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Amalgamation in /-groups: the landscape

Recall that an ¢-group is representable (or semilinear) if it is a
subdirect product of linearly ordered ¢-groups. We know:

@ Abelian /-groups are representable.
@ Abelian /-groups have the AP.
Today we will see:
@ Gurchenkov's theorem: Every variety with the AP is
representable.

@ Among representable /-groups, the varieties that may have
the AP are rather restricted.

@ In particular, the variety of all /-groups lacks the AP.
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The entire variety

Theorem (Pierce 1973):
The variety of all /-groups lacks the AP.
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Lexicographic products

We follow a proof of Metcalfe, Paoli, and Tsinakis (2023). For
this, we consider the lexicographic product.

Given totally ordered /-groups A and B, we can turn the direct
product of the underlying groups of A and B into a totally ordered
{-group by imposing the lexicographic order:

(a,b) < (d,b) < a<ad,ora=3a and b< V.

Of course, we could also extend this to arbitrary numbers of
factors as well as take the dual lexicographic product if we wished.

Hahn embedding theorem: Every totally ordered abelian group
embeds in a lex product of copies of R.
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(-groups do not have AP

Lex products are important in constructing many examples. For
instance, to see that the variety of all /-groups LG does not have
AP, let Aut(Z x Z) be the ¢-group of order-preserving
permutations of Z x Z (ordered as a direct product).

Consider a (group) homomorphism h: Z — Aut(Z x Z) defined by
h(n)(i,j) = (i,j) if nis even and h(n)(i,j) = (j, i) if nis odd.

We let B be the semidirect product (Z x Z) xp, Z ordered dually
lexicographically.

Take A to be the subalgebra of B generated by (0,0,1), (0,1,0),
and (0,0,1)2.
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(-groups do not have AP

Also, consider C; to be Z x Z ordered dually lexicographically, set
C, = C; x C4, and let C be the subalgebra of C, generated by the
unit vectors.

Now A is included in B, and we may define an embedding g of A
into C by setting g(1,0,0) = (1,0,0,0), g(0,1,0) = (0,0,1,0),
and g((0,0,1)?) = (0,1,0,0)(0,0,0,1). One may show that the
resulting span has no amalgam.
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Representable /-groups are enough

Theorem (Gurchenkov 1997):

Let V be any variety of ¢-groups. If V has the AP, then V is
representable.
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Amalgamation bases

Let V, W be varieties of /-groups with V C W. We say that an
f-group A € V is an amalgamation base for V in W if any span of
the form (f: A — B,g: A — C) in V has an amalgam in W.

By amaly(V) we mean the class of all amalgamation bases for V
in W, and by amal(V) we mean amaly(V).
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Conjugate-orthogonal rank

The key technical ingredient toward understanding Guchenkov's
theorem is the notion of conjugate-orthogonal rank.

If A is any /-group, we say that A has conjugate-orthogonal rank n
and write co(A) = n if:
© There exist strictly positive elements g, a € A such that
aN(g 'ag’)=eforeachi=1,...,n, and
@ for each pair of strictly positive elements x,y € A, if
x A (y~'xy’) = e foreach i = 1,...,n, then
XA (y~ (M xy ) o e,
A variety V of {-groups has conjugate-orthogonal rank n such that
for each A € V we have co(A) # n and there exists B € V with
co(B) = n. The variety V has infinite conjugate-orthogonal rank if
for each n there is A € V with co(A) > n.
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Some key lemmas

By a clever application of an /-group construction called the
lexicographic semidirect extension, Gurchenkov proves the
following lemma:

Lemma (Gurchenkov 1997):

Let V be any variety of ¢-groups with co(V) = n > 1. Then there
is a span in V that cannot be amalgamated among all ¢-groups.

Further, Gurchenkov proves the following lemma, which today
would be packaged as a closure property:

Lemma (Gurchenkov 1997):
If co(V) > 1 and Z € amal(V), then co(V) = cc.
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Normal-valued /-groups

Let A be any /-group. We say that a convex subgroup B of A is
regular if it is completely meet-irreducible in the lattice of all
convex f-subgroups of A. A regular subgroup B of A hence has a
cover B* in the lattice of convex /-subgroups of A, and when B is
normal in B* we say that B is a normal value.

An /l-group A is normal valued if all of its regular convex
£-subgroups are normal values. Surprisingly, the class of N of all
normal-valued ¢-groups is a variety, and it turns out to be the
greatest proper subvariety of /-groups.
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Gurchenkov on normal-valued ¢-groups

Lemma (Gurchenkov 1997):

Suppose that V is a variety of /-groups with Z € amal(V), and
such that V contains at least one non-representable ¢-group. Then
NCV.

