A Construction of Magmas and Related Representation

Michal Botur, Václav Cenker

Palacký University Olomouc Department of Algebra and Geometry

September 2025

A simple construction

Magma $G = (G, \cdot)$ is an algebra of type (2).

Biunary algebra $\mathbf{I} = (I, \lambda, \rho)$ is an algebra of type (1, 1).

Having G and I, we define a magma G^I via:

$$(x \cdot y)(i) := x(\lambda i) \cdot y(\rho i).$$

for any x, $y \in G$ and $i \in I$.

Earlier results

If G is a semigroup and I is defined by the following table

then $\mathbf{G}^{\mathbf{I}}$ is a semigroup.

If G is commutative, then G^I does not have to be commutative – the construction does not preserve identities in general.

Earlier results

If G is a semigroup and I is defined by the following table

then $\mathbf{G}^{\mathbf{I}}$ is a semigroup.

If G is commutative, then G^{I} does not have to be commutative – the construction does not preserve identities in general.

However, identities are not completely lost!

Earlier results

If G is a semigroup and I is defined by the following table

then $\mathbf{G}^{\mathbf{I}}$ is a semigroup.

If G is commutative, then G^{I} does not have to be commutative – the construction does not preserve identities in general.

However, identities are not completely lost!

For instance, identity axyb = ayxb holds. So G^{I} is medial semigroup.

Moreover, the variety of all medial semigroups is generated by semigroups $\mathbf{G^{I}}$, where \mathbf{G} is a commutative semigroup.

More general questions

Given an arbitrary but fixed magma G and biunary algebra I, which identities are satisfied in G^{I} ?

Given an arbitrary but fixed variety of magmas M and some (ι -definable) variety I of biunary algebras, what identities axiomatize $V(\mathbf{G^I} \mid \mathbf{G} \in \mathsf{M}, \mathbf{I} \in \mathsf{I})$?

Categorical background – $\mathbf{G^I}$

From now on, let Mag and BiUn denote the categories of magmas and of biunary algebras, respectively.

The construction of G^{I} behaves functorially with respect to morphisms, leading to the functors:

 $-^{\mathbf{I}}$ is an endofunctor on Mag

 \mathbf{G}^- is a contravariant functor from BiUn to Mag

Categorical background – another construction

Let I be a ι -definable variety of biunary algebras and let G and H be magmas.

We define the biunary algebra $[G, H] \in I$ as follows.

The elements $\Omega \in [G, H]$ are mappings $\Omega \colon \mathcal{F}_I(\iota) \times G \longrightarrow H$ satisfying

$$\Omega(t(\iota), x \cdot y) = \Omega(\lambda t(\iota), x) \cdot \Omega(\rho t(\iota), y)$$

for any $x, y \in G$ and $t(\iota) \in \mathcal{F}_{\mathbf{I}}(\iota)$.

Further, for $\alpha \in \{\lambda, \rho\}$, we define

$$\alpha\Omega(t(\iota), x) = \Omega(t(\alpha\iota), x).$$

 $[\mathbf{G},-]$ is a functor from Mag to the category I.

 $[-,\mathbf{H}]$ is a contravariant functor from Mag to the category I.

Categorical background – adjoint pairs

$$(arepsilon,\eta)\colon \mathbf{H}^-\dashv [-,\mathbf{H}]$$
, where
$$\eta=(\eta_{\mathbf{G}}\colon \mathbf{G}\longrightarrow \mathbf{H}^{[\mathbf{G},\mathbf{H}]})_{\mathbf{G}\in\mathbf{Mag}},$$

$$(\eta_{\mathbf{G}}(x))(\Omega)=\Omega(\iota,x)$$

Varieties and equalities

Let X^{\bullet} denote the set of all magma terms over the set X.

Theorem

Let \mathbf{H} be a magma and X be a set. Then the kernel of the homomorphism:

$$\eta_{X^{\bullet}} \colon X^{\bullet} \longrightarrow \mathbf{H}^{[X^{\bullet}, \mathbf{H}]}$$

is a fully invariant congruence.

Linearisation of terms

Let $X^{\ell} \subseteq X^{\bullet}$ denote the set of all linear terms (i.e., no variable repeats).

We denote LIN := \mathbb{N}^{ℓ} . Let $\ell \colon X^{\bullet} \longrightarrow \text{LIN}$ denote a linearisation.

Linearisation numbers the positions of a term left-to-right. For example,

$$\ell[x\cdot (y\cdot y)] = 1\cdot (2\cdot 3),$$

$$\ell[(x\cdot x)\cdot (y\cdot x)] = (1\cdot 2)\cdot (3\cdot 4).$$

Linearisation of terms

Let $X^{\ell} \subseteq X^{\bullet}$ denote the set of all linear terms (i.e., no variable repeats).

We denote LIN := \mathbb{N}^{ℓ} . Let $\ell \colon X^{\bullet} \longrightarrow \text{LIN}$ denote a linearisation.

