Representing Sugihara monoids with binary relations

Andrew Craig Wilmari Morton Claudette Robinson

SSAOS Blansko Czech Republic 7–12 September 2025

Co-authors & papers

- A. Craig, W. Morton, C. Robinson, Representability for distributive quasi relation algebras via generalised ordinal sums, submitted. https://arxiv.org/abs/2503.06657
- A. Craig, C. Robinson, Representing Sugihara monoids via weakening relations, Fundamenta Informaticae, to appear. https://arxiv.org/abs/2310.12935

See also:

 A. Craig, C. Robinson, Representable distributive quasi relation algebras, Algebra Universalis 86:12 (2025)

Outline

- Residuated lattices and DInFL-algebras
- ${f 2}$ Generalised ordinal sums: ${f K}[{f L}]$
- Representing DInFL-algebras with binary relations
- Application: representing Sugihara monoids

 $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ is a residuated lattice if $\langle A, \wedge, \vee \rangle$ is a lattice and $\langle A, \cdot, 1 \rangle$ is a monoid such that:

$$a \cdot b \leqslant c \iff b \leqslant a \backslash c \iff a \leqslant c/b.$$

 $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ is a residuated lattice if $\langle A, \wedge, \vee \rangle$ is a lattice and $\langle A, \cdot, 1 \rangle$ is a monoid such that:

$$a \cdot b \leqslant c \iff b \leqslant a \backslash c \iff a \leqslant c/b.$$

Definition (cf. Galatos et al. 2007)

Let **A** be a residuated lattice and $0 \in A$. Then $\langle A, \wedge, \vee, \cdot, 1, 0, \setminus, / \rangle$ is an FL-algebra.

 $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ is a residuated lattice if $\langle A, \wedge, \vee \rangle$ is a lattice and $\langle A, \cdot, 1 \rangle$ is a monoid such that:

$$a \cdot b \leqslant c \iff b \leqslant a \backslash c \iff a \leqslant c/b.$$

Definition (cf. Galatos et al. 2007)

Let ${\bf A}$ be a residuated lattice and $0\in A.$ Then $\langle A,\wedge,\vee,\cdot,1,0,\backslash,/\rangle$ is an FL-algebra. Define

$$\sim a = a \backslash 0$$
 and $-a = 0/a$.

• involutive FL-algebra (InFL-algebra): $\sim -a = a = -\sim a$

 $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ is a residuated lattice if $\langle A, \wedge, \vee \rangle$ is a lattice and $\langle A, \cdot, 1 \rangle$ is a monoid such that:

$$a \cdot b \leqslant c \iff b \leqslant a \backslash c \iff a \leqslant c/b.$$

Definition (cf. Galatos et al. 2007)

Let ${\bf A}$ be a residuated lattice and $0\in A.$ Then $\langle A,\wedge,\vee,\cdot,1,0,\backslash,/\rangle$ is an FL-algebra. Define

$$\sim a = a \setminus 0$$
 and $-a = 0/a$.

- involutive FL-algebra (InFL-algebra): $\sim -a = a = -\sim a$
- cyclic InFL-algebra: $\sim a = -a$

 $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ is a residuated lattice if $\langle A, \wedge, \vee \rangle$ is a lattice and $\langle A, \cdot, 1 \rangle$ is a monoid such that:

$$a \cdot b \leqslant c \iff b \leqslant a \backslash c \iff a \leqslant c/b.$$

Definition (cf. Galatos et al. 2007)

Let ${\bf A}$ be a residuated lattice and $0\in A$. Then $\langle A,\wedge,\vee,\cdot,1,0,\setminus,/\rangle$ is an FL-algebra. Define

$$\sim a = a \backslash 0$$
 and $-a = 0/a$.

- involutive FL-algebra (InFL-algebra): $\sim -a = a = -\sim a$
- cyclic InFL-algebra: $\sim a = -a$
- odd InFL-algebra: 0 = 1

 $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \setminus, / \rangle$ is a residuated lattice if $\langle A, \wedge, \vee \rangle$ is a lattice and $\langle A, \cdot, 1 \rangle$ is a monoid such that:

$$a \cdot b \leqslant c \iff b \leqslant a \backslash c \iff a \leqslant c/b.$$

Definition (cf. Galatos et al. 2007)

Let ${\bf A}$ be a residuated lattice and $0\in A.$ Then $\langle A,\wedge,\vee,\cdot,1,0,\backslash,/\rangle$ is an FL-algebra. Define

$$\sim a = a \setminus 0$$
 and $-a = 0/a$.

