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(Dual) Browuerian semilattices

A Brouwerian semilattice [6] is an algebra ⟨A,→,∧, 1⟩ such that for
any a, b, c ∈ A

1 ⟨A,∧, 1⟩ is an upper bounded semilattice;

2 a → a = 1;

3 (a → b) ∧ a = (b → a) ∧ b;

4 (a ∧ b) → c = a → (b → c).

If A is a Brouwerian semilattice and a, b, c ∈ A, then

c ≤ a → b if and only if a ∧ c ≤ b.

Hence a → b is the relative pseudocomplement of a and b.

The variety BS of Brouwerian semilattice is of course ideal determined.
Moreover it can be shown that the class of →-subreduct of BS coincides
with the variety HI of Hilbert algebras and that the congruences (hence
the ideals) of a Brouwerian semilattice coincide with those of its
→-reduct.
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Since we will be dealing with partially ordered structures in which the
constant is the smallest element in the ordering, we feel that the dual
concepts are more suitable.

A dual Brouwerian semilattice is a join semilattice with dual relative
pseudocomplementation, i.e. an algebra ⟨A,∨, ∗, 0⟩ such that

a ∗ b ≤ c if and only if b ≤ a ∨ c .

A dual Hilbert algebra is the ∗-subreduct of a dual Brouwerian
semilattice.

The distinction between Brouwerian semilattices (Hilbert algebras) and
dual Brouwerian semilattices (dual Hilbert algebras) is of course purely
notational.
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De�nability of principal ideals

For the notion of de�nable principal congruences and equationally
de�nable principal congruences we refer to the literature, mainly to [5],
[4] and [3].

If K is a class of algebras, we say that K has de�nable principal ideals

(DPI) if there is a �rst order formula Ψ(x , y , y1, . . . , yn) in the language
of K such that for all A ∈ K, a, b ∈ A

a ∈ (b)A if and only if A ⊨ ∃y1, . . . , yn Ψ(a, b, y1, . . . , yn).

Proposition

[2] Let K be a class of algebras with a constant 0.

1 If K has normal ideals and has de�nable principal congruences, then
K has de�nable principal ideals.

2 If K is contained in an ideal determined variety and has de�nable
principal ideals then K has de�nable principal congruences.
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We say that K has equationally de�nable principal ideals in the

broad sense (EDPI# for short) if there are terms pi , qi i = 1, . . . , k such
that for all A ∈ K, a, b ∈ A

a ∈ (b)A if and only if ∃u1, u2, · · · ∈ A s.t.

pi (a, b, u1, u2, . . . ) = qi (a, b, u1, u2, . . . ) for all i = 1, . . . , k
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A class K has a uniform implicit term p for principal ideals (UIT) if for
any A ∈ K a, b ∈ A

a ∈ (b)A if and only if ∃u1, u2, · · · ∈ A s.t. p(a, b, u1, u2, . . . ) = 0.

Next K has a uniform explicit term q(x1, . . . , xn, y) for principal ideals
(UET) if q is an ideal term in y and moreover, for any A ∈ K

a ∈ (b)A if and only if ∃u1, . . . , un ∈ A s.t. q(u1, . . . , un, b) = a.

Ideals in universal algebra IV: De�nability of principal ideals



A class K has a uniform implicit term p for principal ideals (UIT) if for
any A ∈ K a, b ∈ A

a ∈ (b)A if and only if ∃u1, u2, · · · ∈ A s.t. p(a, b, u1, u2, . . . ) = 0.

Next K has a uniform explicit term q(x1, . . . , xn, y) for principal ideals
(UET) if q is an ideal term in y and moreover, for any A ∈ K

a ∈ (b)A if and only if ∃u1, . . . , un ∈ A s.t. q(u1, . . . , un, b) = a.

Ideals in universal algebra IV: De�nability of principal ideals



A variety V has factorable principal ideals on direct products if,
whenever Ai ∈ V and b ∈

∏
i∈I Ai ,∏
i∈I

(bi )Ai ⊆ (b)A.

Note that the inclusion (b)A ⊆
∏

i∈I (bi )Ai holds in any case.

A variety V has a test algebra for principal ideals, if there exists an
A ∈ V and a, b ∈ A, such that

• a ∈ (b)A;

• for any B ∈ V and a′, b′ ∈ B, if a′ ∈ (b′)B then there is a
homomorphism φ of A into B such that φ(a) = a′ and φ(b) = b′.

