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Amalgamation: the idea

This lecture series is about a very powerful algebraic property
called amalgamation.

A class K of structures has the amalgamation property if every
span ⟨ϕ1 : A → B, ϕ2 : A → C⟩ of structures in K can be
completed in K:
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Amalgamation: motivation

Amalgamation is important in a huge number of different contexts:

Fräıssé theory and its applications in (for example) dynamics
and Ramsey theory

Model completions and other areas of model theory

The study of various kinds of syntactic interpolation properties

4 / 27



Amalgamation: history

The AP was first investigated for groups in [Schreier 1927] and,
largely inaugurated by Jónsson’s efforts, our understanding of AP
in ordered algebras is especially deep:

Exactly three varieties of lattices with AP [Day-Ježek 1984]

Exactly eight varieties of Heyting algebras with the AP
[Maksimova 1977]

Lots of progress for other classes of residuated structures by
many authors in the last decade, fueling some powerful
general theory
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Amalgamation: relation to CEP

Theorem (Kearnes 1989):

Let V be any congruence modular, residually small variety (i.e.,
there is a cardinal bound on the size of subdirectly irreducibles in
V). If V has the AP, then V has the congruence extension property.
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Amalgamation: sufficient conditions

Theorem (F.-Metcalfe 2024):

Let K be a subclass of a variety V satisfying

1 K is closed under isomorphisms and subalgebras;

2 every relatively subdirectly irreducible member of V belongs to
K;

3 for any B ∈ V and subalgebra A of B, if Θ ∈ ConA and
A/Θ ∈ K, then there exists a Φ ∈ ConB such that
Φ ∩ A2 = Θ and B/Φ ∈ K;

4 every span of finitely generated algebras in K has an amalgam
in V.

Then V has the amalgamation property.
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Amalgamation: characterization

Theorem (F.-Metcalfe 2024):

Let V be any quasivariety with the V-congruence extension
property such that V

FSI
is closed under subalgebras. The following

are equivalent:

1 V has the amalgamation property.

2 V has the one-sided amalgamation property.

3 V
FSI

has the one-sided amalgamation property.

4 Every span in V
FSI

has an amalgam in V
FSI

× V
FSI
.

5 Every span of finitely generated algebras in V
FSI

has an
amalgam in V.
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Equational consequence

For a set of variables Y , we denote by Tm(Y ) the term algebra
over Y (reading the signature as given). For a variety V, we
denote FV(Z ) the free algebra in V generated by the set Z . If
ϵ ∈ Tm(Z ), then ϵ̄ is the image of ϵ under the natural projection
Tm(Z ) → FV(Z ).

Write Eq(Y ) for the collection of equations in the variables Y . For
Σ ∪ {ϵ} ⊆ Eq(Y ) and K any class of algebras, define:

Σ |=Y
K ϵ ⇐⇒ For each A ∈ K and each homomorphism

h : Tm(Y ) → A, if Σ ⊆ ker(h) then ϵ ∈ ker(h).

9 / 27



Equational consequence

Proposition (Metcalfe-Montagna-Tsinakis 2014):

Let V be a variety, Y ⊆ Z , and Σ ∪ {ϵ} ⊆ Eq(Y ). Let ΘZ
V be the

kernel of the projection map Tm(Z ) → F(Z ). The following are
equivalent:

1 Σ |=Z
K ϵ;

2 Σ |=Y
K ϵ;

3 ϵ ∈ CgTm(Z)(Σ) ∨ΘZ
V ;

4 ϵ̄ ∈ CgF(Z)(Σ̄);

5 ϵ ∈ CgTm(Y )(Σ) ∨ΘY
V ;

6 ϵ̄ ∈ CgF(Y )(Σ̄).
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Equational consequence

If Y ⊆ Z , then congruences on F(Y ) extend to F(Z ). So, the
usual equational consequence can be defined by

Σ |=V ϵ ⇐⇒ Σ |=Y
V ϵ for any Y ⊇ Var(Σ ∪ {ϵ}).

Assume that V is a variety with at least one constant symbol. We
say that V has the equational deductive interpolation property (or
EqDIP) if for any set of variables Y , whenever

Σ ∪ {ϵ} ⊆ Eq(Y ) and Σ |=V ϵ

then there exists ∆ ⊆ Eq(Y ) such that

Σ |=V ∆, ∆ |=V ϵ, and Var(∆) ⊆ Var(Σ) ∩Var(ϵ).
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Amalgamation and deductive interpolation

Theorem:

Let V be any variety with a constant in the language.

1 If V has AP, then V has EqDIP.

2 if V has the CEP and EqDIP, then V has AP.
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Aside: the challenge of EqDIP

EqDIP is in many respects much more subtle than AP.

There are many varieties with EqDIP that lack AP (e.g.
semigroups).

Establishing EqDIP is often extremely difficult by purely
algebraic methods.

Often, proofs of EqDIP factor through some nice syntactic
presentation of the varieties in question (e.g. via proof
theory).

There is a notion of weak CEP under which EqDIP + WCEP
holds iff AP holds.
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Switching gears: residuated structures

Now we will narrow our perspective, focusing on some concrete
varieties that tells us a lot about amalgamation and syntactic
interpolation properties.
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Residuated Lattices: the basics

A residuated lattice is an algebraic structure of the form
(A,∧,∨, ·, \, /, e) where

(A,∧,∨) is a lattice,

(A, ·, e) is a monoid, and

for all x , y , z ∈ A,

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y .

