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(Dual) Browuerian semilattices

A Brouwerian semilattice [6] is an algebra (A, —, A, 1) such that for
any a,b,c€ A

(A, A, 1) is an upper bounded semilattice;

a—a=1,

(a—=b)rha=(b—a)ADb;

B (aAb)—c=a—(b—c).
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(Dual) Browuerian semilattices

A Brouwerian semilattice [6] is an algebra (A, —, A, 1) such that for

any a,b,c€ A
(A, A, 1) is an upper bounded semilattice;
a—a=1,
(a—=b)rha=(b—a)ADb;
B (aAb)—c=a—(b—c).
If A is a Brouwerian semilattice and a, b, c € A, then

c<a—b if and only if anc<h.

Hence a — b is the relative pseudocomplement of a and b.
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(Dual) Browuerian semilattices

A Brouwerian semilattice [6] is an algebra (A, —, A, 1) such that for
any a,b,c€ A

(A, A, 1) is an upper bounded semilattice;
a—a=1,
(a—=b)rha=(b—a)ADb;
B (aAb)—c=a—(b—c).
If A is a Brouwerian semilattice and a, b, c € A, then

c<a—b if and only if anc<h.

Hence a — b is the relative pseudocomplement of a and b.

The variety BS of Brouwerian semilattice is of course ideal determined.
Moreover it can be shown that the class of —-subreduct of BS coincides
with the variety HI of Hilbert algebras and that the congruences (hence
the ideals) of a Brouwerian semilattice coincide with those of its
—-reduct.
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Since we will be dealing with partially ordered structures in which the
constant is the smallest element in the ordering, we feel that the dual
concepts are more suitable.
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Since we will be dealing with partially ordered structures in which the
constant is the smallest element in the ordering, we feel that the dual
concepts are more suitable.

A dual Brouwerian semilattice is a join semilattice with dual relative
pseudocomplementation, i.e. an algebra (A, V, x,0) such that

axb<c if and only if b<aVe.
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Since we will be dealing with partially ordered structures in which the
constant is the smallest element in the ordering, we feel that the dual
concepts are more suitable.

A dual Brouwerian semilattice is a join semilattice with dual relative
pseudocomplementation, i.e. an algebra (A, V, x,0) such that

axb<c if and only if b<aVe.

A dual Hilbert algebra is the x-subreduct of a dual Brouwerian
semilattice.
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Since we will be dealing with partially ordered structures in which the
constant is the smallest element in the ordering, we feel that the dual
concepts are more suitable.

A dual Brouwerian semilattice is a join semilattice with dual relative
pseudocomplementation, i.e. an algebra (A, V, x,0) such that

axb<c if and only if b<aVe.

A dual Hilbert algebra is the x-subreduct of a dual Brouwerian
semilattice.

The distinction between Brouwerian semilattices (Hilbert algebras) and
dual Brouwerian semilattices (dual Hilbert algebras) is of course purely
notational.
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Definability of principal ideals

For the notion of definable principal congruences and equationally

definable principal congruences we refer to the literature, mainly to [5],
[4] and [3].
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Definability of principal ideals

For the notion of definable principal congruences and equationally
definable principal congruences we refer to the literature, mainly to [5],

[4] and [3].

If K is a class of algebras, we say that K has definable principal ideals
(DPI) if there is a first order formula W(x,y, y1,...,y,) in the language
of K such that forall A€ K, a,bc A

ae (b)a if and only if AETy,...,yaV(a,b,y1,. .., ¥n)
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Definability of principal ideals

For the notion of definable principal congruences and equationally
definable principal congruences we refer to the literature, mainly to [5],
[4] and [3].

If K is a class of algebras, we say that K has definable principal ideals
(DPI) if there is a first order formula W(x,y, y1,...,y,) in the language
of K such that forall A€ K, a,bc A

ae (b)a if and only if AETy,...,yaV(a,b,y1,. .., ¥n)

Proposition

[2] Let K be a class of algebras with a constant 0.
If K has normal ideals and has definable principal congruences, then
K has definable principal ideals.

If K is contained in an ideal determined variety and has definable
principal ideals then K has definable principal congruences.
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We say that K has equationally definable principal ideals in the
broad sense (EDPI# for short) if there are terms p;,q; i = 1,..., k such
that forall A€ K, a,be A

ae (b)a ifandonlyif Jup,up, - € As.t.
pi(a,byur,ua,...) =qi(a, b,ur,ua,...) foralli=1... k
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A class K has a uniform implicit term p for principal ideals (UIT) if for
any AcKabeA

a€ (b)a ifand only if Jug, up, - € As.t. p(a, b, ur, us,...) =0.
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A class K has a uniform implicit term p for principal ideals (UIT) if for
any AcKabeA

a€ (b)a ifand only if Jug, up, - € As.t. p(a, b, ur, us,...) =0.