Ideals in universal algebra IV: De�nability of principal ideals



A variety V has factorable principal ideals on direct products if,
whenever Ai ∈ V and b ∈

∏
i∈I Ai ,∏
i∈I

(bi )Ai ⊆ (b)A.

Note that the inclusion (b)A ⊆
∏

i∈I (bi )Ai holds in any case.

A variety V has a test algebra for principal ideals, if there exists an
A ∈ V and a, b ∈ A, such that

• a ∈ (b)A;

• for any B ∈ V and a′, b′ ∈ B, if a′ ∈ (b′)B then there is a
homomorphism φ of A into B such that φ(a) = a′ and φ(b) = b′.

Ideals in universal algebra IV: De�nability of principal ideals



A variety V has factorable principal ideals on direct products if,
whenever Ai ∈ V and b ∈

∏
i∈I Ai ,∏
i∈I

(bi )Ai ⊆ (b)A.

Note that the inclusion (b)A ⊆
∏

i∈I (bi )Ai holds in any case.

A variety V has a test algebra for principal ideals, if there exists an
A ∈ V and a, b ∈ A, such that

• a ∈ (b)A;

• for any B ∈ V and a′, b′ ∈ B, if a′ ∈ (b′)B then there is a
homomorphism φ of A into B such that φ(a) = a′ and φ(b) = b′.

Ideals in universal algebra IV: De�nability of principal ideals



Theorem

[2] For a subtractive variety V the following are equivalent:

1 V has a UET.

2 V has a UIT.

3 V has EDPI#.

4 V has factorable principal ideals on direct products.

5 V has a test algebra for principal ideals.
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Assume (1) and let q(x1, . . . , xk , y) be a UET for K.

De�ne
p(x1, . . . , xk , x , y) = s(x , q(x1, . . . , xk , y)).

If a ∈ (b)A then there are u1, . . . , un ∈ A such that q(u1, . . . , un, b) = a.

Thus

p(u1, . . . , uk , a, b) = s(a, q(u1, . . . , un, b)) = s(a, a) = 0.

On the other hand if for some u1, . . . , uk ∈ A, p(u1, . . . , uk , a, b) = 0,
then

s(a, q(u1, . . . , uk , b)) = 0 ∈ (b)A.

Since q is an ideal term in y and q(u⃗, b) ∈ (b)A we conclude that
a ∈ (b)A. This shows that p is a UIT for K.
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That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every �nitely generated algebra
A ∈ V and for every a, b ∈ A with a ∈ (b)A there are: an algebra A′ ∈ F,
a′, b′ ∈ A′ with a′ ∈ (b′)A and an isomorphism φ : A −→ A′ with
φ(a) = a′ and φ(b) = b′. Then it is easily seen that A =

∏
{A′ : A′ ∈ F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a, b ∈ A.

Since a ∈ (b)A there is an ideal term q(x1, . . . , xk , y) in y such that
a = q(u1, . . . , uk , b) for some u1, . . . , uk ∈ A.

Then, if B ∈ V, a′, b′ ∈ B and a′ ∈ (b′)B, we get

a′ = φ(a) = φ(q(u1, . . . , uk , b)) = q(φ(u1), . . . , φ(uk), b
′).

Conversely if a′ = q(φ(u1), . . . , φ(uk), b
′), being q an ideal term in y we

get a′ ∈ (b′)B. So q is a UET for V and (1) holds.

Ideals in universal algebra IV: De�nability of principal ideals



That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every �nitely generated algebra
A ∈ V and for every a, b ∈ A with a ∈ (b)A there are: an algebra A′ ∈ F,
a′, b′ ∈ A′ with a′ ∈ (b′)A and an isomorphism φ : A −→ A′ with
φ(a) = a′ and φ(b) = b′.

Then it is easily seen that A =
∏
{A′ : A′ ∈ F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a, b ∈ A.

Since a ∈ (b)A there is an ideal term q(x1, . . . , xk , y) in y such that
a = q(u1, . . . , uk , b) for some u1, . . . , uk ∈ A.

Then, if B ∈ V, a′, b′ ∈ B and a′ ∈ (b′)B, we get

a′ = φ(a) = φ(q(u1, . . . , uk , b)) = q(φ(u1), . . . , φ(uk), b
′).