- involutive FL-algebra (InFL-algebra): $\sim -a = a = -\sim a$
- cyclic InFL-algebra: $\sim a = -a$
- odd InFL-algebra: 0 = 1
- DInFL-algebra: distributive lattice reduct.

NB: can axiomatize InFL-algebras using only $\langle A, \wedge, \vee, \cdot, 1, \sim, - \rangle$

 $\mathbf{A} = \langle A, \wedge, \vee, \cdot, 1, \backslash, / \rangle \text{ is a residuated lattice if } \langle A, \wedge, \vee \rangle \text{ is a lattice and } \langle A, \cdot, 1 \rangle \text{ is a monoid such that:}$

$$a \cdot b \leqslant c \iff b \leqslant a \backslash c \iff a \leqslant c/b.$$

Definition (cf. Galatos et al. 2007)

Let ${\bf A}$ be a residuated lattice and $0\in A$. Then $\langle A,\wedge,\vee,\cdot,1,0,\setminus,/\rangle$ is an FL-algebra. Define

$$\sim a = a \backslash 0$$
 and $-a = 0/a$.

- involutive FL-algebra (InFL-algebra): $\sim -a = a = -\sim a$
- cyclic InFL-algebra: $\sim a = -a$
- odd InFL-algebra: 0 = 1
- DInFL-algebra: distributive lattice reduct.

NB: can axiomatize InFL-algebras using only $\langle A, \wedge, \vee, \cdot, 1, \sim, - \rangle$ Goal: find relational representations of DInFL-algebras.

Examples of DInFL-algebras

Idempotent elmts = solid nodes, non-idempotents = empty nodes. Circles = central elements, squares=non-central.

See full list up to cardinality 8 by C., Jipsen, Robinson: DInFL1.pdf Others examples include: MV-algebras, relation algebras, Sugihara monoids.

A three-element chain

Descending Jahňací štít – SSAOS 2022

Generalised ordinal sums (cf. Galatos 2004)

Example 1:

Generalised ordinal sums (cf. Galatos 2004)

Example 1:

Example 2:

Generalised ordinal sums

Let \mathbf{K} be a DInFL-algebra.

 $1_{\mathbf{K}}$ is totally irreducible if for all non-nullary operations f, $f(a_1, \ldots, a_n) = 1_{\mathbf{K}}$ implies $a_i = 1_{\mathbf{K}}$ for some $i \in \{1, \ldots, n\}$.

Note: $1_{\mathbf{K}}$ totally irreducible implies \mathbf{K} odd.

Generalised ordinal sums

Let \mathbf{K} be a DInFL-algebra.

 $1_{\mathbf{K}}$ is totally irreducible if for all non-nullary operations f, $f(a_1, \ldots, a_n) = 1_{\mathbf{K}}$ implies $a_i = 1_{\mathbf{K}}$ for some $i \in \{1, \ldots, n\}$.

Note: $1_{\mathbf{K}}$ totally irreducible implies \mathbf{K} odd.

Proposition

If K and L are InFL-algebras such that 1_K is totally irreducible, then their generalised ordinal sum K[L] is an InFL-algebra.

Generalised ordinal sums

Let \mathbf{K} be a DInFL-algebra.

 $1_{\mathbf{K}}$ is totally irreducible if for all non-nullary operations f, $f(a_1, \ldots, a_n) = 1_{\mathbf{K}}$ implies $a_i = 1_{\mathbf{K}}$ for some $i \in \{1, \ldots, n\}$.

Note: $1_{\mathbf{K}}$ totally irreducible implies \mathbf{K} odd.

Proposition

If K and L are InFL-algebras such that 1_K is totally irreducible, then their generalised ordinal sum K[L] is an InFL-algebra.

A residuated lattice **K** is conic if $a \le 1$ or $1 \le a$ for all $a \in K$.