Next K has a uniform explicit term q(xq, ..., x,, y) for principal ideals
(UET) if g is an ideal term in y and moreover, for any A € K

a€ (b)a ifandonly if Fuy,...,u, € As.t. g(uy, ..., uy b) = a.
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A variety V has factorable principal ideals on direct products if,
whenever A; € V and b € [],, A;,
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A variety V has factorable principal ideals on direct products if,
whenever A; € V and b € [],, A;,

[1(b)a, € (b)a.

iel

Note that the inclusion (b)a C [];c,(bi)a; holds in any case.
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A variety V has factorable principal ideals on direct products if,
whenever A; € V and b € [],, A;,

[1(b)a, € (b)a.

icl
Note that the inclusion (b)a C [];c,(bi)a; holds in any case.

A variety V has a test algebra for principal ideals, if there exists an
A €V and a,b € A, such that
® ac (b)A;

e for any B €V and a',b' € B, if 8 € (b')g then there is a
homomorphism ¢ of A into B such that ¢(a) = a’ and ¢(b) = b'.
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[2] For a subtractive variety V' the following are equivalent:
V has a UET.
V has a UIT.
V has EDPF#,
B V has factorable principal ideals on direct products.
H V has a test algebra for principal ideals.
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Assume (1) and let g(xq,...,x,y) be a UET for K.
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Assume (1) and let g(xq,...,x,y) be a UET for K.

Define
p(xa, -y Xk, X, ¥) = s(x, g(x1, ...y Xk, ¥))-
If a € (b)a then there are uy,...,u, € A such that g(u1,...,u,, b) = a.
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Assume (1) and let g(xq,...,x,y) be a UET for K.
Define
p(xa, -y Xk, X, ¥) = s(x, g(x1, ...y Xk, ¥))-
If a € (b)a then there are uy,...,u, € A such that g(u1,...,u,, b) = a.
Thus

p(ula ey Uk, 3, b) = S(a, q(ulv <oy Un, b)) = S(a,a) =0.
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Assume (1) and let g(xq,...,x,y) be a UET for K.

Define

p(xa, -y Xk, X, ¥) = s(x, g(x1, ...y Xk, ¥))-
If a € (b)a then there are uy,...,u, € A such that g(u1,...,u,, b) = a.
Thus

p(ula ey Uk, 3, b) = S(a, q(ulv <oy Un, b)) = S(a,a) =0.

On the other hand if for some vy, ..., ux € A, p(u1,...,ux,a,b) = 0,
then

s(a,q(u1,...,uk, b)) =0 € (b)a.
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Assume (1) and let g(xq,...,x,y) be a UET for K.

Define
P(X1,~--,Xk,X,}/) :5(X7q(X17...,Xk7y)).
If a € (b)a then there are uy,...,u, € A such that g(u1,...,u,, b) = a.
Thus
p(ula ey Uk, 3, b) = S(a, q(ulv <oy Un, b)) = S(a,a) =0.
On the other hand if for some vy, ..., ux € A, p(u1,...,ux,a,b) = 0,
then

s(a,q(u1,...,uk, b)) =0 € (b)a.

Since q is an ideal term in y and q(&, b) € (b)a we conclude that
a € (b)a. This shows that pis a UIT for K.
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That (2) implies (3) and (3) implies (4) are immediate, so let's assume

(4).
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That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every finitely generated algebra
A €V and for every a, b € A with a € (b)a there are: an algebra A’ € F,
a',b' € A with a’ € (b')a and an isomorphism ¢ : A — A’ with

p(a) = a" and p(b) = b.
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That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every finitely generated algebra
A €V and for every a, b € A with a € (b)a there are: an algebra A’ € F,
a',b' € A with a’ € (b')a and an isomorphism ¢ : A — A’ with

¢(a) = &’ and ¢(b) = b’. Then it is easily seen that A = [[{A’ : A’ € F}

is a test algebra for principal ideals.
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That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4)-

We consider a subset F of V such that for every finitely generated algebra
A €V and for every a, b € A with a € (b)a there are: an algebra A’ € F,
a',b' € A with a’ € (b')a and an isomorphism ¢ : A — A’ with

¢(a) = &’ and ¢(b) = b’. Then it is easily seen that A = [[{A’ : A’ € F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a,beA.
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That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every finitely generated algebra
A €V and for every a, b € A with a € (b)a there are: an algebra A’ € F,
a',b' € A with a’ € (b')a and an isomorphism ¢ : A — A’ with

¢(a) = &’ and ¢(b) = b’. Then it is easily seen that A = [[{A’ : A’ € F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a,beA.

