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Residuated lattices and DInFL-algebras

A = ⟨A,∧,∨, ·, 1, \, /⟩ is a residuated lattice if ⟨A,∧,∨⟩ is a
lattice and ⟨A, ·, 1⟩ is a monoid such that:

a · b ⩽ c ⇐⇒ b ⩽ a\c ⇐⇒ a ⩽ c/b.

Definition (cf. Galatos et al. 2007)

Let A be a residuated lattice and 0 ∈ A. Then
⟨A,∧,∨, ·, 1, 0, \, /⟩ is an FL-algebra. Define

∼a = a\0 and −a = 0/a.

involutive FL-algebra (InFL-algebra): ∼−a = a = −∼a

cyclic InFL-algebra: ∼a = −a

odd InFL-algebra: 0 = 1

DInFL-algebra: distributive lattice reduct.

NB: can axiomatize InFL-algebras using only ⟨A,∧,∨, ·, 1,∼,−⟩
Goal: find relational representations of DInFL-algebras.
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Examples of DInFL-algebras

⊤

1 = 0

⊥
S3

1

1
2

0

 L3

⊤ = a · ⊤

0 = 1 a = ∼a

⊥

∼b = −a

c

−−b = a

∼a = −b

b = ∼∼a

0

1

Idempotent elmts = solid nodes, non-idempotents = empty nodes.
Circles = central elements, squares=non-central.

See full list up to cardinality 8 by C., Jipsen, Robinson: DInFL1.pdf

Others examples include: MV-algebras, relation algebras, Sugihara
monoids.
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https://github.com/jipsen/Distributive-quasi-relation-algebras-and-DInFL/blob/main/DInFL1.pdf


A three-element chain

Descending Jahňaćı št́ıt – SSAOS 2022
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Generalised ordinal sums (cf. Galatos 2004)

Example 1:

⊤

1

⊥

S3

1L1

0

a b

L1

1S3[L1]

0

a b

⊥

⊤

S3[L1]

Example 2:

⊤

⊥ = a2

a = a · ⊤ 1K2

K2

1L2

0

L2

⊥

⊤

a
0

1K2[L2]

K2[L2]
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Generalised ordinal sums

Let K be a DInFL-algebra.
1K is totally irreducible if for all non-nullary operations f ,
f(a1, . . . , an) = 1K implies ai = 1K for some i ∈ {1, . . . , n}.

Note: 1K totally irreducible implies K odd.

Proposition

If K and L are InFL-algebras such that 1K is totally irreducible,
then their generalised ordinal sum K[L] is an InFL-algebra.

A residuated lattice K is conic if a ⩽ 1 or 1 ⩽ a for all a ∈ K.

Theorem

Let K and L be DInFL-algebras such that K is conic and 1K is
totally irreducible, then their generalised ordinal sum K[L] is a
DInFL-algebra.
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Sugihara monoids

A Sugihara monoid is an algebra A = ⟨A,∧,∨, ·,→, 1,∼⟩ such
that ⟨A,∧,∨, ·,→, 1⟩ is a commutative distributive idempotent
residuated lattice, and for all a, b ∈ A:

∼∼a = a

a → ∼b = b → ∼a

Sugihara monoids provide algebraic semantics for RMt (R-mingle
with added Ackermann constant)

Can be considered as commutative idempotent DInFL-algebras.
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Finite Sugihara chains

If n = 2k for k > 0 then Sn = {a−k, . . . , a−1, a1, . . . , ak}
If n = 2k + 1 for k > 0 then Sn = {a−k, . . . , a−1, a0, a1, . . . ak}

ai ∧ aj = amin{i,j} and ai ∨ aj = amax{i,j}.

∼aj = a−j

ai · aj =


ai if |j| < |i|
aj if |i| < |j|
amin{i,j} if |j| = |i|.

ai → aj =

{
∼ai ∨ aj if i ⩽ j

∼ai ∧ aj if i > j.

If n odd, then 1 = a0.
If n even, then 1 = a1.

Sn = ⟨Sn,∧,∨, ·,→, 1,∼⟩
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Finite Sugihara chains via K[L]

a−1 = 0

a1 = 1

S2

a−1

a0 = 1 = 0

a1

S3

a−2

a−1 = 0

a1 = 1

a2

S4

a−2

a−1

a0 = 1 = 0

a1

a2

S5

Proposition

Let K = Sn for n odd, and L = Sm for m ⩾ 2, then
K[L] ∼= Sn+m−1.
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Representable DInFL-algebras

Let (X,⩽) be a poset and ⩽ ⊆ E an equivalence relation on X.
For (x, y), (w, z) ∈ E define:

(x, y) ≼ (w, z) ⇐⇒ w ⩽ x & y ⩽ z

Then E = (E,≼) is a poset

and ⟨Up(E),∩,∪, ; ,⩽⟩ is a
distributive residuated lattice.

