsey transfers

Fun Fact

Every locally finite, infinite-dimensional simplicial set contains the infinite
dunce cap (the simplicial set with precisely one nondegenerate simplex of
each dimension).
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