Since a € (b)a there is an ideal term g(x,...,xk,y) in y such that
a=gq(u,...,ux, b) for some uy,...,ux € A
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That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every finitely generated algebra
A €V and for every a, b € A with a € (b)a there are: an algebra A’ € F,
a',b' € A with a’ € (b')a and an isomorphism ¢ : A — A’ with

¢(a) = &’ and ¢(b) = b’. Then it is easily seen that A = [[{A’ : A’ € F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a,beA.

Since a € (b)a there is an ideal term g(x,...,xk,y) in y such that
a=gq(u,...,ux, b) for some uy,...,ux € A

Then, if BeV, a’,b' € B and 3’ € (b')g, we get

a = (p(a) = <,0(q(U1, <oy Uk, b)) = q(@(ul)ﬂ ) <,0(Uk)7 bl)'
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That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every finitely generated algebra
A €V and for every a, b € A with a € (b)a there are: an algebra A’ € F,
a',b' € A with a’ € (b')a and an isomorphism ¢ : A — A’ with

¢(a) = &’ and ¢(b) = b’. Then it is easily seen that A = [[{A’ : A’ € F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a,beA.

Since a € (b)a there is an ideal term g(x,...,xk,y) in y such that
a=gq(u,...,ux, b) for some uy,...,ux € A

Then, if BeV, a’,b' € B and 3’ € (b')g, we get
a= (p(a) = <,0(q(U1, <o Ui b)) = q(@(ul)ﬂ R <,0(Uk)7 bl)'

Conversely if &’ = g(p(u1),...,o(ux), b’), being g an ideal term in y we
get a’ € (b')g. So g is a UET for V and (1) holds.
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EDPI

If in the definition of EDPI# we dispose of the parameters, then we
obtain the property we are interested in.
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EDPI

If in the definition of EDPI# we dispose of the parameters, then we
obtain the property we are interested in.

A variety V has equationally definable principal ideals (EDPI) if there
are terms p;(x,y), qi(x,y), i =1,...,n such that for any A € K and
a,be A

ac(b)a if and only if pi(a, b) = gi(a,b), i=1,...,n
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EDPI

If in the definition of EDPI# we dispose of the parameters, then we
obtain the property we are interested in.

A variety V has equationally definable principal ideals (EDPI) if there
are terms p;(x,y), qi(x,y), i =1,...,n such that for any A € K and
a,be A

ac(b)a if and only if pi(a, b) = gi(a,b), i=1,...,n

For subtractive varieties with EDPI we can get a strengthening of the
previous theorem.
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Theorem

[1] [2] For a subtractive variety V the following are equivalent.
\V has EDPI.
There are binary terms p;, i = 1,..., n such that

ac(b)a ifandonlyif  pia,b)=0 i=1,...,n.
There is a binary term p(x, y) such that
a e (b)a if and only if  p(a,b)=0 i=1,...,n.

A For any family (A; : i € |) of algebras in \/ and for any subalgebra B
Oinel A for any a,b € B,

ac (b)B if and only if a; € (bi)Am i€l

B There exists an A € V generated by two elements a and b, such that
(i) a€(ba;
(i) forany BeV and a',b" € B, if a’ € (b')s then there is a
homomorphism ¢ of A into B such that p(a) = a’ and p(b) = b'.
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@ There is a ternary term p(x, y, z) such that p(x,y,0) ~ 0 holds in V
and for any algebra A € V, a,b € A, a € (b)a if and only if

p(a, b, b) = a.
For any A €V the semilattice CI(A) is a dual Brouwerian
semilattice.
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@ There is a ternary term p(x, y, z) such that p(x,y,0) ~ 0 holds in V
and for any algebra A € V, a,b € A, a € (b)a if and only if

p(a, b, b) = a.
For any A €V the semilattice CI(A) is a dual Brouwerian
semilattice.

The proofs of equivalences (1)-(6) go along the lines of those of the
previous theorem. We will only show that (7) fits well.
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Suppose V has EDPI with witness terms py, ..., p,.

