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Back to cancellativity

Recall that a residuated lattice is cancellative if both of

xz = yz ⇒ x = y , and

zx = zy ⇒ x = y

hold, or, equationally,

(xy)/y = x = y\(yx).

Lattice-ordered groups are examples of cancellative RLs, but it
turns out this class is much wider.
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Back to cancellativity

Recall that ℓ-groups are always distributive as lattices. In contrast:

Theorem (Bahls, Cole, Galatos, Jipsen, Tsinakis, 2003):

Every lattice appears as a sublattice of a cancellative, integral
residuated lattice. Indeed, there is an order-preserving injection of
the lattice of lattice varieties into the lattice of subvarieties of
cancellative residuated lattices.
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Some guiding examples

As the previous theorem suggests, quite a lot can happen for
cancellative residuated lattices that does not happen for ℓ-groups.

There are integral examples: If A is any ℓ-group, then we may
define a cancellative residuated lattice by taking the negative cone
of A,

A− = {a ∈ A | a ≤ e},

with the inherited order and product. The residuals are given by:

x\y = (x−1y) ∧ e, y/x = (yx−1) ∧ e.

Thus both ℓ-groups and negative cones of ℓ-groups give examples
of cancellative RLs.
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Some guiding examples

...but the class of cancellative RLs is bigger still. Take M to be the
free 2-generated monoid with free generators a and b. It is
observed in [Bahl-Cole-Galatos-Jipsen-Tsinakis 2003] that M can
be totally ordered by stipulating that u ≤ v if and only if the
length of u is greater than the length of v , or u and v have the
same length but u < v in the lexicographic order given by b < a:

· · · b3 < ab2 < a2b < a3 < b2 < ab < a2 < b < a < e.

This is a cancellative, commutative, integral, totally ordered
residuated lattice. However, (b/a)a = a2 and b = a ∧ b in M, but
the identity (x/y)y = x ∧ y holds in all negative cones of ℓ-groups.
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Divisibility

A residuated lattice is called divisible if it satisfies

y ≤ x =⇒ x(\y) = y = (y/x)x .

This is equivalent to the pair of identities

x [x\(x ∧ y)] = x ∧ y = [(x ∧ y)/x ]x ,

which, in the presence of integrality, is

x(x\y) = x ∧ y = (y/x)x .

Divisible residuated lattices are called GBL-algebras (more on the
name later) and they have been very important for understanding
the connection between ℓ-groups and more general RLs.
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GBL-algebras and ℓ-groups

Theorem (Galatos-Tsinakis 2005):

1 GBL-algebras are exactly those residuated lattices isomorphic
to algebras of the form A×B, where A is an ℓ-group and B is
an integral GBL-algebra.

2 In particular, cancellative GBL-algebras are exactly those
algebras isomorphic to algebras of the form A×B, where A is
an ℓ-group and B is the negative cone of an ℓ-group.
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Amalgamation beyond ℓ-groups

The following is an immediate corollary of the preceding structure
theorem.

Proposition (Metcalfe-Montagna-Tsinakis 2014):

Let V be any variety of GBL-algebras that contains all ℓ-groups.
Then V does not have the AP. In particular, neither the variety of
all GBL-algebras nor the variety of all cancellative GBL-algebras
has the AP.

Unlike ℓ-groups, however, there are non-semilinear subvarieties of
GBL-algebras with the AP: the subvariety of 0-free subreducts of
Heyting algebras, for example.
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ℓ-groups and their negative cones

Theorem (Bahls-Cole-Galatos-Jipsen-Tsinakis 2003):

1 The variety of ℓ-groups is categorically equivalent to the
variety of negative cones of ℓ-groups (= cancellative and
integral GBL-algebras).

2 The variety of abelian ℓ-groups is categorically equivalent to
the variety of negative cones of abelian ℓ-groups.

It follows immediately from (1) that the variety of cancellative and
integral GBL-algebras does not have the AP, whereas from (2) the
variety of negative cones of abelian ℓ-groups does have the AP.
This also works to show that the variety of negative cones of
representable ℓ-groups fails the AP.
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Some other varieties

Theorem (Gil-Férez, Ledda, Tsinakis, 2015):

The variety of cancellative semilinear residuated lattices does not
have the AP.

