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Amalgamation: the idea

This lecture series is about a very powerful algebraic property
called amalgamation.

A class K of structures has the amalgamation property if every
span (¢1: A — B, ¢2: A — C) of structures in K can be
completed in K:
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Amalgamation: motivation

Amalgamation is important in a huge number of different contexts:

o Fraissé theory and its applications in (for example) dynamics
and Ramsey theory

@ Model completions and other areas of model theory

@ The study of various kinds of syntactic interpolation properties
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Amalgamation: history

The AP was first investigated for groups in [Schreier 1927] and,
largely inaugurated by Jénsson’s efforts, our understanding of AP
in ordered algebras is especially deep:

e Exactly three varieties of lattices with AP [Day-JeZzek 1984]

@ Exactly eight varieties of Heyting algebras with the AP
[Maksimova 1977]

@ Lots of progress for other classes of residuated structures by
many authors in the last decade, fueling some powerful
general theory

5/27



Amalgamation: relation to CEP

Theorem (Kearnes 1989):

Let V be any congruence modular, residually small variety (i.e.,
there is a cardinal bound on the size of subdirectly irreducibles in
V). If V has the AP, then V has the congruence extension property.
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Amalgamation: sufficient conditions

Theorem (F.-Metcalfe 2024):
Let K be a subclass of a variety V satisfying
© K is closed under isomorphisms and subalgebras;
@ every relatively subdirectly irreducible member of V belongs to
K;
© for any B € V and subalgebra A of B, if © € Con A and

A/© € K, then there exists a € Con B such that
dNA%2=0 and B/® € K;

@ every span of finitely generated algebras in K has an amalgam
in V.

Then V has the amalgamation property.
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Amalgamation: characterization

Theorem (F.-Metcalfe 2024):

Let V be any quasivariety with the V-congruence extension

property such that Vg, is closed under subalgebras. The following
are equivalent:

© V has the amalgamation property.

@ V has the one-sided amalgamation property.
@ V, has the one-sided amalgamation property.
FSI X V

© Every span of finitely generated algebras in V
amalgam in V.

© Every span in V, has an amalgam in V Fsi-

rs has an
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Equational consequence

For a set of variables Y, we denote by Tm(Y') the term algebra
over Y (reading the signature as given). For a variety V, we
denote Fy/(Z) the free algebra in V generated by the set Z. If

e € Tm(Z), then € is the image of € under the natural projection
Tm(Z) — Fy(2).

Write Eq(Y') for the collection of equations in the variables Y. For
Y U{e} CEq(Y) and K any class of algebras, define:

Y =¥ ¢ <= For each A € K and each homomorphism
h: Tm(Y) — A, if £ C ker(h) then € € ker(h).
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Equational consequence

Proposition (Metcalfe-Montagna-Tsinakis 2014):

Let V be a variety, Y C Z, and T U {e} C Eq(Y). Let ©F be the
kernel of the projection map Tm(Z) — F(Z). The following are
equivalent:

Q@ XL ¢

Q@ XX«

Q@ cc Cg™@)(x)vey;

Q e CgFA(T);

Q@ ccCg™M(T)vey;

Q e CgFM(%).
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Equational consequence

If Y C Z, then congruences on F(Y') extend to F(Z). So, the
usual equational consequence can be defined by

Y Eve <= T eforany Y D Var(X U {e}).

Assume that V is a variety with at least one constant symbol. We
say that V has the equational deductive interpolation property (or
EqDIP) if for any set of variables Y, whenever

YU{e} CEq(Y)and X =y e
then there exists A C Eq(Y') such that

Y Ev A, AEye and Var(A) C Var(X) N Var(e).
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Amalgamation and deductive interpolation

Let V be any variety with a constant in the language.

© If V has AP, then V has EqDIP.
@ if V has the CEP and EgDIP, then V has AP.
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Aside: the challenge of EqDIP

EgDIP is in many respects much more subtle than AP.
@ There are many varieties with EqDIP that lack AP (e.g.
semigroups).
@ Establishing EqDIP is often extremely difficult by purely
algebraic methods.

@ Often, proofs of EqDIP factor through some nice syntactic
presentation of the varieties in question (e.g. via proof
theory).

@ There is a notion of weak CEP under which EqDIP + WCEP
holds iff AP holds.
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Switching gears: residuated structures

Now we will narrow our perspective, focusing on some concrete
varieties that tells us a lot about amalgamation and syntactic
interpolation properties.
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Residuated Lattices: the basics

A residuated lattice is an algebraic structure of the form
(A, AV, 4\, /, e) where

e (A A, V) is a lattice,
e (A, -, e) is a monoid, and
o forall x,y,z € A,

x y<z <= y<x\z < x<z/y.

We use all the expected terminology: Commutative, idempotent,
totally ordered, linear, etc.

Semilinear: Subdirect product of totally ordered residuated lattices.

Knotted rules: x < e (integral), x < x2) (square inc), x> < x
(square decreasing).
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Residuated Lattices: examples

Lots of familiar examples of residuated lattices, sometimes
including expansions by a bottom element or an involution —.

@ Boolean algebras and Heyting algebras, where product - is A.

@ Algebras of ideals of rings, where product is the product of
ideals and division is the usual ideal division.

@ Relation algebras in Tarski's sense.