Ideals in universal algebra IV: Definability of principal ideals



Suppose V has EDPI with witness terms py, ..., p,.
First we show that for all A€V, a,be A, | € Id(A)

ac(b)aVvIl ifandonlyif  pi(a,b)clfori=1,...,n.
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Suppose V has EDPI with witness terms py, ..., p,.
First we show that for all A€V, a,be A, | € Id(A)
ac(b)av! ifandonlyif  pi(ab)clfori=1,...,n.
In fact let / = 0/6 for some 6 € Con(A); then
ae (b)aV/ifandonlyifae (b)aVv0/o
if and only if a/60 € (b/0)a g

if and only if p;(a/0,b/0) =0/0 for i=1,...,n
if and only if p;(a,b) € [ for i =1,... n.
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It follows that the operation

(a) * (b) = (p1(a; b), - -, pa(a, b))

is a dual relative pseudocomplementation in CI(A) for any two principal
ideals of A.
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It follows that the operation
(a) * (b) = (pl(a7 b)a ey pn(a7 b))A
is a dual relative pseudocomplementation in CI(A) for any two principal

ideals of A.

But it is a general fact (see [7], Lemma 4) that, if any two elements of a
generating set of a join semilattice have a dual pseudocomplement, then
the semilattice is dually Brouwerian.
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For the converse assume that CI(A) is dually Brouwerian for any A € V.
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For the converse assume that CI(A) is dually Brouwerian for any A € V.

Let F be the algebra freely generated in V by {x,y, vj}jcw-
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For the converse assume that CI(A) is dually Brouwerian for any A € V.
Let F be the algebra freely generated in V by {x,y, vj}jcw-

By hypothesis (x) * (y)r exists in CI(F), hence there are terms
ri(x,y,va,va,...), i =1,..., nsuch that

n

(X)F * ()/)F = \/(I’,’(X,y, Vi, V2, ... ))F

i=1
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Let pi(x,y) = ri(x,y,x,x,...) and assume a € (b)a.
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Let pi(x,y) = ri(x,y,x,x,...) and assume a € (b)a.

Then there is a finitely generated subalgebra B of A such that a € (b)g.
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Let pi(x,y) = ri(x,y,x,x,...) and assume a € (b)a.

Then there is a finitely generated subalgebra B of A such that a € (b)g.
Let ¢ be a homomorphism from F onto B such that ¢(x) = ¢(v;) = a

and ¢(y) = b.
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Let pi(x,y) = ri(x,y,x,x,...) and assume a € (b)a.

Then there is a finitely generated subalgebra B of A such that a € (b)g.
Let ¢ be a homomorphism from F onto B such that ¢(x) = ¢(v;) = a
and ¢(y) = b.

Then J = »~1(0) € Id(B) and we have

a € (b)g if and only if p(x) € (¢(y))s
if and only if for some t € (y)e, (x,t) € kerp
if and only if x € (y)e vV J
if and only if ri(x,y,vi,vs,...) € J fori=1,...,n
if and only if (ri(x,y,vi,va,...)=0 fori=1,...,n
if and only if r;(a, b,a,a,...) =0 fori=1,...,n
if and only if p;(a,b) =0 fori=1,...,n.
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Corollary

Every subtractive variety VV with EDPI is ideal distributive.

Ideals in universal algebra IV: Definability of principal ideals



Corollary

Every subtractive variety VV with EDPI is ideal distributive.

If A €V we already know that Id(A) is isomorphic with the ideal lattice
of CI(A).
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Corollary

Every subtractive variety VV with EDPI is ideal distributive.

If A €V we already know that Id(A) is isomorphic with the ideal lattice
of CI(A).

By the previous theorem the latter is a dual Brouwerian semilattice and it
is well known that the ideal lattice of a dual Brouwerian semilattice is
distributive.
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Let us remark that if A is a Hilbert algebra (or a Brouwerian semilattice)
a, b € A and x* is the dual relative pseudocomplementation, then

ae(b)a if and only if axb=0.
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Let us remark that if A is a Hilbert algebra (or a Brouwerian semilattice)
a, b € A and x* is the dual relative pseudocomplementation, then

ae(b)a if and only if axb=0.

This means that the binary term giving relative pseudocomplementation
witnesses both subtractivity and EDPI. In other words in a Brouwerian

semilattice A
(a)a * (b)a = (a* b)a.
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Let us remark that if A is a Hilbert algebra (or a Brouwerian semilattice)
a, b € A and x* is the dual relative pseudocomplementation, then

ae(b)a if and only if axb=0.

This means that the binary term giving relative pseudocomplementation
witnesses both subtractivity and EDPI. In other words in a Brouwerian
semilattice A

(a)a * (b)a = (a* b)a.

Hence the set PI(A) of principal ideals of A is closed under % and
(PI(A), *,(0)a) is a dual Hilbert algebra.
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Let us remark that if A is a Hilbert algebra (or a Brouwerian semilattice)
a, b € A and x* is the dual relative pseudocomplementation, then

ae(b)a if and only if axb=0.