(X,⩽)

x

y

(X2,≼)

(y, x)

(x, x) (y, y)

(x, y)

Up(X2,≼)

∅

{(x, y)}

{(x, x), (x, y)} {(y, y), (x, y)}

⩽

X2
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Representable DInFL-algebras

Theorem (C., Robinson 2025, Theorem 3.15)

Let X = (X,⩽) be a poset and E an equivalence relation on X
such that ⩽ ⊆ E. Let α : X → X be an order automorphism of X
s.t. α ⊆ E. Set 1 = ⩽ and 0 = α ;⩽c⌣. For R ∈ Up(E), define
∼R = Rc⌣ ; α, −R = α ;Rc⌣. Then

D(E) = ⟨Up (E) ,∩,∪, ;,∼,−, 1, 0⟩ is a DInFL-algebra;

D(E) is cyclic iff α is the identity map.

Algebras of the form D(E) are equivalence DInFL-algebras.
If E = X2 it is a full DInFL-algebra.
Classes denoted EDInFL and FDInFL.

Definition (C., Robinson 2025)

A DInFL-algebra A = ⟨A,∧,∨, ·,∼,−, 1, 0⟩ is representable if
A ∈ ISP (FDInFL) or, equivalently, A ∈ IS (EDInFL).
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Examples

Trivial example: X = {u}, E = {(u, u)}, α(u) = u. Then
S2

∼= D(E).

X = {x, y}, E = X2, α(x) = y, α(y) = x

x y

(x, x) (x, y) (y, x) (y, y)
E = (X2,≼)

X2

⩽= α;⩽c⌣

∅
S3 ↪→ D(E)
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Generalised ordinal sums and representability

Theorem

Let L = ⟨L,∧,∨,·,∼,−, 1, 0⟩ be a representable DInFL-algebra.
Then S3 [L] is a representable DInFL-algebra.

x y

XS3

u

XS2

x[u] y[u]

x[u] y[u]

u
XS4

X2
S3

⩽XS3

∅
S3

X2
S2

∅
S2

{
u, x[u], y[u], x[u], y[u]

}2

⩽

⩽ \{(u, u)}

∅
S4
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Representing finite Sugihara chains

Theorem

Let L = ⟨L,∧,∨,·,∼,−, 1, 0⟩ be a representable DInFL-algebra.
Then S3 [L] is a representable DInFL-algebra.

Corollary

All finite Sugihara chains are representable. Moreover, the posets
used in the representations are finite.

Posets used to represent S4 to S7 (E = X2, α swaps left-to-right)
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Ultraproducts of representable DInFL-algebras

Let { (Xi,⩽i, Ei, αi) | i ∈ I} be a set of posets with equivalence
relations Ei and order automorphisms αi s.t. ⩽i⊆ Ei and αi ⊆ Ei.

For F an ultrafilter on I, form an ultraproduct of the
{(Xi,⩽i, Ei, αi) | i ∈ I}:

(Y,⩽Y , EY , αY )

Theorem

PU(RDInFL) = RDInFL

Proof.

Consider {Ai | i ∈ I } and F an ultrafilter on I. Each
Ai ↪→ D(Xi,⩽i, Ei, αi). Embed

∏
{Ai | i ∈ I}/θF into

D(Y,⩽Y , EY , αY ).
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Representing all Sugihara monoids

Theorem

Every algebra can be embedded in an ultraproduct of its finitely
generated subalgebras.

Key facts:

Fin. gen. subalg. of S = (Z,∧,∨, ·,→, 1,∼) are S2n+1, n ∈ ω

Fin. gen. subalg. of S∗ = (Z\{0},∧,∨, ·,→, 1,∼) are S2n+2, n ∈ ω

Theorem

Every Sugihara monoid is representable.

Proof.

Let I = {2k + 1 | k ∈ ω} and A =
∏
{Si | i ∈ I }. Then ∃F s.t.

S ↪→ A/θF . Let J = { 2n+ 2 | n ∈ ω } and B =
∏
{Sj | j ∈ J }.

Then ∃G s.t. S∗ ↪→ B/θG .
Hence, SM = ISP(S,S∗) ⊆ ISP(RDInFL) = RDInFL.
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