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Back to cancellativity

Recall that a residuated lattice is cancellative if both of
xzZ=yz=x=1Yy, and

ZX=2zy =>X=Y

hold, or, equationally,

(xy)/y = x = y\(yx).

Lattice-ordered groups are examples of cancellative RLs, but it
turns out this class is much wider.
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Back to cancellativity

Recall that /-groups are always distributive as lattices. In contrast:

Theorem (Bahls, Cole, Galatos, Jipsen, Tsinakis, 2003):

Every lattice appears as a sublattice of a cancellative, integral
residuated lattice. Indeed, there is an order-preserving injection of
the lattice of lattice varieties into the lattice of subvarieties of
cancellative residuated lattices.
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Some guiding examples

As the previous theorem suggests, quite a lot can happen for
cancellative residuated lattices that does not happen for ¢-groups.

There are integral examples: If A is any /-group, then we may
define a cancellative residuated lattice by taking the negative cone
of A,

AT ={acAla<e},

with the inherited order and product. The residuals are given by:
X\y=("ty)Ae, y/x=(xT")Ae.

Thus both ¢-groups and negative cones of ¢-groups give examples
of cancellative RLs.
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Some guiding examples

...but the class of cancellative RLs is bigger still. Take M to be the
free 2-generated monoid with free generators a and b. It is
observed in [Bahl-Cole-Galatos-Jipsen-Tsinakis 2003] that M can
be totally ordered by stipulating that v < v if and only if the
length of u is greater than the length of v, or u and v have the
same length but u < v in the lexicographic order given by b < a:

bl <abt <db<B <b<ab<at<b<a<e.

This is a cancellative, commutative, integral, totally ordered
residuated lattice. However, (b/a)a = a? and b= a A bin M, but
the identity (x/y)y = x A y holds in all negative cones of ¢-groups.
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A residuated lattice is called divisible if it satisfies
y<x = x(\y) =y = (y/x)x.
This is equivalent to the pair of identities
XA Ayl =x Ay =[x Ay)/x]x,
which, in the presence of integrality, is
x(x\y) = x Ay = (y/x)x.

Divisible residuated lattices are called GBL-algebras (more on the
name later) and they have been very important for understanding
the connection between ¢-groups and more general RLs.
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GBL-algebras and /-groups

Theorem (Galatos-Tsinakis 2005):

© GBL-algebras are exactly those residuated lattices isomorphic
to algebras of the form A x B, where A is an /-group and B is
an integral GBL-algebra.

@ In particular, cancellative GBL-algebras are exactly those
algebras isomorphic to algebras of the form A x B, where A is
an /-group and B is the negative cone of an ¢-group.

V
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Amalgamation beyond /-groups

The following is an immediate corollary of the preceding structure
theorem.

Proposition (Metcalfe-Montagna-Tsinakis 2014):

Let V be any variety of GBL-algebras that contains all /-groups.
Then V does not have the AP. In particular, neither the variety of
all GBL-algebras nor the variety of all cancellative GBL-algebras
has the AP.

Unlike ¢-groups, however, there are non-semilinear subvarieties of
GBL-algebras with the AP: the subvariety of O-free subreducts of
Heyting algebras, for example.
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(-groups and their negative cones

Theorem (Bahls-Cole-Galatos-Jipsen-Tsinakis 2003):
© The variety of /-groups is categorically equivalent to the
variety of negative cones of /-groups (= cancellative and
integral GBL-algebras).

@ The variety of abelian /-groups is categorically equivalent to
the variety of negative cones of abelian /-groups.

It follows immediately from (1) that the variety of cancellative and
integral GBL-algebras does not have the AP, whereas from (2) the
variety of negative cones of abelian /-groups does have the AP.
This also works to show that the variety of negative cones of
representable /-groups fails the AP.
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Some other varieties

Theorem (Gil-Férez, Ledda, Tsinakis, 2015):

The variety of cancellative semilinear residuated lattices does not
have the AP.

We do not know whether the following varieties have the AP:
@ the variety of cancellative commutative residuated lattices
@ the variety of semilinear cancellative commutative RLs

@ the variety of integral cancellative semilinear residuated
lattices
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Varieties derived from (-groups

There are many other interesting subvarieties of GBL-algebras,
often with close ties to ¢-groups.

@ A basic hoop is an integral, commutative, semilinear
GBL-algebra.

e A Bl-algebra is a basic hoop with a (designated) least
element.

@ A Wajsberg hoop is a basic hoop that satisfies
(x =>y)—=>y=xVy.

@ An MV-algebra is a Wajsberg hoop with a (designated) least
element.
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Varieties derived from (-groups

MV-algebras (and therefore Wajsberg hoops) famously come from
intervals of abelian /-groups by applying the Mundici functor.

[Agliano-Montagna 2003] shows that totally ordered BL-algebras
are all ordinal sums, made from stacking up Wajsberg hoops and
MV-algebras.

BL-algebras are also exactly the algebras generated by continuous
t-norms on [0, 1].
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Amalgamation around MV /Wajsberg

Di Nola-Lettieri 2000: A variety of MV-algebras has the AP if and
only if it is generated by a single totally ordered MV-algebra.

Metcalfe-Montagna-Tsinakis 2014: Almost true of Wajsberg hoops
as well, but can also include Z~.
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Amalgamation around BL

Quite a history of trying to pin down a classification of subvarieties
of BL-algebras with the AP:

[Montagna 2006]: Variety of all BL-algebras + many of the most
natural subvarieties have AP, but there are uncountably many that
do not. Very few extensions of basic logic with CIP.