This means that the binary term giving relative pseudocomplementation
witnesses both subtractivity and EDPI. In other words in a Brouwerian
semilattice A

(a)a * (b)a = (a* b)a.

Hence the set PI(A) of principal ideals of A is closed under % and
(PI(A), *,(0)a) is a dual Hilbert algebra.

Really we can go even further, since we can show that any algebra in a
subtractive variety with EDPI has a “weak structure” closely resembling a
dual Hilbert algebra.
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Theorem

[2] Let V be subtractive and EDPI. Then there exists a binary term x * y
with the following properties.

Forall A €V and ac A

axa=2~0
ax0=0
Oxa=a

b € (a)a if and only if ax b = 0.

The relation < defined by a < b if and only if bx a = 0 is reflexive
and transitive. The associated equivalence relation ~p is a
congruence of A* = (A, x,0) and A"/ ~p is a dual Hilbert algebra
isomorphic with (PI(A), x, (0)a).

Any principal ideal of A is the union of a principal ideal of A*/ ~p
and viceversa. In fact (a)a = (J(a/ ~a)a*/~n-
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Suppose that s(x, y) is the witness of subtractivity.
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Suppose that s(x, y) is the witness of subtractivity.

Then, since V has EDPI, from point (6) of the characterization theorem,
we get the existence of a ternary term p(x, y, z) such that, for any A € V
and a,b€ A

p(b,a,0) =0 p(b,a,a) = bif and only if b € (a)a.
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Suppose that s(x, y) is the witness of subtractivity.

Then, since V has EDPI, from point (6) of the characterization theorem,
we get the existence of a ternary term p(x, y, z) such that, for any A € V
and a,b€ A

p(b,a,0) =0 p(b,a,a) = bif and only if b € (a)a.

Define x x y = s(y, p(y, x,x)). Then

axa=s(a,p(aaa))=s(a,a)=0;
ax0=s5(0,p(0,a,a)) =s(0,0)=0;
0xa=s(a, p(a0,0)) =s(a0)=a.
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Next, if b € (a)a, then

axb=s(b,p(b,a,a))=s(b,b)=0.
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Next, if b € (a)a, then
axb=s(b,p(b,a,a))=s(b,b)=0.

Conversely, if ax b =0, then s(b, p(b,a,a)) = 0. Since 0 € (a)a and
p(b,a,a) € (a)a (p(x,y, z) is an ideal term in z), subtractivity yields
b € (a)a as well. This takes care of (1).
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The fact that < is a quasi order is obvious from the fact that * witness
EDPI.
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The fact that < is a quasi order is obvious from the fact that * witness
EDPI.

Consider the mapping
ar— (a)a

from A to PI(A).
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The fact that < is a quasi order is obvious from the fact that * witness
EDPI.

Consider the mapping
ar— (a)a
from A to PI(A).
Then (a)a * (b)a = (a* b)a, therefore the mapping is a homomorphism

from A* to (PI(A), %, (0)a), whose kernel coincides with ~a. Hence (2)
follows.
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Finally if b € (a)a then ax b= 0. This implies
(a*b)/ ~a=0/~a

and so
a/ mp xb/ mpa=0/ =p .
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Finally if b € (a)a then ax b= 0. This implies
(a*b)/ ~a=0/~a

and so
a/ mp xb/ mpa=0/ =p .

But A*/ =4 is a dual Hilbert algebra, thus it has EDPI with witness term
k.,
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Finally if b € (a)a then ax b= 0. This implies
(a*b)/ ~a=0/~a

and so
a/ mp xb/ mpa=0/ =p .

But A*/ =4 is a dual Hilbert algebra, thus it has EDPI with witness term

k.,
This implies

b/ =a€ (a/ %A)A*/zA
and so

be U(a/ f“\’JA)A*/mA-
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Next if b € (J(a/ =a)a+/~a. then b € ¢/ ~p€ (a/ =p)a+/~,. therefore
b ~p c and
a/ ~p xc/ ~pa=0/ =~a .
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Next if b € (J(a/ =a)a+/~a. then b € ¢/ ~p€ (a/ =p)a+/~,. therefore
b ~p c and

a/ ~p xc/ ~pa=0/ =~a .
But this implies (a* c¢)/ =a= 0/ ~p and so a* ¢ =0 (since

0/ ~a= {0}, via (1)).
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Next if b € (J(a/ =a)a+/~a. then b € ¢/ ~p€ (a/ =p)a+/~,. therefore
b ~p c and

a/ ~p xc/ ~pa=0/ =~a .
But this implies (a* c¢)/ =a= 0/ ~p and so a* ¢ =0 (since
0/ ~a= {0}, via (1)).
From a*c =0 and c* b =0 we get (via (2)) a*x b =0 and therefore
be (a)A.
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As a matter of fact the previous result has a converse which we state
without proof.
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As a matter of fact the previous result has a converse which we state
without proof.