Conversely if a′ = q(φ(u1), . . . , φ(uk), b
′), being q an ideal term in y we

get a′ ∈ (b′)B. So q is a UET for V and (1) holds.

Ideals in universal algebra IV: De�nability of principal ideals



That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every �nitely generated algebra
A ∈ V and for every a, b ∈ A with a ∈ (b)A there are: an algebra A′ ∈ F,
a′, b′ ∈ A′ with a′ ∈ (b′)A and an isomorphism φ : A −→ A′ with
φ(a) = a′ and φ(b) = b′. Then it is easily seen that A =

∏
{A′ : A′ ∈ F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a, b ∈ A.

Since a ∈ (b)A there is an ideal term q(x1, . . . , xk , y) in y such that
a = q(u1, . . . , uk , b) for some u1, . . . , uk ∈ A.

Then, if B ∈ V, a′, b′ ∈ B and a′ ∈ (b′)B, we get

a′ = φ(a) = φ(q(u1, . . . , uk , b)) = q(φ(u1), . . . , φ(uk), b
′).

Conversely if a′ = q(φ(u1), . . . , φ(uk), b
′), being q an ideal term in y we

get a′ ∈ (b′)B. So q is a UET for V and (1) holds.

Ideals in universal algebra IV: De�nability of principal ideals



That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every �nitely generated algebra
A ∈ V and for every a, b ∈ A with a ∈ (b)A there are: an algebra A′ ∈ F,
a′, b′ ∈ A′ with a′ ∈ (b′)A and an isomorphism φ : A −→ A′ with
φ(a) = a′ and φ(b) = b′. Then it is easily seen that A =

∏
{A′ : A′ ∈ F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a, b ∈ A.

Since a ∈ (b)A there is an ideal term q(x1, . . . , xk , y) in y such that
a = q(u1, . . . , uk , b) for some u1, . . . , uk ∈ A.

Then, if B ∈ V, a′, b′ ∈ B and a′ ∈ (b′)B, we get

a′ = φ(a) = φ(q(u1, . . . , uk , b)) = q(φ(u1), . . . , φ(uk), b
′).

Conversely if a′ = q(φ(u1), . . . , φ(uk), b
′), being q an ideal term in y we

get a′ ∈ (b′)B. So q is a UET for V and (1) holds.

Ideals in universal algebra IV: De�nability of principal ideals



That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every �nitely generated algebra
A ∈ V and for every a, b ∈ A with a ∈ (b)A there are: an algebra A′ ∈ F,
a′, b′ ∈ A′ with a′ ∈ (b′)A and an isomorphism φ : A −→ A′ with
φ(a) = a′ and φ(b) = b′. Then it is easily seen that A =

∏
{A′ : A′ ∈ F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a, b ∈ A.

Since a ∈ (b)A there is an ideal term q(x1, . . . , xk , y) in y such that
a = q(u1, . . . , uk , b) for some u1, . . . , uk ∈ A.

Then, if B ∈ V, a′, b′ ∈ B and a′ ∈ (b′)B, we get

a′ = φ(a) = φ(q(u1, . . . , uk , b)) = q(φ(u1), . . . , φ(uk), b
′).

Conversely if a′ = q(φ(u1), . . . , φ(uk), b
′), being q an ideal term in y we

get a′ ∈ (b′)B. So q is a UET for V and (1) holds.

Ideals in universal algebra IV: De�nability of principal ideals



That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every �nitely generated algebra
A ∈ V and for every a, b ∈ A with a ∈ (b)A there are: an algebra A′ ∈ F,
a′, b′ ∈ A′ with a′ ∈ (b′)A and an isomorphism φ : A −→ A′ with
φ(a) = a′ and φ(b) = b′. Then it is easily seen that A =

∏
{A′ : A′ ∈ F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a, b ∈ A.

Since a ∈ (b)A there is an ideal term q(x1, . . . , xk , y) in y such that
a = q(u1, . . . , uk , b) for some u1, . . . , uk ∈ A.

Then, if B ∈ V, a′, b′ ∈ B and a′ ∈ (b′)B, we get

a′ = φ(a) = φ(q(u1, . . . , uk , b)) = q(φ(u1), . . . , φ(uk), b
′).

