Ideals in universal algebra IV: Definability of principal ideals

Blansko, 8-12 September 2025

(Dual) Brownerian semilattices

A Brouwerian semilattice [6] is an algebra $\langle A, \to, \wedge, 1 \rangle$ such that for any $a,b,c \in A$

- $(A, \land, 1)$ is an upper bounded semilattice;
- $a \rightarrow a = 1$;
- $(a \rightarrow b) \land a = (b \rightarrow a) \land b;$

(Dual) Browuerian semilattices

A **Brouwerian semilattice** [6] is an algebra $\langle A, \to, \wedge, 1 \rangle$ such that for any $a,b,c \in A$

- $(A, \land, 1)$ is an upper bounded semilattice;
- $a \rightarrow a = 1$;
- $(a \rightarrow b) \land a = (b \rightarrow a) \land b;$
- $(a \wedge b) \rightarrow c = a \rightarrow (b \rightarrow c).$

If **A** is a Brouwerian semilattice and $a, b, c \in A$, then

$$c \le a \to b$$
 if and only if $a \land c \le b$.

Hence $a \rightarrow b$ is the relative pseudocomplement of a and b.

(Dual) Brownerian semilattices

A **Brouwerian semilattice** [6] is an algebra $\langle A, \to, \wedge, 1 \rangle$ such that for any $a,b,c \in A$

- $(A, \land, 1)$ is an upper bounded semilattice;
- $a \rightarrow a = 1$;
- $(a \wedge b) \rightarrow c = a \rightarrow (b \rightarrow c).$

If **A** is a Brouwerian semilattice and $a, b, c \in A$, then

$$c \le a \to b$$
 if and only if $a \land c \le b$.

Hence $a \rightarrow b$ is the relative pseudocomplement of a and b.

The variety BS of Brouwerian semilattice is of course ideal determined. Moreover it can be shown that the class of \rightarrow -subreduct of BS coincides with the variety HI of Hilbert algebras and that the congruences (hence the ideals) of a Brouwerian semilattice coincide with those of its \rightarrow -reduct.

A dual Brouwerian semilattice is a join semilattice with dual relative pseudocomplementation, i.e. an algebra $\langle A, \vee, *, 0 \rangle$ such that

$$a*b \le c$$
 if and only if $b \le a \lor c$.

A dual Brouwerian semilattice is a join semilattice with dual relative pseudocomplementation, i.e. an algebra $\langle A, \vee, *, 0 \rangle$ such that

$$a*b \le c$$
 if and only if $b \le a \lor c$.

A dual Hilbert algebra is the *-subreduct of a dual Brouwerian semilattice.

A dual Brouwerian semilattice is a join semilattice with dual relative pseudocomplementation, i.e. an algebra $\langle A, \vee, *, 0 \rangle$ such that

$$a*b \le c$$
 if and only if $b \le a \lor c$.

A dual Hilbert algebra is the *-subreduct of a dual Brouwerian semilattice.

The distinction between Brouwerian semilattices (Hilbert algebras) and dual Brouwerian semilattices (dual Hilbert algebras) is of course purely notational

Definability of principal ideals

For the notion of definable principal congruences and equationally definable principal congruences we refer to the literature, mainly to [5], [4] and [3].

Definability of principal ideals

For the notion of definable principal congruences and equationally definable principal congruences we refer to the literature, mainly to [5], [4] and [3].

If K is a class of algebras, we say that K has **definable principal ideals** (DPI) if there is a first order formula $\Psi(x, y, y_1, \ldots, y_n)$ in the language of K such that for all $\mathbf{A} \in K$, $a, b \in A$

$$a \in (b)_A$$
 if and only if $A \models \exists y_1, \dots, y_n \, \Psi(a, b, y_1, \dots, y_n).$

Definability of principal ideals

For the notion of definable principal congruences and equationally definable principal congruences we refer to the literature, mainly to [5], [4] and [3].