Linearisation numbers the positions of a term left-to-right. For example,

$$\ell[x \cdot (y \cdot y)] = 1 \cdot (2 \cdot 3),$$

$$\ell[(x \cdot x) \cdot (y \cdot x)] = (1 \cdot 2) \cdot (3 \cdot 4).$$

Further, for $\overline{x} \in X^{\bullet}$, the symbol $s[\overline{x}]$ denotes a mapping $\mathbb{N} \longrightarrow X$ telling which $x \in X$ sits at position i.

For any term $\overline{x} \in X^{\bullet}$, it holds that $\overline{x} = \ell[\overline{x}](s[\overline{x}](1), \dots, s[\overline{x}](m))$.

For any term \overline{x} , each position can be represented by an ι -biunary term. For instance, if $\overline{x} = (x_1 \cdot x_1) \cdot x_2 \in G^{\mathcal{F}_{\mathsf{BiUn}}(\iota)}$, then

$$((x_1 \cdot x_1) \cdot x_2)(\iota) = (x_1 \cdot x_1)(\lambda \iota) \cdot x_2(\rho \iota) = (x_1(\lambda \lambda \iota) \cdot x_1(\rho \lambda \iota)) \cdot x_2(\rho \iota).$$

For any term \overline{x} , each position can be represented by an ι -biunary term. For instance, if $\overline{x} = (x_1 \cdot x_1) \cdot x_2 \in G^{\mathcal{F}_{\mathsf{BiUn}}(\iota)}$, then

$$((x_1 \cdot x_1) \cdot x_2)(\iota) = (x_1 \cdot x_1)(\lambda \iota) \cdot x_2(\rho \iota) = (x_1(\lambda \lambda \iota) \cdot x_1(\rho \lambda \iota)) \cdot x_2(\rho \iota).$$

For any $\overline{y} \in LIN_n$ and $i \in \{1, ..., n\}$, we denote ι -term corresponding to position i by $[\overline{y}, i](\iota)$.

$$\begin{split} \ell(\overline{x}) &= (1 \cdot 2) \cdot 3, \\ [\ell(\overline{x}), 1](\iota) &= \lambda \lambda \iota, \quad [\ell(\overline{x}), 2](\iota) = \rho \lambda \iota, \quad [\ell(\overline{x}), 3](\iota) = \rho \iota. \end{split}$$

We use biunary ι -terms to describe each individual position in the arbitrary magma term. (The linearization is just an auxiliary construction to make the formal description possible.)

Let \overline{x} be a term in n variables and let h_1, \ldots, h_n be elements of \mathbf{H} . Then we use the following labeling:

$$\overline{x}_{i=1}^n(h_i) := \overline{x}^{\mathbf{H}}(h_1,\ldots,h_n).$$

Let \overline{x} be a term in n variables and let h_1, \ldots, h_n be elements of \mathbf{H} . Then we use the following labeling:

$$\overline{x}_{i=1}^n(h_i) := \overline{x}^{\mathbf{H}}(h_1,\ldots,h_n).$$

Theorem

An arbitrary mapping $\Omega \colon \mathcal{F}_{\mathbf{I}}(\iota) \times X \longrightarrow \mathbf{H}$ induces $\overline{\Omega} \in [X^{\bullet}, \mathbf{H}]$ by the stipulation

$$\overline{\Omega}(t(\iota),\overline{x}) = \ell[\overline{x}]_{i=1}^n(\Omega([\ell[\overline{x}],i](t(\iota)),s[\overline{x}](i))).$$

Moreover, any element $\overline{\Omega} \in [X^{\bullet}, \mathbf{H}]$ is uniquely determined by its restriction $\Omega = \overline{\Omega} \upharpoonright (\mathcal{F}_{\mathbf{I}}(\iota) \times X)$.

$$\overline{\Omega}(\iota, \overline{x}) = \ell[\overline{x}]_{i=1}^n (\Omega(\iota\text{-term for position } i, x \in X \text{ sitting at } i)).$$

Towards the main theorem

Ingredients: ι -definable variety of biunary algebras I, some variety of magmas Mag. Goal: Axiomatization of $V(\mathbf{H}^{\mathbf{I}} \mid \mathbf{H} \in V, \mathbf{I} \in I)$.

Towards the main theorem

Ingredients: ι -definable variety of biunary algebras I, some variety of magmas Mag. Goal: Axiomatization of $V(\mathbf{H^I} \mid \mathbf{H} \in \mathsf{V}, \mathbf{I} \in \mathsf{I})$.

- (1) Let $\mathbf{H} \in M$. We know that for $\eta_{X^{\bullet}} \colon X^{\bullet} \longrightarrow \mathbf{H}^{[X^{\bullet}, \mathbf{H}]}$, the kernel $\operatorname{Ker}(\eta_{X^{\bullet}})$ is fully invariant, meaning that the algebra $X^{\bullet}/(\operatorname{Ker}(\eta_{X^{\bullet}}))$ is a free algebra of some variety.
 - At this point, we only conjecture that this variety is $V(\mathbf{H}^{\mathbf{I}} \mid \mathbf{H} \in V, \mathbf{I} \in I)$.
- (2) Let $(\overline{x}_{i=1}^m(x_i), \overline{y}_{i=1}^n(y_i)) \in \operatorname{Ker}(\eta_{X^{\bullet}})$ and let $\Omega \colon \mathcal{F}_{\mathsf{I}}(\iota) \times X \longrightarrow \mathbf{H}$ be an arbitrary mapping.