Theorem

Let ${\bf K}$ and ${\bf L}$ be DInFL-algebras such that ${\bf K}$ is conic and $1_{\bf K}$ is totally irreducible, then their generalised ordinal sum ${\bf K}[{\bf L}]$ is a DInFL-algebra.

Sugihara monoids

A Sugihara monoid is an algebra $\mathbf{A}=\langle A,\wedge,\vee,\cdot,\to,1,\sim\rangle$ such that $\langle A,\wedge,\vee,\cdot,\to,1\rangle$ is a commutative distributive idempotent residuated lattice, and for all $a,b\in A$:

- $\sim \sim a = a$
- $a \rightarrow \sim b = b \rightarrow \sim a$

Sugihara monoids provide algebraic semantics for $\mathbf{R}\mathbf{M}^t$ (R-mingle with added Ackermann constant)

Can be considered as commutative idempotent DInFL-algebras.

Finite Sugihara chains

If n=2k for k>0 then $S_n=\{a_{-k},\ldots,a_{-1},a_1,\ldots,a_k\}$ If n=2k+1 for k>0 then $S_n=\{a_{-k},\ldots,a_{-1},a_0,a_1,\ldots a_k\}$

- $\bullet \ a_i \wedge a_j = a_{\min\{i,j\}} \text{ and } a_i \vee a_j = a_{\max\{i,j\}}.$
- $\bullet \sim a_j = a_{-j}$

$$a_i \cdot a_j = \begin{cases} a_i & \text{if } |j| < |i| \\ a_j & \text{if } |i| < |j| \\ a_{\min\{i,j\}} & \text{if } |j| = |i|. \end{cases}$$

$$a_i \to a_j = \begin{cases} \sim a_i \lor a_j & \text{if } i \leqslant j \\ \sim a_i \land a_j & \text{if } i > j. \end{cases}$$

If n odd, then $1 = a_0$. If n even, then $1 = a_1$.

$$\mathbf{S}_n = \langle S_n, \wedge, \vee, \cdot, \rightarrow, 1, \sim \rangle$$

Finite Sugihara chains via K[L]

Finite Sugihara chains via K[L]

Proposition

Let $K = S_n$ for n odd, and $L = S_m$ for $m \ge 2$, then $K[L] \cong S_{n+m-1}$.

Let (X,\leqslant) be a poset and $\leqslant\subseteq E$ an equivalence relation on X. For $(x,y),(w,z)\in E$ define:

$$(x,y) \preccurlyeq (w,z) \iff w \leqslant x \& y \leqslant z$$

Then $\mathbf{E} = (E, \preccurlyeq)$ is a poset

Let (X,\leqslant) be a poset and $\leqslant\subseteq E$ an equivalence relation on X. For $(x,y),(w,z)\in E$ define:

$$(x,y) \preccurlyeq (w,z) \iff w \leqslant x \& y \leqslant z$$

Then $\mathbf{E} = (E, \preccurlyeq)$ is a poset and $\langle \mathsf{Up}(\mathbf{E}), \cap, \cup, ;, \leqslant \rangle$ is a distributive residuated lattice.

Let (X,\leqslant) be a poset and $\leqslant\subseteq E$ an equivalence relation on X. For $(x,y),(w,z)\in E$ define:

$$(x,y) \preccurlyeq (w,z) \iff w \leqslant x \& y \leqslant z$$

Then $\mathbf{E} = (E, \preccurlyeq)$ is a poset and $\langle \mathsf{Up}(\mathbf{E}), \cap, \cup, ;, \leqslant \rangle$ is a distributive residuated lattice.

Theorem (C., Robinson 2025, Theorem 3.15)

Let $\mathbf{X}=(X,\leqslant)$ be a poset and E an equivalence relation on X such that $\leqslant\subseteq E$. Let $\alpha:X\to X$ be an order automorphism of \mathbf{X} s.t. $\alpha\subseteq E$. Set $1=\leqslant$ and $0=\alpha\;;\leqslant^{c\smile}$. For $R\in\mathsf{Up}(\mathbf{E})$, define $\sim R=R^{c\smile}\;;\alpha$, $-R=\alpha\;;R^{c\smile}$. Then

- $\mathfrak{D}(\mathbf{E}) = \langle \mathsf{Up}\left(\mathbf{E}\right), \cap, \cup, ;, \sim, -, 1, 0 \rangle$ is a DInFL-algebra;
- $\mathfrak{D}(\mathbf{E})$ is cyclic iff α is the identity map.