If K is a class of algebras, we say that K has **definable principal ideals** (DPI) if there is a first order formula $\Psi(x, y, y_1, \dots, y_n)$ in the language of K such that for all $\mathbf{A} \in K$, $a, b \in A$

$$a \in (b)_A$$
 if and only if $A \models \exists y_1, \dots, y_n \, \Psi(a, b, y_1, \dots, y_n).$

Proposition

- [2] Let K be a class of algebras with a constant 0.
 - If K has normal ideals and has definable principal congruences, then K has definable principal ideals.
 - 2 If K is contained in an ideal determined variety and has definable principal ideals then K has definable principal congruences.

We say that **K** has **equationally definable principal ideals in the broad sense** (EDPI $^{\#}$ for short) if there are terms p_i, q_i i = 1, ..., k such that for all $\mathbf{A} \in K$, $a, b \in A$

$$a \in (b)_{\mathbf{A}}$$
 if and only if $\exists u_1, u_2, \dots \in A$ s.t.
 $p_i(a, b, u_1, u_2, \dots) = q_i(a, b, u_1, u_2, \dots)$ for all $i = 1, \dots, k$

A class K has a **uniform implicit term** p for principal ideals (UIT) if for any $\mathbf{A} \in \mathsf{K}$ $a,b \in A$

 $a \in (b)_A$ if and only if $\exists u_1, u_2, \dots \in A$ s.t. $p(a, b, u_1, u_2, \dots) = 0$.

A class K has a **uniform implicit term** p for principal ideals (UIT) if for any $\mathbf{A} \in K$ $a, b \in A$

$$a \in (b)_{\mathbf{A}}$$
 if and only if $\exists u_1, u_2, \dots \in A \text{ s.t.}$ $p(a, b, u_1, u_2, \dots) = 0.$

Next K has a **uniform explicit term** $q(x_1, ..., x_n, y)$ for principal ideals (UET) if q is an ideal term in y and moreover, for any $\mathbf{A} \in K$

$$a \in (b)_A$$
 if and only if $\exists u_1, \dots, u_n \in A$ s.t. $q(u_1, \dots, u_n, b) = a$.

A variety V has factorable principal ideals on direct products if, whenever $\mathbf{A}_i \in V$ and $b \in \prod_{i \in I} \mathbf{A}_i$,

$$\prod_{i\in I}(b_i)_{\mathbf{A}_i}\subseteq (b)_{\mathbf{A}}.$$

A variety V has factorable principal ideals on direct products if, whenever $\mathbf{A}_i \in V$ and $b \in \prod_{i \in I} \mathbf{A}_i$,

$$\prod_{i\in I}(b_i)_{\mathbf{A}_i}\subseteq (b)_{\mathbf{A}}.$$

Note that the inclusion $(b)_{\mathbf{A}} \subseteq \prod_{i \in I} (b_i)_{\mathbf{A}_i}$ holds in any case.

A variety V has factorable principal ideals on direct products if, whenever $\mathbf{A}_i \in V$ and $b \in \prod_{i \in I} \mathbf{A}_i$,

$$\prod_{i\in I}(b_i)_{\mathbf{A}_i}\subseteq (b)_{\mathbf{A}}.$$

Note that the inclusion $(b)_{\mathbf{A}} \subseteq \prod_{i \in I} (b_i)_{\mathbf{A}_i}$ holds in any case.

A variety V has a **test algebra for principal ideals**, if there exists an $A \in V$ and $a, b \in A$, such that

- $a \in (b)_A$;
- for any $\mathbf{B} \in V$ and $a', b' \in \mathbf{B}$, if $a' \in (b')_{\mathbf{B}}$ then there is a homomorphism φ of \mathbf{A} into \mathbf{B} such that $\varphi(a) = a'$ and $\varphi(b) = b'$.