Montagna’'s problem: How many varieties of BL-algebras have AP?
Countably many or uncountably many? Structure of Q(BL)?

[Cortonesi-Marchioni-Montagna 2011]: Applied tools from
first-order model theory.

[Aguzzoli-Bianchi 2021]: Partial classification for finitely generated
varieties.

[Fussner-Metcalfe 2022]: New general results for studying AP.

[Aguzzoli-Bianchi 2023]: Sharpened classification, but still not
complete.
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Some building blocks

We define some algebras:
o L, the n-element MV-algebra chain.
@ Z the negative cone of the integers (a cancellative hoop)
o W,, the O-free reduct of the MV-algebra t,.

e W, the O-free reduct of the MV-algebra I'(Z x Z, (m,0)),
where Z x Z is ordered lexicographically as an ¢-group and I
is the Mundici functor.
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Useful nomenclature

We introduce some naming conventions for varieties:
o A ® B is written AB

@ The class generated by the componentwise HSP,, closure of
an ordinal sum by enclosing the corresponding ordinal sum in
bracket [, |, so that, for example, [AB] denotes the class of all
ordinal sums A’ @ B’ where A’ € HSP,(A) and
B’ € HSP,(B); and [A] = HSP,(A).

@ We use * to denote the repetition of one or more instances of
a summand in a given ordinal sum. For example, [AB*]
abbreviates the class consisting of all ordinal sums of the form
A®B;®---®B,, where nis a positive integer and
B;,...,B, € HSP,(B).

@ Kleene star * has priority over @, so that [ABC*] abbreviates
[(A®B) @ C].
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A decomposition into intervals

For each variety V of basic hoops, denote by Wajs(V) the class of
Wajsberg chains in V. If V € Q(BH), then V(Wajs(V)) € Q(WH).

Theorem (F.-Santschi 2025):

The poset Q(BH) can be partitioned into countably infinitely many
closed intervals: for any variety V of basic hoops with the
amalgamation property one of the following holds.

Q@ V is trivial.
@ Wajs(V) =[A] for A {W, | n>1}U{Z,[0,1]wn}, and
© Wajs(V) = [W,,] for some n > 1, and
[Wh] € Vie € [W7 ]
Q Wajs(V) = [W,] U [Z] for some n > 1, and
[Wi] U [Z] € Vie € [(WaZ)].
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Closure properties

Lemma (F.-Santschi 2025):

Let V € Q(BH). If @!_, A; € V. with A; € Wajs(V), then
PDi_, H(A;) C V.

\,

Lemma (F.-Santschi 2025):
Let V € Q(BH) and A, B, C Wajsberg chains.
O fA®B®B®C € Vi, then [AB*C] C V..
@ If W, & W,,, € Vi, then [WiW,, ] C Vi
QIfAAGBEBeVi,or AGA AGB,B®B €V, then
[A"B*] € V.
Q IfA®B,B®A € Vg, then [(AB)*] C V.

.
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Charting Q(BH)

PN

(Z*W3) (W Z"]
[ZW3] (Z*W,] »u[Z*] (W3 Z] [(W,Z*]
[ZW-] (Walu [Z] Wa]U[Z7] (WnZ]

\\//

[W,]U[Z]
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Taking stock

Theorem (F.-Santschi 2025):

The poset Q(BH) can be partitioned into countably many finite
intervals.
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Closure properties for BL

Lemma (F.-Santschi 2025):

Let V € Q(BL) be such that Ag @ A; € Vi, where Ag is a
non-trivial totally ordered MV-algebra and A; a totally ordered
basic hoop.

Q If Bp € £(V) and Ap < By is an essential extension, then
Bo® A; € Vg.

@ If By € L(V) is simple, then By @& A; € V.

Q Ifform>1t,, €t(V)and Ag € [Lmo]\ [Lm], then
me &) A1 S Vfc.

Q If Bp ® By € Vg such that Ag < By, By < Ay, and By is
non-trivial, then Bg @ A; € Vg..

Q If Bp ® B1 € V¢ such that A; < B is an essential extension,
then Ag @ By € V..
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Intervals for BL

For a variety V of BL-algebras, let Basict.(V) be the class of finite
index basic hoops appearing in ordinal sum decompositions in
chains in V.

Theorem (F.-Santschi 2025):
Let V be a variety of BL-algebras. Then V € Q(BL) if and only if
V(Basicg(V)) € Q(BH) and one of the following holds:

Q V is trivial.

Q@ (V) =[A] for some A € {t,,, L | m e N} U{[0, 1]mv}
and V. = [A] @ Basicg (V).

Q t(V) =[Ln.] for some m>1 and
Vie = ([bm] ® Basicg(V)) U [bmu]-

Q t(V) = [Ly] for some m > 1, Basicg.(V) = K1 U Ky, where
Ky € {[W,], [W:]} for some n > 1 and K; € {[Z],[Z*]}; and
either Vi = ([bmw] ® K1) U ([Lm] © K2), or
Vi = ([Lm] ® Kl) U ([Lm,w] S KQ).
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The main result for BL

Theorem (F.-Santschi 2025):

The poset Q(BL) can be partitioned into countably many finite
intervals.
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Conclusion

There remain many open problems around AP.

@ Does any non-abelian variety of /-groups have AP?

@ A range of even murkier problems around cancellative RLs.
However, there has been a lot of progress on AP in recent years.

@ The solution of Montagna's problem required very new
techniques.

@ Progress on varieties without CEP, important for
non-commutative varieties of RLs.

24 /25



Thank you!

Thank you!
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