To finish the proof, suppose V is a non-representable variety of
(-groups with the AP. Then certainly Z € amal(V). Then N CV
by the last lemma. The variety of normal valued ¢-groups contains
a subvariety W with finite conjugate-orthogonal rank. By the first
lemma, W has a span that cannot be amalgamated among all
£-groups, and hence certainly not in V.
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Representable /-groups

Theorem (Glass, Saracino, Wood, 1984):
The variety of representable /-groups does not have the AP.
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Taking stock

We know a bit about Q(LG), the poset of subvarieties of ¢-groups
with the AP:

@ lIts unique atom is the variety of Abelian ¢-groups, which has
AP.

@ Its unique co-atom is the variety of normal-valued ¢-groups,
which doesn’t have AP.

@ Somewhere in the middle is the variety of representable
£-groups, also lacking the AP but containing any variety with
the AP.

If there is another subvariety of LG with the AP, the natural place
to look among the representable covers of Abelian ¢-groups. As it
turns out, Abelian /-groups have both representable and
non-representable covers.
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Positive cones

To define the most pertinent varieties, we note that if A is an
£-group, then the order on A can be recovered from its positive
cone,

AT ={xeA|e<x},

since by residuation we always have

x<y <= e<yx L

One often defines the order on an ¢-group by way of its positive
cone.
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Wreath products

If A and B are groups, recall that the wreath product of A and B
can be defined by taking vectors of the form ((a;), b), where (a;) is
a vector of elements of A indexed by i € B such that the support
{i € B| aj # e} is finite.

The group operation of the wreath product AwrB can be defined
by
((ai), b) - ((a7), ') = ((ci), bb),

H /
with ¢; = a;a),.
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Medvedev's varieties

If A and B are totally ordered groups, then their wreath product
can be totally ordered in two ways.

For the first of these, the positive cone is defined by stipulating
that ((a;), b) > (e, e) if and only if b > e, or b= e and a; > e in
A, where j = max{j € B | a; # e}.

The second order just takes ((a;), b) > (e, e) ifif b> e, or b=ce
and a; > e for j = min{j € B | a; # e}.

Call W™ the f-group with the first order, and W™~ the one with
the second order.
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Medvedev's varieties

Medvedev's varieties are respectively M* = V(W) and
M~ =V(W™).

Proposition (Medvedev):

The varieties M™ and M~ are representable covers of the variety of
Abelian /-groups.
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The Powell-Tsinakis theorem

Theorem (Powell and Tsinakis, 1989):

No variety of /-groups containing either of M™ or M~ has the AP.
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Proof of Powell-Tsinakis

The proof proceeds separately for each of M™ and M.

Focusing on M™, we want to find a span (f: A— B,g: A — C)
that cannot be amalgamated among representable /-grooups,
hence in particular in M.

The idea of the proof uses the remarkable fact that representable
£-groups have unique roots for all exponents:

xX"=y" = x=y.
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Cyclic extensions

The correct ¢-groups A, B, C can be found by considering cyclic
extensions. If A is a totally ordered group and « is an order
automorphism of A, then we define an ¢-group A(«) on the set
Ax{a"|neZ} by

(a7an) ’ (bv am) - (aan(b)7an+m)7

and ordered by (a,a") > (e,aP) if and only if either n > 0, or else
n=0and a>e.
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Concluding the proof

One can find the appropriate span by finding order automorphisms
«, B, of totally ordered group A such that o = 8”7 = ~". In this
event, A(a) embeds in each of A(/3) and A(y) and the
automorphisms witness the failure of the AP.

Concretely, the ¢-group A can be taken to be a large lexicographic
product of copies of Z.

The main technical challenge is in constructing the appropriate
order automorphisms.
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Consequences of the Powell-Tsinakis theorem

The Medvedev varieties M* and M~ cover the variety of Abelian
£-groups, so the Powell-Tsinakis theorem excludes a huge number
of candidates for varieties with the AP.

In particular, there are uncountably many varieties of representable
{-groups that contain one of the Medvedev varieties.

There are, however, other representable covers of the variety of
Abelian ¢-groups. These are only partially classified.
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Looking forward

It remains open whether there are any non-abelian varieties of
£-groups with the AP, and this has now been open for many
decades.

It isn't clear what the right strategy for resolving this problem is.

One attack is to consider other covers of variety of abelian
£-groups.

Other attacks on the problem may focus on syntactic methods as
in our proof of AP for abelian ¢-groups.
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Tomorrow

The Gurchenkov and Powell-Tsinakis theorems are essentially the
state of the art on AP among ¢-groups.

Tomorrow, we focus on applications of these results and zoom out
into the wider context of cancellative residuated structures.
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Thank you!

Thank you!
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