Theorem (C., Robinson 2025, Theorem 3.15)

Let $\mathbf{X}=(X,\leqslant)$ be a poset and E an equivalence relation on X such that $\leqslant\subseteq E$. Let $\alpha:X\to X$ be an order automorphism of \mathbf{X} s.t. $\alpha\subseteq E$. Set $1=\leqslant$ and $0=\alpha\;;\leqslant^{c\smile}$. For $R\in\mathsf{Up}(\mathbf{E})$, define $\sim\!R=R^{c\smile}\;;\alpha,-R=\alpha\;;R^{c\smile}$. Then

- $\mathfrak{D}(\mathbf{E}) = \langle \mathsf{Up}(\mathbf{E}), \cap, \cup, :, \sim, -, 1, 0 \rangle$ is a DInFL-algebra;
- $\mathfrak{D}(\mathbf{E})$ is cyclic iff α is the identity map.

Algebras of the form $\mathfrak{D}(\mathbf{E})$ are equivalence DInFL-algebras. If $E=X^2$ it is a full DInFL-algebra. Classes denoted EDInFL and FDInFL.

Theorem (C., Robinson 2025, Theorem 3.15)

Let $\mathbf{X}=(X,\leqslant)$ be a poset and E an equivalence relation on X such that $\leqslant\subseteq E$. Let $\alpha:X\to X$ be an order automorphism of \mathbf{X} s.t. $\alpha\subseteq E$. Set $1=\leqslant$ and $0=\alpha\;;\leqslant^{c\smile}$. For $R\in\mathsf{Up}(\mathbf{E})$, define $\sim\!R=R^{c\smile}\;;\alpha,-R=\alpha\;;R^{c\smile}$. Then

- ullet $\mathfrak{D}(\mathbf{E})=\langle \mathsf{Up}\left(\mathbf{E}
 ight),\cap,\cup,;,\sim,-,1,0
 angle$ is a DInFL-algebra;
- $\mathfrak{D}(\mathbf{E})$ is cyclic iff α is the identity map.

Algebras of the form $\mathfrak{D}(\mathbf{E})$ are equivalence DInFL-algebras. If $E=X^2$ it is a full DInFL-algebra. Classes denoted EDInFL and FDInFL.

Definition (C., Robinson 2025)

A DInFL-algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \sim, -, 1, 0 \rangle$ is representable if $\mathbf{A} \in \mathbb{ISP} (\mathsf{FDInFL})$ or, equivalently, $\mathbf{A} \in \mathbb{IS} (\mathsf{EDInFL})$.

Examples

 \bullet Trivial example: $X=\{u\},$ $E=\{(u,u)\},$ $\alpha(u)=u.$ Then $\mathbf{S_2}\cong\mathfrak{D}(\mathbf{E}).$

Examples

- Trivial example: $X=\{u\}$, $E=\{(u,u)\}$, $\alpha(u)=u$. Then $\mathbf{S_2}\cong\mathfrak{D}(\mathbf{E})$.
- $X = \{x, y\}, E = X^2, \alpha(x) = y, \alpha(y) = x$

$$\mathbf{E} = (X^2, \preccurlyeq) \qquad \qquad \circ \qquad \qquad \circ \qquad \qquad \circ \qquad \qquad \circ \qquad \qquad (x,x) \qquad \qquad (x,y) \qquad \qquad (y,x) \qquad \qquad (y,y)$$

$$\mathbf{S}_3 \hookrightarrow \mathfrak{D}(\mathbf{E})$$

$$\begin{array}{c}
X^2 \\
\leqslant = \alpha; \leqslant^{c}
\end{array}$$

Generalised ordinal sums and representability

Theorem

Let $\mathbf{L} = \langle L, \wedge, \vee, \cdot, \sim, -, 1, 0 \rangle$ be a representable DInFL-algebra. Then $\mathbf{S}_3[\mathbf{L}]$ is a representable DInFL-algebra.