Theorem
[2] Let V be a variety with a constant 0 and such that the following hold.
There exists a binary term x x y such that for any A € V and a € A

axa=2>0

ax0=0
O0xa=0=a=0.

The relation ~p defined by a =~ b if and only ifaxb=bxa=01isa
congruence of A* = (A, x,0) and A"/ ~pa has EDPI defined by
u/ ~p€ (v/ ~n)a-/~, if and only if u/ =p v/ ~p= 0/ =n.

For any a € A

(a)a = J(a/ =a)a+/xn-
Then V is subtractive and has EDPI: for any A €V and a,b € A

a€ (b)a if and only if  axb=0.
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Meet and join generator terms

A class K has an n-system of principal ideal intersection terms if
there are binary terms gy, ..., g, such that for any A € K and a,b € A,

n

(a)a N (b)a = \/(qi(a, b))a.

i=1
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Meet and join generator terms

A class K has an n-system of principal ideal intersection terms if
there are binary terms gy, ..., g, such that for any A € K and a,b € A,

n

(a)a N (b)a = \/(qi(a, b))a.

i=1

[2] For a subtractive variety V' the following are equivalent.
V has an n-system of principal ideal intersection terms.

V is ideal distributive and the compact ideals of any algebra in \V are
closed under intersections.
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Assume (1) and let g1, ..., g, be an n-system of principal ideal
intersection terms for V.
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intersection terms for V.

Note that g;(x, y) is a commutator term in x, y by definition, so for any
AcVand abe Ala bla=(a)an(b)a.

Ideals in universal algebra IV: Definability of principal ideals



Assume (1) and let g1, ..., g, be an n-system of principal ideal
intersection terms for V.

Note that g;(x, y) is a commutator term in x, y by definition, so for any
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Therefore the commutator is neutral and thus V is ideal distributive.
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Assume (1) and let g1, ..., g, be an n-system of principal ideal
intersection terms for V.

Note that g;(x, y) is a commutator term in x, y by definition, so for any
AcVand abe Ala bla=(a)an(b)a.

Therefore the commutator is neutral and thus V is ideal distributive.
This fact and the principal ideal intersection terms yield
m m k n
\/aJAﬂ\/b, :\/VVq,aJ,b,
j=1 I=1 j=11=1i=1

o (2) holds.
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Assume now (2) and let F be the algebra in V freely generated by
X, Yy Vi, Vo,
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Assume now (2) and let F be the algebra in V freely generated by
X, Yy Vi, Vo,

Since the compact ideal are closed under intersections we have that

n

(XN = \/(ti(X,y, Vig, -5 Vi) )E-

i=1
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Assume now (2) and let F be the algebra in V freely generated by
X, Yy Vi, Vo,

Since the compact ideal are closed under intersections we have that

n

(XN = \/(ti(X,y, Vig, -5 Vi) )E-

i=1

Define gi(x,y) = ti(x,y,x,...,x) for i=1,...,n.
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Suppose that A € V is finitely generated and let a, b € A.
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Suppose that A € V is finitely generated and let a, b € A.

Then there is a homomorphism f of F onto A such that
f(x) =f(v;) =aand f(y) = b.
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Suppose that A € V is finitely generated and let a, b € A.
Then there is a homomorphism f of F onto A such that
f(x) =f(v;) =aand f(y) = b.

Now

c € (a)an(b)a ifandonly if c € (f(x))a N (f(y))a
if and only if ¢ € [f(x), f(y)]f if and only if ¢ € f([x, y]F)

n

if and only if c € f((x)e N (y)e) if and only if c € f(\/(t,-(x,y, Vigy -5 Vi ))E)
i=1
if and only if there is an ideal term t such that
c=1F(t(ur, . Un, 1 (XY Vigy oo s VI )y ooy En(X Y, Vingy o5 Vi)
if and only if ¢ = t(f(uv1),...,f(un), ta(a,b,a,...,a),...,ta(a,b,a,...,a))
if and only if ¢ = t(f(w1),...,f(un),q1(a, b),...,qn(a, b))

if and only if c € \/(q,-(a, b))a.

i=1
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Suppose that A € V is finitely generated and let a, b € A.
Then there is a homomorphism f of F onto A such that
f(x) =f(v;) =aand f(y) = b.