We do not know whether the following varieties have the AP:

the variety of cancellative commutative residuated lattices

the variety of semilinear cancellative commutative RLs

the variety of integral cancellative semilinear residuated
lattices
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Varieties derived from ℓ-groups

There are many other interesting subvarieties of GBL-algebras,
often with close ties to ℓ-groups.

A basic hoop is an integral, commutative, semilinear
GBL-algebra.

A BL-algebra is a basic hoop with a (designated) least
element.

A Wajsberg hoop is a basic hoop that satisfies
(x → y) → y = x ∨ y .

An MV-algebra is a Wajsberg hoop with a (designated) least
element.
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Varieties derived from ℓ-groups

MV-algebras (and therefore Wajsberg hoops) famously come from
intervals of abelian ℓ-groups by applying the Mundici functor.

[Aglianò-Montagna 2003] shows that totally ordered BL-algebras
are all ordinal sums, made from stacking up Wajsberg hoops and
MV-algebras.

BL-algebras are also exactly the algebras generated by continuous
t-norms on [0, 1].
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Amalgamation around MV/Wajsberg

Di Nola-Lettieri 2000: A variety of MV-algebras has the AP if and
only if it is generated by a single totally ordered MV-algebra.

Metcalfe-Montagna-Tsinakis 2014: Almost true of Wajsberg hoops
as well, but can also include Z−.
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Amalgamation around BL

Quite a history of trying to pin down a classification of subvarieties
of BL-algebras with the AP:

[Montagna 2006]: Variety of all BL-algebras + many of the most
natural subvarieties have AP, but there are uncountably many that
do not. Very few extensions of basic logic with CIP.

Montagna’s problem: How many varieties of BL-algebras have AP?
Countably many or uncountably many? Structure of Ω(BL)?

[Cortonesi-Marchioni-Montagna 2011]: Applied tools from
first-order model theory.

[Aguzzoli-Bianchi 2021]: Partial classification for finitely generated
varieties.

[Fussner-Metcalfe 2022]: New general results for studying AP.

[Aguzzoli-Bianchi 2023]: Sharpened classification, but still not
complete.
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Some building blocks

We define some algebras:

 Ln the n-element MV-algebra chain.

Z the negative cone of the integers (a cancellative hoop)

Wm the 0-free reduct of the MV-algebra  Lm.

Wm,ω the 0-free reduct of the MV-algebra Γ(Z× Z, ⟨m, 0⟩),
where Z× Z is ordered lexicographically as an ℓ-group and Γ
is the Mundici functor.
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Useful nomenclature

We introduce some naming conventions for varieties:

A⊕ B is written AB

The class generated by the componentwise HSPu closure of
an ordinal sum by enclosing the corresponding ordinal sum in
bracket [, ], so that, for example, [AB] denotes the class of all
ordinal sums A′ ⊕ B′ where A′ ∈ HSPu(A) and
B′ ∈ HSPu(B); and [A] = HSPu(A).

We use ∗ to denote the repetition of one or more instances of
a summand in a given ordinal sum. For example, [AB∗]
abbreviates the class consisting of all ordinal sums of the form
A⊕ B1 ⊕ · · · ⊕ Bn, where n is a positive integer and
B1, . . . ,Bn ∈ HSPu(B).

Kleene star ∗ has priority over ⊕, so that [ABC∗] abbreviates
[(A⊕ B) ⊕ C∗].
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A decomposition into intervals

For each variety V of basic hoops, denote by Wajs(V) the class of
Wajsberg chains in V. If V ∈ Ω(BH), then V(Wajs(V)) ∈ Ω(WH).

Theorem (F.-Santschi 2025):

The poset Ω(BH) can be partitioned into countably infinitely many
closed intervals: for any variety V of basic hoops with the
amalgamation property one of the following holds.

1 V is trivial.

2 Wajs(V) = [A] for A ∈ {Wn | n ≥ 1} ∪ {Z, [0, 1]WH}, and
[A] ⊆ Vfc ⊆ [A∗].

3 Wajs(V) = [Wn,ω] for some n ≥ 1, and
[Wn,ω] ⊆ Vfc ⊆ [W∗

n,ω].