Generalised ordinal sums and representability

Theorem

Let $\mathbf{L}=\langle L,\wedge,\vee,\cdot,\sim,-,1,0\rangle$ be a representable DInFL-algebra. Then $\mathbf{S}_3\left[\mathbf{L}\right]$ is a representable DInFL-algebra.

Representing finite Sugihara chains

Theorem

Let $\mathbf{L} = \langle L, \wedge, \vee, \cdot, \sim, -, 1, 0 \rangle$ be a representable DInFL-algebra. Then $\mathbf{S}_3[\mathbf{L}]$ is a representable DInFL-algebra.

Corollary

All finite Sugihara chains are representable. Moreover, the posets used in the representations are finite.

Posets used to represent S_4 to S_7 ($E=X^2$, α swaps left-to-right)

Ultraproducts of representable DInFL-algebras

Let $\{(X_i, \leq_i, E_i, \alpha_i) \mid i \in I\}$ be a set of posets with equivalence relations E_i and order automorphisms α_i s.t. $\leq_i \subseteq E_i$ and $\alpha_i \subseteq E_i$.

For \mathcal{F} an ultrafilter on I, form an ultraproduct of the $\{(X_i, \leq_i, E_i, \alpha_i) \mid i \in I\}$:

$$(Y, \leqslant_Y, E_Y, \alpha_Y)$$

Ultraproducts of representable DInFL-algebras

Let $\{(X_i, \leq_i, E_i, \alpha_i) \mid i \in I\}$ be a set of posets with equivalence relations E_i and order automorphisms α_i s.t. $\leq_i \subseteq E_i$ and $\alpha_i \subseteq E_i$.

For $\mathcal F$ an ultrafilter on I, form an ultraproduct of the $\{(X_i,\leqslant_i,E_i,\alpha_i)\mid i\in I\}$:

$$(Y, \leqslant_Y, E_Y, \alpha_Y)$$

Theorem

 $\mathbb{P}_{\mathbb{U}}(\mathsf{RDInFL}) = \mathsf{RDInFL}$

Proof.

Consider $\{ \mathbf{A}_i \mid i \in I \}$ and \mathcal{F} an ultrafilter on I. Each $\mathbf{A}_i \hookrightarrow \mathfrak{D}(X_i, \leqslant_i, E_i, \alpha_i)$. Embed $\prod \{ \mathbf{A}_i \mid i \in I \} / \theta_{\mathcal{F}}$ into $\mathfrak{D}(Y, \leqslant_Y, E_Y, \alpha_Y)$.

Theorem

Every algebra can be embedded in an ultraproduct of its finitely generated subalgebras.

Theorem

Every algebra can be embedded in an ultraproduct of its finitely generated subalgebras.

Key facts:

Fin. gen. subalg. of $\mathbf{S}=(\mathbb{Z},\wedge,\vee,\cdot,\to,1,\sim)$ are \mathbf{S}_{2n+1} , $n\in\omega$

Fin. gen. subalg. of $\mathbf{S}^* = (\mathbb{Z} \setminus \{0\}, \wedge, \vee, \cdot, \rightarrow, 1, \sim)$ are \mathbf{S}_{2n+2} , $n \in \omega$

Theorem

Every algebra can be embedded in an ultraproduct of its finitely generated subalgebras.

Key facts:

Fin. gen. subalg. of $\mathbf{S}=(\mathbb{Z},\wedge,\vee,\cdot,\to,1,\sim)$ are \mathbf{S}_{2n+1} , $n\in\omega$

Fin. gen. subalg. of $\mathbf{S}^*=(\mathbb{Z}\backslash\{0\},\wedge,\vee,\cdot,\to,1,\sim)$ are \mathbf{S}_{2n+2} , $n\in\omega$

Theorem

Every Sugihara monoid is representable.

Theorem

Every algebra can be embedded in an ultraproduct of its finitely generated subalgebras.