Now

c € (a)an(b)a ifandonly if c € (f(x))a N (f(y))a
if and only if ¢ € [f(x), f(y)]f if and only if ¢ € f([x, y]F)

n

if and only if c € f((x)e N (y)e) if and only if c € f(\/(t,-(x,y, Vigy -5 Vi ))E)
i=1
if and only if there is an ideal term t such that
c=1F(t(ur, . Un, 1 (XY Vigy oo s VI )y ooy En(X Y, Vingy o5 Vi)
if and only if ¢ = t(f(uv1),...,f(un), ta(a,b,a,...,a),...,ta(a,b,a,...,a))
if and only if ¢ = t(f(w1),...,f(un),q1(a, b),...,qn(a, b))

if and only if c € \/(q,-(a, b))a.

i=1

So the conclusion holds if A is finitely generated.
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However, if ¢ € (a)a N (b)a then there is a finitely generated subalgebra
B of A such that c € (a)g N (b)B.

Ideals in universal algebra IV: Definability of principal ideals



However, if ¢ € (a)a N (b)a then there is a finitely generated subalgebra
B of A such that c € (a)g N (b)B.

Therefore the conclusion holds in general and ¢, ..., g, is an n-system of
principal ideal intersection terms for V.
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The case n =1 in the definition of n-system of principal ideal intersection
terms deserves a special name: the binary term witnessing that is called a
meet generator for V and is denoted by M.
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The case n =1 in the definition of n-system of principal ideal intersection
terms deserves a special name: the binary term witnessing that is called a
meet generator for V and is denoted by M.

Then, forany A€V and a,be A

(a)A N (b)A = (a M b)A
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The case n =1 in the definition of n-system of principal ideal intersection
terms deserves a special name: the binary term witnessing that is called a
meet generator for V and is denoted by M.

Then, forany A€V and a,be A
(a)A n (b)A = (a I b)A

Just by looking at the proof of the previous theorem one sees that a
subtractive variety has a meet generator term if and only if it is ideal
distributive and the meet of two principal ideals is principal.
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If a subtractive EDPI variety V has a meet generator term I, then the
principal ideals are closed under both intersection and dual relative
pseudocomplementation.
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If a subtractive EDPI variety V has a meet generator term I, then the
principal ideals are closed under both intersection and dual relative
pseudocomplementation.

It follows that, for any A € V, (PI(A),*,N,(0)a) is a *, N-subreduct of a
dual Brouwerian semilattice.
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If a subtractive EDPI variety V has a meet generator term I, then the
principal ideals are closed under both intersection and dual relative
pseudocomplementation.

It follows that, for any A € V, (PI(A),*,N,(0)a) is a *, N-subreduct of a
dual Brouwerian semilattice.

Moreover, via the meet generator term and distributivity of ideals, the
compact ideals themselves are closed under intersection, hence
(CI(A), *,V,N,(0)a) is a dual relatively pseudocomplemented lattice.
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A join generator for a pointed variety V is a binary term x Ll y such that
forany AeVand a,be A

(a)A V (b)A = (a L b)/_\
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A join generator for a pointed variety V is a binary term x Ll y such that
forany AeVand a,be A

(a)A V (b)A = (a L b)/_\

Proposition

[2] Let V be a pointed variety; then the following are equivalent.
The join of two principal ideals is principal.
Every compact ideal is principal.

There are a binary term LI and two ternary terms r and t such that

0OL0~0

r(x,y,0) =~ t(x,y,0) = 0
r(x,y,xUy) = x
t(x,y,xUy) = y.

B V has a join generator term.
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A join generator for a pointed variety V is a binary term x Ll y such that
forany AeVand a,be A

(a)A V (b)A = (a L b)/_\

Proposition

[2] Let V be a pointed variety; then the following are equivalent.
The join of two principal ideals is principal.
Every compact ideal is principal.

There are a binary term LI and two ternary terms r and t such that

0OL0~0

r(x,y,0) =~ t(x,y,0) = 0
r(x,y,xUy) = x
t(x,y,xUy) = y.

B V has a join generator term.

Note that subtractivity is not needed.
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If a subtractive variety has EDPI and a join generator term we can obtain a
stronger characterization theorem.

Ideals in universal algebra IV: Definabili



If a subtractive variety has EDPI and a join generator term we can obtain a
stronger characterization theorem.

[2] Let V a subtractive EDPI variety in which the join of two principal ideals is
principal. Then there are binary terms % and Ll such that the following hold.

For all A €V and a,b,c € A

axa=0 (cxa)*((cxb)*(cx(allb)))=0
ax0=0 (aub)xb=(alb)xa=0
Oxa=a

b € (a)a if and only if ax b =0

The relation < defined by a < b if and only if bx a = 0 is reflexive and
transitive. The associated equivalence relation ~a is a congruence of
A" = (A *,11,0) and A”/ =p is a dual Brouwerian semilattice isomorphic
with (PI(A),*,V,(0)a).