Conversely if a′ = q(φ(u1), . . . , φ(uk), b
′), being q an ideal term in y we

get a′ ∈ (b′)B. So q is a UET for V and (1) holds.

Ideals in universal algebra IV: De�nability of principal ideals



That (2) implies (3) and (3) implies (4) are immediate, so let's assume
(4).

We consider a subset F of V such that for every �nitely generated algebra
A ∈ V and for every a, b ∈ A with a ∈ (b)A there are: an algebra A′ ∈ F,
a′, b′ ∈ A′ with a′ ∈ (b′)A and an isomorphism φ : A −→ A′ with
φ(a) = a′ and φ(b) = b′. Then it is easily seen that A =

∏
{A′ : A′ ∈ F}

is a test algebra for principal ideals.

Finally assume (5) and let A be a test algebra for principal ideals witness
a, b ∈ A.

Since a ∈ (b)A there is an ideal term q(x1, . . . , xk , y) in y such that
a = q(u1, . . . , uk , b) for some u1, . . . , uk ∈ A.

Then, if B ∈ V, a′, b′ ∈ B and a′ ∈ (b′)B, we get

a′ = φ(a) = φ(q(u1, . . . , uk , b)) = q(φ(u1), . . . , φ(uk), b
′).

Conversely if a′ = q(φ(u1), . . . , φ(uk), b
′), being q an ideal term in y we

get a′ ∈ (b′)B. So q is a UET for V and (1) holds.

Ideals in universal algebra IV: De�nability of principal ideals



EDPI

If in the de�nition of EDPI# we dispose of the parameters, then we
obtain the property we are interested in.

A variety V has equationally de�nable principal ideals (EDPI) if there
are terms pi (x , y), qi (x , y), i = 1, . . . , n such that for any A ∈ K and
a, b ∈ A

a ∈ (b)A if and only if pi (a, b) = qi (a, b), i = 1, . . . , n.

For subtractive varieties with EDPI we can get a strengthening of the
previous theorem.
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Theorem

[1] [2] For a subtractive variety V the following are equivalent.

1 V has EDPI.

2 There are binary terms pi , i = 1, . . . , n such that

a ∈ (b)A if and only if pi (a, b) = 0 i = 1, . . . , n.

3 There is a binary term p(x , y) such that

a ∈ (b)A if and only if p(a, b) = 0 i = 1, . . . , n.

4 For any family (Ai : i ∈ I ) of algebras in V and for any subalgebra B

of
∏

i∈I A for any a, b ∈ B,

a ∈ (b)B if and only if ai ∈ (bi )Ai , i ∈ I .

5 There exists an A ∈ V generated by two elements a and b, such that

(i) a ∈ (b)A;
(ii) for any B ∈ V and a′, b′ ∈ B, if a′ ∈ (b′)B then there is a

homomorphism φ of A into B such that φ(a) = a′ and φ(b) = b′.
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Theorem

6 There is a ternary term p(x , y , z) such that p(x , y , 0) ≈ 0 holds in V
and for any algebra A ∈ V, a, b ∈ A, a ∈ (b)A if and only if
p(a, b, b) = a.

7 For any A ∈ V the semilattice CI(A) is a dual Brouwerian
semilattice.

The proofs of equivalences (1)-(6) go along the lines of those of the
previous theorem. We will only show that (7) �ts well.
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Suppose V has EDPI with witness terms p1, . . . , pn.

First we show that for all A ∈ V, a, b ∈ A, I ∈ Id(A)

a ∈ (b)A ∨ I if and only if pi (a, b) ∈ I for i = 1, . . . , n.

In fact let I = 0/θ for some θ ∈ Con(A); then

a ∈ (b)A ∨ I if and only if a ∈ (b)A ∨ 0/θ

if and only if a/θ ∈ (b/θ)A/θ

if and only if pi (a/θ, b/θ) = 0/θ for i = 1, . . . , n

if and only if pi (a, b) ∈ I for i = 1, . . . , n.
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It follows that the operation

(a) ∗ (b) = (p1(a, b), . . . , pn(a, b))A

is a dual relative pseudocomplementation in CI(A) for any two principal
ideals of A.

But it is a general fact (see [7], Lemma 4) that, if any two elements of a
generating set of a join semilattice have a dual pseudocomplement, then
the semilattice is dually Brouwerian.
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For the converse assume that CI(A) is dually Brouwerian for any A ∈ V.