- [2] For a subtractive variety V the following are equivalent:
 - 1 V has a UET.
 - 2 V has a UIT.
 - 3 V has EDPI#.
 - 4 V has factorable principal ideals on direct products.
 - 5 V has a test algebra for principal ideals.

Define

$$p(x_1,\ldots,x_k,x,y)=s(x,q(x_1,\ldots,x_k,y)).$$

If $a \in (b)_{\mathsf{A}}$ then there are $u_1, \ldots, u_n \in A$ such that $q(u_1, \ldots, u_n, b) = a$.

Define

$$p(x_1,\ldots,x_k,x,y)=s(x,q(x_1,\ldots,x_k,y)).$$

If $a\in (b)_{\mathbf A}$ then there are $u_1,\ldots,u_n\in A$ such that $q(u_1,\ldots,u_n,b)=a$.

Thus

$$p(u_1,\ldots,u_k,a,b) = s(a,q(u_1,\ldots,u_n,b)) = s(a,a) = 0.$$

Define

$$p(x_1,\ldots,x_k,x,y)=s(x,q(x_1,\ldots,x_k,y)).$$

If $a\in (b)_{\mathbf A}$ then there are $u_1,\ldots,u_n\in A$ such that $q(u_1,\ldots,u_n,b)=a$.

Thus

$$p(u_1,\ldots,u_k,a,b) = s(a,q(u_1,\ldots,u_n,b)) = s(a,a) = 0.$$

On the other hand if for some $u_1, \ldots, u_k \in A$, $p(u_1, \ldots, u_k, a, b) = 0$, then

$$s(a,q(u_1,\ldots,u_k,b))=0\in (b)_{\mathbf{A}}.$$

Define

$$p(x_1,\ldots,x_k,x,y)=s(x,q(x_1,\ldots,x_k,y)).$$

If $a \in (b)_A$ then there are $u_1, \ldots, u_n \in A$ such that $q(u_1, \ldots, u_n, b) = a$.

Thus

$$p(u_1,\ldots,u_k,a,b)=s(a,q(u_1,\ldots,u_n,b))=s(a,a)=0.$$

On the other hand if for some $u_1, \ldots, u_k \in A$, $p(u_1, \ldots, u_k, a, b) = 0$, then

$$s(a,q(u_1,\ldots,u_k,b))=0\in (b)_{\mathbf{A}}.$$

Since q is an ideal term in y and $q(\vec{u}, b) \in (b)_A$ we conclude that $a \in (b)_A$. This shows that p is a UIT for K.

We consider a *subset* F of V such that for every finitely generated algebra $\mathbf{A} \in V$ and for every $a, b \in A$ with $a \in (b)_{\mathbf{A}}$ there are: an algebra $\mathbf{A}' \in F$, $a', b' \in A'$ with $a' \in (b')_{\mathbf{A}}$ and an isomorphism $\varphi : \mathbf{A} \longrightarrow \mathbf{A}'$ with $\varphi(a) = a'$ and $\varphi(b) = b'$.

We consider a *subset* F of V such that for every finitely generated algebra $\mathbf{A} \in V$ and for every $a, b \in A$ with $a \in (b)_{\mathbf{A}}$ there are: an algebra $\mathbf{A}' \in F$, $a', b' \in A'$ with $a' \in (b')_{\mathbf{A}}$ and an isomorphism $\varphi : \mathbf{A} \longrightarrow \mathbf{A}'$ with $\varphi(a) = a'$ and $\varphi(b) = b'$. Then it is easily seen that $\mathbf{A} = \prod \{\mathbf{A}' : \mathbf{A}' \in F\}$ is a test algebra for principal ideals.