@ Various more exotic algebras associated to non-classical logics:
MV-algebras, BL-algebras, Sugihara monoids, De Morgan
monoids. . .
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Residuated Lattices: properties

Residuated lattices are arithmetical: both congruence distributive
and congruence permutable.

Nice characterization of congruence: correspond to convex normal
subalgebras.

Commutative RLs also have the CEP, but generally
non-commutative ones lack CEP.

In commutative RLs, x\y = y/x so usually written as x — y.
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Cancellativity

A residuated lattice is called cancellative if both of
xz=yz= x=y, and

ZX=2zy=>X=Y

hold. Remarkably, in residuated lattices, cancellativity is equivalent
to the identities

(xv)/y = x = y\(»),
so cancellative RLs form a variety. Particular examples are given by
lattice-ordered groups.
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Lattice-ordered groups

Lattice-ordered groups are a very old topic. Most often, an ¢-group
is defined as a group G with a lattice order < such that

x<y=xz<yz,

x<y=zx < zy.
Equivalently, (-groups can be realized as residuated lattices that
satisfy the single equation
(e\X)x =e,

in which case we have that x\e = e/x = x~1.
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Lattice-ordered groups: the commutative case

Abelian ¢-groups are quite well understood. They are generated as
a variety by the /-group of integers [Weinberg 1965].

Among the consequences of this: Every non-trivial variety of
£-groups contains the variety of abelian ¢-groups.

Of course, abelian ¢-groups also form a variety of cancellative
semilinear residuated lattices.

In fact, when it comes to amalgamation, semilinear /-groups
occupy a rather special place among all varieties of residuated
lattices.
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The role of /-groups

As we shall see:
@ Abelian /-groups have the AP.
@ The entire variety of /-groups does not have the AP.
@ Abelian /-groups are semilinear but general /-groups are not.

@ Gurchenkov 1997: Every variety of ¢-groups with the AP is
semilinear.

@ But the variety of semilinear /-groups doesn't have the AP
[Glass-Saracino-Wood 1984] and there are uncountably many
varieties of semilinear /-groups without the AP
[Powell-Tsinakis 1989].

@ Almost everything known about AP in cancellative RLs comes
from reducing to the ¢-group case.
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What we know for semilinear RLs

Here * means that the same is true for bounded and involutive expansions

Variety V Abbreviation | AP | [Q(V)| ‘
Semilinear residuated lattices SRL no* | 2%
Commutative SRL CSRL no* | > Ng
Idempotent SRL 1SRL no | 2%
Idempotent CSRL 1CSRL yes | 60
Gaodel algebras GA yes |4
Relative Stone algebras RSA yes | 3
Sugihara monoids SM yes |9
Odd Sugihara monoids OSM yes | 3
(m,n)-knotted SRL (m > 1, n >0) no* | 2%
(m,n)-knotted CSRL (m > 1, n > 0) no* | ?
n-potent SRL (n > 2) no* | 2%
n-potent CSRL (n > 2) no* | > 60
MTL-algebras MTL no >Ry
De Morgan monoids DMM no >Ro
Semilinear DMM SDMM no | >Np
Cancellative SRL CanSRL no | >3
Commutative CanSRL CanCSRL ? >3
Integral CanSRL ? >2
Lattice-ordered groups LG no | >2
Abelian LG ALG yes | 2
Representable LG RLG no | >2
MV-algebras MV yes | No
Wajsberg hoops WH yes | No
BL-algebras BL yes | No
Basic hoops BH yes | Ng

W. Fussner and S. Santschi, Amalgamation in Semilinear Residuated Lattices,
https://arxiv.org/abs/2407.21613, 2024.
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Amalgamation in /-groups: the commutative case

There are lots of proofs that abelian ¢-groups have the AP.
o Pierce 1973, with the Hahn embedding theorem much later.
@ Algebraic proofs due to Powell and Tsinakis 1983, 1989.
e Using quantifier elimination [Weispfenning 1989].

@ Metcalfe-Montagna-Tsinakis 2023 using EqDIP, which we
give.
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Amalgamation in /-groups: the commutative case

Theorem (see MMT 2023):
The variety of abelian ¢-groups has the AP.

Proof: Abelian /-groups are a variety of RLs with the CEP, so it is
enough to show that they have the equational deductive
interpolation property.
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For this, it is enough to show that for any term a and any

x € Var(a), there exists a term + such that
Var(y) C Var(a) — {x} and for all 5 € Tm with x ¢ Var(3), we
have

e<afFe<f < e<yEe<g.

This is because:
@ Every abelian ¢-group equation can be written in the form
e < ¢, and
@ The equational consequence relation of abelian /-groups is
finitary.
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Note that abelian /-groups satisfy the distributivity laws
x+(yNz)=(x+y)A(x+ 2z),

x+(yV2) = (x+y) V (x +2).

Further, all /-groups are distributive as lattices. Using these
distributivity properties, we may assume without loss of generality
that for some n > 1 and terms o/, a1, ...,am, 81, ..., Bk not
containing x,

m k
a=ad A /\(a; + nx) A /\(ﬁj — nx).
i=1 j=1
The correct definition of + is then found by setting
/ . .
=« /\/\{a;+ﬁj|1§/§m,1§1§k}.
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Thank you!

Thank you!
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