Let F be the algebra freely generated in V by {x , y , vj}j∈ω.

By hypothesis (x)F ∗ (y)F exists in CI(F), hence there are terms
ri (x , y , v1, v2, . . . ), i = 1, . . . , n such that

(x)F ∗ (y)F =
n∨

i=1

(ri (x , y , v1, v2, . . . ))F.
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Let pi (x , y) = ri (x , y , x , x , . . . ) and assume a ∈ (b)A.

Then there is a �nitely generated subalgebra B of A such that a ∈ (b)B.
Let φ be a homomorphism from F onto B such that φ(x) = φ(vj) = a

and φ(y) = b.

Then J = φ−1(0) ∈ Id(B) and we have

a ∈ (b)B if and only if φ(x) ∈ (φ(y))B

if and only if for some t ∈ (y)F, (x , t) ∈ kerφ

if and only if x ∈ (y)F ∨ J

if and only if ri (x , y , v1, v2, . . . ) ∈ J for i = 1, . . . , n

if and only if φ(ri (x , y , v1, v2, . . . ) = 0 for i = 1, . . . , n

if and only if ri (a, b, a, a, . . . ) = 0 for i = 1, . . . , n

if and only if pi (a, b) = 0 for i = 1, . . . , n.
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Corollary

Every subtractive variety V with EDPI is ideal distributive.

If A ∈ V we already know that Id(A) is isomorphic with the ideal lattice
of CI(A).

By the previous theorem the latter is a dual Brouwerian semilattice and it
is well known that the ideal lattice of a dual Brouwerian semilattice is
distributive.
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Let us remark that if A is a Hilbert algebra (or a Brouwerian semilattice)
a, b ∈ A and ∗ is the dual relative pseudocomplementation, then

a ∈ (b)A if and only if a ∗ b = 0.

This means that the binary term giving relative pseudocomplementation
witnesses both subtractivity and EDPI. In other words in a Brouwerian
semilattice A

(a)A ∗ (b)A = (a ∗ b)A.

Hence the set PI(A) of principal ideals of A is closed under ∗ and
⟨PI(A), ∗, (0)A⟩ is a dual Hilbert algebra.

Really we can go even further, since we can show that any algebra in a
subtractive variety with EDPI has a �weak structure� closely resembling a
dual Hilbert algebra.
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Theorem

[2] Let V be subtractive and EDPI. Then there exists a binary term x ∗ y
with the following properties.

1 For all A ∈ V and a ∈ A

a ∗ a = 0
a ∗ 0 = 0
0 ∗ a = a
b ∈ (a)A if and only if a ∗ b = 0.

2 The relation ≤ de�ned by a ≤ b if and only if b ∗ a = 0 is re�exive
and transitive. The associated equivalence relation ≈A is a
congruence of A∗ = ⟨A, ∗, 0⟩ and A∗/ ≈A is a dual Hilbert algebra
isomorphic with ⟨PI(A), ∗, (0)A⟩.

3 Any principal ideal of A is the union of a principal ideal of A∗/ ≈A

and viceversa. In fact (a)A =
⋃
(a/ ≈A)A∗/≈A

.
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Suppose that s(x , y) is the witness of subtractivity.

Then, since V has EDPI, from point (6) of the characterization theorem,
we get the existence of a ternary term p(x , y , z) such that, for any A ∈ V
and a, b ∈ A

p(b, a, 0) = 0 p(b, a, a) = b if and only if b ∈ (a)A.

De�ne x ∗ y = s(y , p(y , x , x)). Then

a ∗ a = s(a, p(a, a, a)) = s(a, a) = 0;
a ∗ 0 = s(0, p(0, a, a)) = s(0, 0) = 0;
0 ∗ a = s(a, p(a, 0, 0)) = s(a, 0) = a.
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Next, if b ∈ (a)A, then

a ∗ b = s(b, p(b, a, a)) = s(b, b) = 0.

Conversely, if a ∗ b = 0, then s(b, p(b, a, a)) = 0. Since 0 ∈ (a)A and
p(b, a, a) ∈ (a)A (p(x , y , z) is an ideal term in z), subtractivity yields
b ∈ (a)A as well. This takes care of (1).
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The fact that ≤ is a quasi order is obvious from the fact that ∗ witness
EDPI.