We consider a *subset* F of V such that for every finitely generated algebra $\mathbf{A} \in V$ and for every $a, b \in A$ with $a \in (b)_{\mathbf{A}}$ there are: an algebra $\mathbf{A}' \in F$, $a', b' \in A'$ with $a' \in (b')_{\mathbf{A}}$ and an isomorphism $\varphi : \mathbf{A} \longrightarrow \mathbf{A}'$ with $\varphi(a) = a'$ and $\varphi(b) = b'$. Then it is easily seen that $\mathbf{A} = \prod \{\mathbf{A}' : \mathbf{A}' \in F\}$

Finally assume (5) and let **A** be a test algebra for principal ideals witness $a, b \in A$.

is a test algebra for principal ideals.

We consider a *subset* F of V such that for every finitely generated algebra $\mathbf{A} \in V$ and for every $a, b \in A$ with $a \in (b)_{\mathbf{A}}$ there are: an algebra $\mathbf{A}' \in F$, $a', b' \in A'$ with $a' \in (b')_{\mathbf{A}}$ and an isomorphism $\varphi : \mathbf{A} \longrightarrow \mathbf{A}'$ with $\varphi(a) = a'$ and $\varphi(b) = b'$. Then it is easily seen that $\mathbf{A} = \prod \{\mathbf{A}' : \mathbf{A}' \in F\}$

Finally assume (5) and let **A** be a test algebra for principal ideals witness $a, b \in A$.

Since $a \in (b)_A$ there is an ideal term $q(x_1, \ldots, x_k, y)$ in y such that $a = q(u_1, \ldots, u_k, b)$ for some $u_1, \ldots, u_k \in A$.

is a test algebra for principal ideals.

We consider a *subset* F of V such that for every finitely generated algebra $\mathbf{A} \in V$ and for every $a, b \in A$ with $a \in (b)_{\mathbf{A}}$ there are: an algebra $\mathbf{A}' \in F$, $a', b' \in A'$ with $a' \in (b')_{\mathbf{A}}$ and an isomorphism $\varphi : \mathbf{A} \longrightarrow \mathbf{A}'$ with $\varphi(a) = a'$ and $\varphi(b) = b'$. Then it is easily seen that $\mathbf{A} = \prod \{\mathbf{A}' : \mathbf{A}' \in F\}$

Finally assume (5) and let **A** be a test algebra for principal ideals witness $a, b \in A$.

Since $a \in (b)_A$ there is an ideal term $q(x_1, \ldots, x_k, y)$ in y such that $a = q(u_1, \ldots, u_k, b)$ for some $u_1, \ldots, u_k \in A$.

Then, if $\mathbf{B} \in V$, $a', b' \in \mathbf{B}$ and $a' \in (b')_{\mathbf{B}}$, we get

is a test algebra for principal ideals.

$$a' = \varphi(a) = \varphi(q(u_1, \ldots, u_k, b)) = q(\varphi(u_1), \ldots, \varphi(u_k), b').$$

We consider a *subset* F of V such that for every finitely generated algebra $\mathbf{A} \in V$ and for every $a, b \in A$ with $a \in (b)_{\mathbf{A}}$ there are: an algebra $\mathbf{A}' \in F$, $a', b' \in A'$ with $a' \in (b')_{\mathbf{A}}$ and an isomorphism $\varphi : \mathbf{A} \longrightarrow \mathbf{A}'$ with $\varphi(a) = a'$ and $\varphi(b) = b'$. Then it is easily seen that $\mathbf{A} = \prod \{\mathbf{A}' : \mathbf{A}' \in F\}$

is a test algebra for principal ideals.

Finally assume (5) and let **A** be a test algebra for principal ideals witness $a, b \in A$.

Since $a \in (b)_A$ there is an ideal term $q(x_1, \ldots, x_k, y)$ in y such that $a = q(u_1, \ldots, u_k, b)$ for some $u_1, \ldots, u_k \in A$.

Then, if $\mathbf{B} \in V$, $a', b' \in \mathbf{B}$ and $a' \in (b')_{\mathbf{B}}$, we get

$$a' = \varphi(a) = \varphi(q(u_1, \ldots, u_k, b)) = q(\varphi(u_1), \ldots, \varphi(u_k), b').$$

Conversely if $a' = q(\varphi(u_1), \dots, \varphi(u_k), b')$, being q an ideal term in y we get $a' \in (b')_B$. So q is a UET for V and (1) holds.