Key facts:

Fin. gen. subalg. of $\mathbf{S}=(\mathbb{Z},\wedge,\vee,\cdot,\to,1,\sim)$ are \mathbf{S}_{2n+1} , $n\in\omega$

Fin. gen. subalg. of $\mathbf{S}^*=(\mathbb{Z}\backslash\{0\},\wedge,\vee,\cdot,\to,1,\sim)$ are \mathbf{S}_{2n+2} , $n\in\omega$

Theorem

Every Sugihara monoid is representable.

Proof.

Let $I = \{2k+1 \mid k \in \omega\}$ and $\mathbf{A} = \prod \{\mathbf{S}_i \mid i \in I\}$. Then $\exists \mathcal{F}$ s.t. $\mathbf{S} \hookrightarrow \mathbf{A}/\theta_{\mathcal{F}}$.

Theorem

Every algebra can be embedded in an ultraproduct of its finitely generated subalgebras.

Key facts:

Fin. gen. subalg. of $\mathbf{S}=(\mathbb{Z},\wedge,\vee,\cdot,\to,1,\sim)$ are \mathbf{S}_{2n+1} , $n\in\omega$

Fin. gen. subalg. of $\mathbf{S}^*=(\mathbb{Z}\backslash\{0\},\wedge,\vee,\cdot,\to,1,\sim)$ are \mathbf{S}_{2n+2} , $n\in\omega$

$\mathsf{Theorem}$

Every Sugihara monoid is representable.

Proof.

Let $I = \{2k+1 \mid k \in \omega\}$ and $\mathbf{A} = \prod \{\mathbf{S}_i \mid i \in I\}$. Then $\exists \mathcal{F}$ s.t. $\mathbf{S} \hookrightarrow \mathbf{A}/\theta_{\mathcal{F}}$. Let $J = \{2n+2 \mid n \in \omega\}$ and $\mathbf{B} = \prod \{\mathbf{S}_j \mid j \in J\}$. Then $\exists \mathcal{G}$ s.t. $\mathbf{S}^* \hookrightarrow \mathbf{B}/\theta_{\mathcal{G}}$.

Theorem

Every algebra can be embedded in an ultraproduct of its finitely generated subalgebras.

Key facts:

Fin. gen. subalg. of $\mathbf{S}=(\mathbb{Z},\wedge,\vee,\cdot,\to,1,\sim)$ are \mathbf{S}_{2n+1} , $n\in\omega$

Fin. gen. subalg. of $\mathbf{S}^*=(\mathbb{Z}\backslash\{0\},\wedge,\vee,\cdot,\to,1,\sim)$ are \mathbf{S}_{2n+2} , $n\in\omega$

Theorem

Every Sugihara monoid is representable.

Proof.

Let
$$I = \{2k+1 \mid k \in \omega\}$$
 and $\mathbf{A} = \prod \{\mathbf{S}_i \mid i \in I\}$. Then $\exists \mathcal{F}$ s.t. $\mathbf{S} \hookrightarrow \mathbf{A}/\theta_{\mathcal{F}}$. Let $J = \{2n+2 \mid n \in \omega\}$ and $\mathbf{B} = \prod \{\mathbf{S}_j \mid j \in J\}$. Then $\exists \mathcal{G}$ s.t. $\mathbf{S}^* \hookrightarrow \mathbf{B}/\theta_{\mathcal{G}}$.

Hence, $SM = \mathbb{ISP}(S, S^*) \subseteq \mathbb{ISP}(RDInFL) = RDInFL$.

References

- **1** A .Craig, P. Jipsen, C. Robinson: Distributive involutive residuated lattices up to cardinality 8. Online: DInFL1.pdf
- 2 A. Craig, C. Robinson: Representable distributive quasi relation algebras, Algebra Universalis, 86:12 (2025)
- 3 A. Craig, W. Morton, C. Robinson, Representability for distributive quasi relation algebras via generalised ordinal sums, submitted. https://arxiv.org/abs/2503.06657
- 4 A. Craig, C. Robinson, Representing Sugihara monoids via weakening relations, Fundamenta Informaticae, to appear. https://arxiv.org/abs/2310.12935
- N. Galatos: Minimal varieties of residuated lattices, Algebra Universalis **52**, 215–239 (2004)
- 6 N. Galatos, P. Jipsen: Relation algebras as expanded FL-algebras, Algebra Universalis 69, 1–21 (2013)
- N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier (2007)