There is a unique $\overline{\Omega} \in [X^{\bullet}, \mathbf{H}]$ such that:

$$\begin{split} (\overline{x}^{\mathbf{H}})_{i=1}^m(\Omega([\overline{x},i]\iota,x_i)) &= \overline{\Omega}(\iota,\overline{x}_{i=1}^m(x_i)) = (\eta_{X^{\bullet}}(\overline{x}_{i=1}^m(x_i)))(\overline{\Omega}) \\ &= (\eta_{X^{\bullet}}(\overline{y}_{i=1}^m(y_i)))(\overline{\Omega}) = (\overline{y}^{\mathbf{H}})_{i=1}^m(\Omega([\overline{y},i]\iota,y_i)). \end{split}$$

Towards the main theorem

(3)

$$(\overline{x}^{\mathbf{H}})_{i=1}^{m}(\Omega(\underbrace{[\overline{x},i]\iota},x_{i})) = (\overline{y}^{\mathbf{H}})_{i=1}^{m}(\Omega(\underbrace{[\overline{y},i]\iota},y_{i}))$$

$$\iota\text{-term for position of }x_{i}$$

$$\iota\text{-term for position of }y_{i}$$

holding for any $\mathbf{H} \in \mathsf{M}$ yields existence of an identity $\overline{x}_{i=1}^m(x_i') \approx \overline{y}_{i=1}^n(y_i')$ satisfying:

- (i) $\mathsf{M} \vDash \overline{x}_{i-1}^m(x_i') \approx \overline{y}_{i-1}^n(y_i')$,

- (ii) $x_i' = x_j'$ if and only if $(x_i = x_j \text{ and } [\overline{x}, i](\iota) \approx [\overline{x}, j](\iota))$, (iii) $x_i' = y_j'$ if and only if $(x_i = y_j \text{ and } [\overline{x}, i](\iota) \approx [\overline{y}, j](\iota))$, (iv) $y_i' = y_j'$ if and only if $(y_i = y_j \text{ and } [\overline{y}, i](\iota) \approx [\overline{y}, j](\iota))$.

Identities holding in M are "restricted" via identities holding in I.

Main theorem

For every variety M of magmas and every ι -definable variety I of biunary algebras, the variety $\mathcal{V}(\mathbf{H^I} \mid \mathbf{H} \in \mathsf{M}, \, \mathbf{I} \in \mathsf{I})$ is axiomatized by the identities

$$\overline{x}_{i=1}^m(x_i) pprox \overline{y}_{i=1}^n(y_i)$$
,

where $\overline{x} \in LIN_m$ and $\overline{y} \in LIN_n$ satisfy the following conditions:

- (i) $\mathsf{M} \vDash \overline{x}_{i=1}^m(x_i) \approx \overline{y}_{i=1}^n(y_i)$,
- (ii) If $x_i = x_j$, then $I = [\overline{x}, i](\iota) \approx [\overline{x}, j](\iota)$,
- (iii) If $x_i = y_i$, then $I \models [\overline{x}, i](\iota) \approx [\overline{y}, i](\iota)$,
- (iv) If $y_i = y_i$, then $I = [\overline{y}, i](\iota) \approx [\overline{y}, j](\iota)$.

Theorem

$$V(\mathbf{H}^{\mathbf{I}} \mid \mathbf{H} \in \mathsf{M}, \ \mathbf{I} \in \mathsf{I}) = V(\mathbf{H}^{\mathcal{F}_{\mathsf{I}}(\iota)} \mid \mathbf{H} \in \mathsf{M}).$$

Examples

Let $V = V(\mathbf{H}^{\mathbf{I}} \mid \mathbf{H} \in M, \mathbf{I} \in I)$.

М	1	V satisfies	V belongs to
commutative semigroups	$\lambda \approx \lambda \rho$	$x(yz) \approx y(xz)$	left permutable grupoids
commutative semigroups	$ hopprox\lambda\lambda,\ \lambdapprox\lambda ho$	$(xy)z \approx (zy)x,$ $x(yz) \approx y(xz)$	AG**-grupoids
idempotent magmas	$\lambda pprox \lambda \lambda \ \lambda pprox ho \lambda$	$(xx)y \approx xy$	left idempotent grupoids

References

- Botur, M.: On semigroup constructions induced by commuting retractions on a set, Algebra Univer. **82**, 62 (2021)
- Botur, M., Kowalski, T.: Beyond wreath and block, Semigroup Forum, 105 (1), 96–116 (2022)
- Nagy, A.: Special Classes of Semigroups, Springer (2001)
- Strecker, R.: Construction of medial semigroups. Commentat. Math. Univ. Carol. 25, 689–697 (1984)