Any principal ideal of A is the union of a principal ideal of A~/ =~ and
viceversa. In fact (a)a = |J(a/ =a)au/x, -
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The proof of the previous theorem is similar to others we have already
seen. More interesting is the following:
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The proof of the previous theorem is similar to others we have already
seen. More interesting is the following:

Proposition

[2] Suppose V is a subtractive variety with EDPI and join generator term
. Then V has also a meet generator term.
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The proof of the previous theorem is similar to others we have already
seen. More interesting is the following:

Proposition

[2] Suppose V is a subtractive variety with EDPI and join generator term
. Then V has also a meet generator term.

First we observe that the equation
(xx(xxy))V(y*(y*x))mxNy

holds in any dual relatively pseudocomplemented lattice (see for instance

[8]).
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Let then LI be the join generator for V and define

xMy = (x*(x*y))U(y * (y * x)).
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Let then LI be the join generator for V and define

xMy = (x*(x*y))U(y * (y * x)).

Now let A €V and a,b € A.
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Let then LI be the join generator for V and define
x My = (xx (xxy)) Uy * (y * x)).

Now let A €V and a,b € A.

Since V has EDPI and a join generator term

(anb)a = [(a)a * ((a)a * (b)a)] V [(a)a * ((2)a * (B)a)] = (a)a N (b)a,
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Let then LI be the join generator for V and define

xMy = (x*(x*y))U(y * (y * x)).

Now let A €V and a,b € A.
Since V has EDPI and a join generator term
(a1 b)a = [(a)a * ((a)a * (b)a)] V [(a)a * ((a)a * (B)a)] = (a)a N (D)a,

where we have used the fact that the compact ideals form a dual
relatively pseudocomplemented lattice.
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Let then LI be the join generator for V and define

xMy = (x*(x*y))U(y * (y * x)).

Now let A €V and a,b € A.

Since V has EDPI and a join generator term

(anb)a = [(a)a * ((a)a * (b)a)] V [(a)a * ((2)a * (B)a)] = (a)a N (b)a,

where we have used the fact that the compact ideals form a dual
relatively pseudocomplemented lattice.

Hence x My is a meet generator for V.
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[2] Let V a subtractive variety with EDPI in which the join and the meet of two
principal ideals is principal. Then there are binary terms %, LI and M such that
the following hold.

For all A €V and a,b,c € A

axa=0 (c*xa)*((cxb)*(c*x(allb))) =0
ax0=0 (aub)xb=(allb)xa=0
Oxa=a (axc)x((bxc)*x((amb)xc))=0

be (a)a iffaxb=0 ax(alb)=bx(anb)=0.

The relation < defined by a < b iff bx a = 0 is reflexive and transitive.
The associated equivalence relation ~a is a congruence of
A" = (A *,1U,1,0) and A"/ ~a is a relatively pseudocomplemented
lattice isomorphic with (PI(A),*,V, N, (0)a).

Any principal ideal of A is the union of a principal ideal of A"/ ~p and
viceversa. In fact (a)a = U(a/ ~a)an/~,-
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Pseudocomplemented semilattices

A pseudocomplemented semilattice is an algebra of type (A, x,0)
defined by the following identities

a set of identities defining meet semilattices;
XA (XAy)  =xAy*%

x A 0* = x;

@ 0** =0.

Note that by 3. 1 = 0* is the top element in the semilattice ordering.
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Pseudocomplemented semilattices

A pseudocomplemented semilattice is an algebra of type (A, x,0)
defined by the following identities

a set of identities defining meet semilattices;
XA (XAy)  =xAy*%
x A 0* = x;
@ 0** =0.
Note that by 3. 1 = 0* is the top element in the semilattice ordering.

Pseudocomplemented semilattices form a variety PS which is subtractive
with witness term x A y*.
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Pseudocomplemented semilattices

A pseudocomplemented semilattice is an algebra of type (A, x,0)
defined by the following identities

a set of identities defining meet semilattices;
XA (XAy)  =xAy*%
x A 0* = x;
@ 0** =0.
Note that by 3. 1 = 0* is the top element in the semilattice ordering.

Pseudocomplemented semilattices form a variety PS which is subtractive
with witness term x A y*.

Moreover if L € PS and a € L, then a* is the pseudocomplement of a,
i.e. forany be L

b<a* if and only if anb=0.
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It can be shown that
PS has EDPI
x My = x" A y* is a meet generator term;
x Uy = (x* Ay*)* is a join generator term.
A PS is not congruence regular so it is not ideal determined.
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THANK YOU!
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