Consider the mapping
a 7−→ (a)A

from A to PI(A).

Then (a)A ∗ (b)A = (a ∗ b)A, therefore the mapping is a homomorphism
from A∗ to ⟨PI(A), ∗, (0)A⟩, whose kernel coincides with ≈A. Hence (2)
follows.
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Finally if b ∈ (a)A then a ∗ b = 0. This implies

(a ∗ b)/ ≈A= 0/ ≈A

and so
a/ ≈A ∗b/ ≈A= 0/ ≈A .

But A∗/ ≈A is a dual Hilbert algebra, thus it has EDPI with witness term
∗.

This implies
b/ ≈A ∈ (a/ ≈A)A∗/≈A

and so
b ∈

⋃
(a/ ≈A)A∗/≈A

.
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Next if b ∈
⋃
(a/ ≈A)A∗/≈A

, then b ∈ c/ ≈A∈ (a/ ≈A)A∗/≈A
, therefore

b ≈A c and
a/ ≈A ∗c/ ≈A= 0/ ≈A .

But this implies (a ∗ c)/ ≈A= 0/ ≈A and so a ∗ c = 0 (since
0/ ≈A= {0}, via (1)).

From a ∗ c = 0 and c ∗ b = 0 we get (via (2)) a ∗ b = 0 and therefore
b ∈ (a)A.

Ideals in universal algebra IV: De�nability of principal ideals



Next if b ∈
⋃
(a/ ≈A)A∗/≈A

, then b ∈ c/ ≈A∈ (a/ ≈A)A∗/≈A
, therefore

b ≈A c and
a/ ≈A ∗c/ ≈A= 0/ ≈A .

But this implies (a ∗ c)/ ≈A= 0/ ≈A and so a ∗ c = 0 (since
0/ ≈A= {0}, via (1)).

From a ∗ c = 0 and c ∗ b = 0 we get (via (2)) a ∗ b = 0 and therefore
b ∈ (a)A.

Ideals in universal algebra IV: De�nability of principal ideals



Next if b ∈
⋃
(a/ ≈A)A∗/≈A

, then b ∈ c/ ≈A∈ (a/ ≈A)A∗/≈A
, therefore

b ≈A c and
a/ ≈A ∗c/ ≈A= 0/ ≈A .

But this implies (a ∗ c)/ ≈A= 0/ ≈A and so a ∗ c = 0 (since
0/ ≈A= {0}, via (1)).

From a ∗ c = 0 and c ∗ b = 0 we get (via (2)) a ∗ b = 0 and therefore
b ∈ (a)A.

Ideals in universal algebra IV: De�nability of principal ideals



As a matter of fact the previous result has a converse which we state
without proof.

Theorem

[2] Let V be a variety with a constant 0 and such that the following hold.

1 There exists a binary term x ∗ y such that for any A ∈ V and a ∈ A

a ∗ a = 0
a ∗ 0 = 0
0 ∗ a = 0 ⇒ a = 0.

2 The relation ≈A de�ned by a ≈ b if and only if a ∗ b = b ∗ a = 0 is a
congruence of A∗ = ⟨A, ∗, 0⟩ and A∗/ ≈A has EDPI de�ned by
u/ ≈A∈ (v/ ≈A)A∗/≈A

if and only if u/ ≈A ∗v/ ≈A= 0/ ≈A.

3 For any a ∈ A

(a)A =
⋃

(a/ ≈A)A∗/≈A
.

Then V is subtractive and has EDPI: for any A ∈ V and a, b ∈ A

a ∈ (b)A if and only if a ∗ b = 0.
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Theorem

[2] Let V be a variety with a constant 0 and such that the following hold.

1 There exists a binary term x ∗ y such that for any A ∈ V and a ∈ A

a ∗ a = 0
a ∗ 0 = 0
0 ∗ a = 0 ⇒ a = 0.

2 The relation ≈A de�ned by a ≈ b if and only if a ∗ b = b ∗ a = 0 is a
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Meet and join generator terms

A class K has an n-system of principal ideal intersection terms if
there are binary terms q1, . . . , qn such that for any A ∈ K and a, b ∈ A,

(a)A ∩ (b)A =
n∨

i=1

(qi (a, b))A.

Theorem

[2] For a subtractive variety V the following are equivalent.