We use all the expected terminology: Commutative, idempotent,
totally ordered, linear, etc.

Semilinear: Subdirect product of totally ordered residuated lattices.

Knotted rules: x ≤ e (integral), x ≤ x2) (square inc), x2 ≤ x
(square decreasing).
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Residuated Lattices: examples

Lots of familiar examples of residuated lattices, sometimes
including expansions by a bottom element or an involution ¬.

Boolean algebras and Heyting algebras, where product · is ∧.
Algebras of ideals of rings, where product is the product of
ideals and division is the usual ideal division.

Relation algebras in Tarski’s sense.

Various more exotic algebras associated to non-classical logics:
MV-algebras, BL-algebras, Sugihara monoids, De Morgan
monoids. . .
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Residuated Lattices: properties

Residuated lattices are arithmetical: both congruence distributive
and congruence permutable.

Nice characterization of congruence: correspond to convex normal
subalgebras.

Commutative RLs also have the CEP, but generally
non-commutative ones lack CEP.

In commutative RLs, x\y = y/x so usually written as x → y .
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Cancellativity

A residuated lattice is called cancellative if both of

xz = yz ⇒ x = y , and

zx = zy ⇒ x = y

hold. Remarkably, in residuated lattices, cancellativity is equivalent
to the identities

(xy)/y = x = y\(yx),

so cancellative RLs form a variety. Particular examples are given by
lattice-ordered groups.
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Lattice-ordered groups

Lattice-ordered groups are a very old topic. Most often, an ℓ-group
is defined as a group G with a lattice order ≤ such that

x ≤ y ⇒ xz ≤ yz ,

x ≤ y ⇒ zx ≤ zy .

Equivalently, ℓ-groups can be realized as residuated lattices that
satisfy the single equation

(e\x)x = e,

in which case we have that x\e = e/x = x−1.
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Lattice-ordered groups: the commutative case

Abelian ℓ-groups are quite well understood. They are generated as
a variety by the ℓ-group of integers [Weinberg 1965].

Among the consequences of this: Every non-trivial variety of
ℓ-groups contains the variety of abelian ℓ-groups.

Of course, abelian ℓ-groups also form a variety of cancellative
semilinear residuated lattices.

In fact, when it comes to amalgamation, semilinear ℓ-groups
occupy a rather special place among all varieties of residuated
lattices.
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The role of ℓ-groups

As we shall see:

Abelian ℓ-groups have the AP.

The entire variety of ℓ-groups does not have the AP.

Abelian ℓ-groups are semilinear but general ℓ-groups are not.

Gurchenkov 1997: Every variety of ℓ-groups with the AP is
semilinear.

But the variety of semilinear ℓ-groups doesn’t have the AP
[Glass-Saracino-Wood 1984] and there are uncountably many
varieties of semilinear ℓ-groups without the AP
[Powell-Tsinakis 1989].

Almost everything known about AP in cancellative RLs comes
from reducing to the ℓ-group case.
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What we know for semilinear RLs

Here ∗ means that the same is true for bounded and involutive expansions

W. Fussner and S. Santschi, Amalgamation in Semilinear Residuated Lattices,
https://arxiv.org/abs/2407.21613, 2024.
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Amalgamation in ℓ-groups: the commutative case

There are lots of proofs that abelian ℓ-groups have the AP.

Pierce 1973, with the Hahn embedding theorem much later.

Algebraic proofs due to Powell and Tsinakis 1983, 1989.

Using quantifier elimination [Weispfenning 1989].

Metcalfe-Montagna-Tsinakis 2023 using EqDIP, which we
give.
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Amalgamation in ℓ-groups: the commutative case

Theorem (see MMT 2023):

The variety of abelian ℓ-groups has the AP.

Proof: Abelian ℓ-groups are a variety of RLs with the CEP, so it is
enough to show that they have the equational deductive
interpolation property.
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Proof

For this, it is enough to show that for any term α and any
x ∈ Var(α), there exists a term γ such that
Var(γ) ⊆ Var(α)− {x} and for all β ∈ Tm with x /∈ Var(β), we
have

e ≤ α |= e ≤ β ⇐⇒ e ≤ γ |= e ≤ β.

This is because:

1 Every abelian ℓ-group equation can be written in the form
e ≤ ϵ, and

2 The equational consequence relation of abelian ℓ-groups is
finitary.
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Proof

Note that abelian ℓ-groups satisfy the distributivity laws

x + (y ∧ z) = (x + y) ∧ (x + z),

x + (y ∨ z) = (x + y) ∨ (x + z).

Further, all ℓ-groups are distributive as lattices. Using these
distributivity properties, we may assume without loss of generality
that for some n ≥ 1 and terms α′, α1, . . . , αm, β1, . . . , βk not
containing x ,

α = α′ ∧
m∧
i=1

(αi + nx) ∧
k∧

j=1

(βj − nx).

The correct definition of γ is then found by setting

γ = α′ ∧
∧

{αi + βj | 1 ≤ i ≤ m, 1 ≤ j ≤ k}.
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Thank you!

Thank you!
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