4 Wajs(V) = [Wn] ∪ [Z] for some n ≥ 1, and
[Wn] ∪ [Z] ⊆ Vfc ⊆ [(WnZ)∗].
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Closure properties

Lemma (F.-Santschi 2025):

Let V ∈ Ω(BH). If
⊕l

i=1Ai ∈ Vfc with Ai ∈ Wajs(V), then⊕l
i=1H(Ai ) ⊆ Vfc.

Lemma (F.-Santschi 2025):

Let V ∈ Ω(BH) and A,B,C Wajsberg chains.

1 If A⊕ B⊕ B⊕ C ∈ Vfc, then [AB∗C] ⊆ Vfc.

2 If Wn ⊕Wn,ω ∈ Vfc, then [W∗
nWn,ω] ⊆ Vfc.

3 If A⊕ A⊕ B⊕ B ∈ Vfc or A⊕ A,A⊕ B,B⊕ B ∈ Vfc, then
[A∗B∗] ⊆ Vfc.

4 If A⊕ B,B⊕ A ∈ Vfc, then [(AB)∗] ⊆ Vfc.
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Charting Ω(BH)
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Taking stock

Theorem (F.-Santschi 2025):

The poset Ω(BH) can be partitioned into countably many finite
intervals.
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Closure properties for BL

Lemma (F.-Santschi 2025):

Let V ∈ Ω(BL) be such that A0 ⊕ A1 ∈ Vfc, where A0 is a
non-trivial totally ordered MV-algebra and A1 a totally ordered
basic hoop.

1 If B0 ∈  L(V) and A0 ≤ B0 is an essential extension, then
B0 ⊕ A1 ∈ Vfc.

2 If B0 ∈  L(V) is simple, then B0 ⊕ A1 ∈ Vfc.

3 If for m ≥ 1,  L L Lm,ω ∈  L(V) and A0 ∈ [ L L Lm,ω] \ [ L L Lm], then
 L L Lm,ω ⊕ A1 ∈ Vfc.

4 If B0 ⊕ B1 ∈ Vfc such that A0 ≤ B0, B1 ≤ A1, and B1 is
non-trivial, then B0 ⊕ A1 ∈ Vfc.

5 If B0 ⊕ B1 ∈ Vfc such that A1 ≤ B1 is an essential extension,
then A0 ⊕ B1 ∈ Vfc.
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Intervals for BL

For a variety V of BL-algebras, let Basicfc(V) be the class of finite
index basic hoops appearing in ordinal sum decompositions in
chains in V.

Theorem (F.-Santschi 2025):

Let V be a variety of BL-algebras. Then V ∈ Ω(BL) if and only if
V(Basicfc(V)) ∈ Ω(BH) and one of the following holds:

1 V is trivial.

2  L(V) = [A] for some A ∈ { L L Lm,  L L Lm,ω | m ∈ N} ∪ {[0, 1]MV}
and Vfc = [A] ⊕ Basicfc(V).

3  L(V) = [ L L Lm,ω] for some m ≥ 1 and
Vfc = ([ L L Lm] ⊕ Basicfc(V)) ∪ [ L L Lm,ω].

4  L(V) = [ L L Lm,ω] for some m ≥ 1, Basicfc(V) = K1 ∪ K2, where
K1 ∈ {[Wn], [W∗

n]} for some n ≥ 1 and K2 ∈ {[Z], [Z∗]}; and
either Vfc = ([ L L Lm,ω] ⊕ K1) ∪ ([ L L Lm] ⊕ K2), or
Vfc = ([ L L Lm] ⊕ K1) ∪ ([ L L Lm,ω] ⊕ K2).
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The main result for BL

Theorem (F.-Santschi 2025):

The poset Ω(BL) can be partitioned into countably many finite
intervals.
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Conclusion

There remain many open problems around AP.

Does any non-abelian variety of ℓ-groups have AP?

A range of even murkier problems around cancellative RLs.

However, there has been a lot of progress on AP in recent years.

The solution of Montagna’s problem required very new
techniques.

Progress on varieties without CEP, important for
non-commutative varieties of RLs.
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Thank you!

Thank you!
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