1 V has an n-system of principal ideal intersection terms.

2 V is ideal distributive and the compact ideals of any algebra in V are
closed under intersections.
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Assume (1) and let q1, . . . , qn be an n-system of principal ideal
intersection terms for V.

Note that qi (x , y) is a commutator term in x , y by de�nition, so for any
A ∈ V and a, b ∈ A [a, b]A = (a)A ∩ (b)A.

Therefore the commutator is neutral and thus V is ideal distributive.

This fact and the principal ideal intersection terms yield

m∨
j=1

(aj)A ∩
k∨

l=1

(bl)A =
m∨
j=1

k∨
l=1

n∨
i=1

(qi (aj , bl))A,

so (2) holds.
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Assume now (2) and let F be the algebra in V freely generated by
x , y , v1, v2, . . . .

Since the compact ideal are closed under intersections we have that

(x)F ∩ (y)F =
n∨

i=1

(ti (x , y , vi1 , . . . , vik ))F.

De�ne qi (x , y) = ti (x , y , x , . . . , x) for i = 1, . . . , n.
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Suppose that A ∈ V is �nitely generated and let a, b ∈ A.

Then there is a homomorphism f of F onto A such that
f (x) = f (vij ) = a and f (y) = b.

Now

c ∈ (a)A ∩ (b)A if and only if c ∈ (f (x))A ∩ (f (y))A

if and only if c ∈ [f (x), f (y)]F if and only if c ∈ f ([x , y ]F)

if and only if c ∈ f ((x)F ∩ (y)F) if and only if c ∈ f (
n∨

i=1

(ti (x , y , vi1 , . . . , vik ))F)

if and only if there is an ideal term t such that

c = f (t(u1, . . . , un, t1(x , y , v11 , . . . , v1k ), . . . , tn(x , y , vn1 , . . . , vnk )))

if and only if c = t(f (u1), . . . , f (un), t1(a, b, a, . . . , a), . . . , tn(a, b, a, . . . , a))

if and only if c = t(f (u1), . . . , f (un), q1(a, b), . . . , qn(a, b))

if and only if c ∈
n∨

i=1

(qi (a, b))A.

So the conclusion holds if A is �nitely generated.
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However, if c ∈ (a)A ∩ (b)A then there is a �nitely generated subalgebra
B of A such that c ∈ (a)B ∩ (b)B.

Therefore the conclusion holds in general and q1, . . . , qn is an n-system of
principal ideal intersection terms for V.
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The case n = 1 in the de�nition of n-system of principal ideal intersection
terms deserves a special name: the binary term witnessing that is called a
meet generator for V and is denoted by ⊓.

Then, for any A ∈ V and a, b ∈ A

(a)A ∩ (b)A = (a ⊓ b)A.

Just by looking at the proof of the previous theorem one sees that a
subtractive variety has a meet generator term if and only if it is ideal
distributive and the meet of two principal ideals is principal.
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If a subtractive EDPI variety V has a meet generator term ⊓, then the
principal ideals are closed under both intersection and dual relative
pseudocomplementation.

It follows that, for any A ∈ V, ⟨PI(A), ∗,∩, (0)A⟩ is a ∗,∩-subreduct of a
dual Brouwerian semilattice.

Moreover, via the meet generator term and distributivity of ideals, the
compact ideals themselves are closed under intersection, hence
⟨CI(A), ∗,∨,∩, (0)A⟩ is a dual relatively pseudocomplemented lattice.
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A join generator for a pointed variety V is a binary term x ⊔ y such that
for any A ∈ V and a, b ∈ A

(a)A ∨ (b)A = (a ⊔ b)A.

Proposition

[2] Let V be a pointed variety; then the following are equivalent.

1 The join of two principal ideals is principal.

2 Every compact ideal is principal.

3 There are a binary term ⊔ and two ternary terms r and t such that

0 ⊔ 0 ≈ 0

r(x , y , 0) ≈ t(x , y , 0) ≈ 0

r(x , y , x ⊔ y) ≈ x

t(x , y , x ⊔ y) ≈ y .

4 V has a join generator term.

Note that subtractivity is not needed.
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If a subtractive variety has EDPI and a join generator term we can obtain a
stronger characterization theorem.

Theorem

[2] Let V a subtractive EDPI variety in which the join of two principal ideals is
principal. Then there are binary terms ∗ and ⊔ such that the following hold.

1 For all A ∈ V and a, b, c ∈ A

a ∗ a = 0 (c ∗ a) ∗ ((c ∗ b) ∗ (c ∗ (a ⊔ b))) = 0

a ∗ 0 = 0 (a ⊔ b) ∗ b = (a ⊔ b) ∗ a = 0

0 ∗ a = a

b ∈ (a)A if and only if a ∗ b = 0

2 The relation ≤ de�ned by a ≤ b if and only if b ∗ a = 0 is re�exive and
transitive. The associated equivalence relation ≈A is a congruence of
A

⊔ = ⟨A, ∗,⊔, 0⟩ and A⊔/ ≈A is a dual Brouwerian semilattice isomorphic
with ⟨PI(A), ∗,∨, (0)A⟩.

3 Any principal ideal of A is the union of a principal ideal of A⊔/ ≈A and
viceversa. In fact (a)A =

⋃
(a/ ≈A)A⊔/≈A

.
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The proof of the previous theorem is similar to others we have already
seen. More interesting is the following:

Proposition

[2] Suppose V is a subtractive variety with EDPI and join generator term
. Then V has also a meet generator term.

First we observe that the equation

(x ∗ (x ∗ y)) ∨ (y ∗ (y ∗ x)) ≈ x ∧ y

holds in any dual relatively pseudocomplemented lattice (see for instance
[8]).
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Let then ⊔ be the join generator for V and de�ne

x ⊓ y = (x ∗ (x ∗ y)) ⊔ (y ∗ (y ∗ x)).

Now let A ∈ V and a, b ∈ A.

Since V has EDPI and a join generator term

(a ⊓ b)A = [(a)A ∗ ((a)A ∗ (b)A)] ∨ [(a)A ∗ ((a)A ∗ (b)A)] = (a)A ∩ (b)A,

where we have used the fact that the compact ideals form a dual
relatively pseudocomplemented lattice.

Hence x ⊓ y is a meet generator for V.
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Theorem

[2] Let V a subtractive variety with EDPI in which the join and the meet of two
principal ideals is principal. Then there are binary terms ∗, ⊔ and ⊓ such that
the following hold.

1 For all A ∈ V and a, b, c ∈ A

a ∗ a = 0 (c ∗ a) ∗ ((c ∗ b) ∗ (c ∗ (a ⊔ b))) = 0

a ∗ 0 = 0 (a ⊔ b) ∗ b = (a ⊔ b) ∗ a = 0

0 ∗ a = a (a ∗ c) ∗ ((b ∗ c) ∗ ((a ⊓ b) ∗ c)) = 0

b ∈ (a)A i� a ∗ b = 0 a ∗ (a ⊓ b) = b ∗ (a ⊓ b) = 0.

2 The relation ≤ de�ned by a ≤ b i� b ∗ a = 0 is re�exive and transitive.
The associated equivalence relation ≈A is a congruence of
A

⊓ = ⟨A, ∗,⊔,⊓, 0⟩ and A⊓/ ≈A is a relatively pseudocomplemented
lattice isomorphic with ⟨PI(A), ∗,∨,∩, (0)A⟩.

3 Any principal ideal of A is the union of a principal ideal of A⊓/ ≈A and
viceversa. In fact (a)A =

⋃
(a/ ≈A)A⊓/≈A

.
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Pseudocomplemented semilattices

A pseudocomplemented semilattice is an algebra of type ⟨∧, ∗, 0⟩
de�ned by the following identities

1 a set of identities de�ning meet semilattices;

2 x ∧ (x ∧ y)∗ = x ∧ y∗;

3 x ∧ 0∗ = x ;

4 0∗∗ = 0.

Note that by 3. 1 = 0∗ is the top element in the semilattice ordering.

Pseudocomplemented semilattices form a variety PS which is subtractive
with witness term x ∧ y∗.

Moreover if L ∈ PS and a ∈ L, then a∗ is the pseudocomplement of a,
i.e. for any b ∈ L

b ≤ a∗ if and only if a ∧ b = 0.
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It can be shown that

1 PS has EDPI

2 x ⊓ y := x∗∗ ∧ y∗∗ is a meet generator term;

3 x ⊔ y := (x∗ ∧ y∗)∗ is a join generator term.

4 PS is not congruence regular so it is not ideal determined.
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THANK YOU!
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