EDPI

If in the definition of EDPI $^{\#}$ we dispose of the parameters, then we obtain the property we are interested in.

EDPI

If in the definition of $EDPI^{\#}$ we dispose of the parameters, then we obtain the property we are interested in.

A variety V has **equationally definable principal ideals** (EDPI) if there are terms $p_i(x,y), q_i(x,y), i=1,\ldots,n$ such that for any $\mathbf{A} \in \mathsf{K}$ and $a,b \in \mathsf{A}$

$$a \in (b)_A$$
 if and only if $p_i(a,b) = q_i(a,b), i = 1,...,n.$

If in the definition of EDPI# we dispose of the parameters, then we obtain the property we are interested in.

A variety V has **equationally definable principal ideals** (EDPI) if there are terms $p_i(x,y), q_i(x,y), i=1,\ldots,n$ such that for any $\mathbf{A} \in \mathsf{K}$ and $a,b \in \mathsf{A}$

$$a \in (b)_A$$
 if and only if $p_i(a,b) = q_i(a,b), i = 1, ..., n$.

For subtractive varieties with EDPI we can get a strengthening of the previous theorem.

- [1] [2] For a subtractive variety V the following are equivalent.
 - 1 V has EDPI.
 - **2** There are binary terms p_i , i = 1, ..., n such that

$$a \in (b)_A$$
 if and only if $p_i(a, b) = 0$ $i = 1, ..., n$.

3 There is a binary term p(x, y) such that

$$a \in (b)_A$$
 if and only if $p(a,b) = 0$ $i = 1, ..., n$.

4 For any family $(A_i : i \in I)$ of algebras in V and for any subalgebra B of $\prod_{i \in I} A$ for any $a, b \in B$,

$$a \in (b)_B$$
 if and only if $a_i \in (b_i)_{A_i}$, $i \in I$.

- **5** There exists an $\mathbf{A} \in V$ generated by two elements a and b, such that
 - (i) $a \in (b)_A$;
 - (ii) for any $\mathbf{B} \in V$ and $a', b' \in \mathbf{B}$, if $a' \in (b')_{\mathbf{B}}$ then there is a homomorphism φ of \mathbf{A} into \mathbf{B} such that $\varphi(a) = a'$ and $\varphi(b) = b'$.

- **16** There is a ternary term p(x, y, z) such that $p(x, y, 0) \approx 0$ holds in V and for any algebra $\mathbf{A} \in V$, $a, b \in A$, $a \in (b)_{\mathbf{A}}$ if and only if p(a, b, b) = a.
- **7** For any $\mathbf{A} \in V$ the semilattice $\mathrm{CI}(\mathbf{A})$ is a dual Brouwerian semilattice.

- There is a ternary term p(x, y, z) such that $p(x, y, 0) \approx 0$ holds in V and for any algebra $\mathbf{A} \in V$, $a, b \in A$, $a \in (b)_{\mathbf{A}}$ if and only if p(a, b, b) = a.
- **7** For any $\mathbf{A} \in V$ the semilattice $CI(\mathbf{A})$ is a dual Brouwerian semilattice.

The proofs of equivalences (1)-(6) go along the lines of those of the previous theorem. We will only show that (7) fits well.

Suppose V has EDPI with witness terms p_1, \ldots, p_n .

Suppose V has EDPI with witness terms p_1, \ldots, p_n .

First we show that for all $\mathbf{A} \in V$, $a,b \in A$, $I \in \mathrm{Id}(\mathbf{A})$

$$a \in (b)_A \vee I$$
 if and only if $p_i(a, b) \in I$ for $i = 1, ..., n$.

Suppose V has EDPI with witness terms p_1, \ldots, p_n .

First we show that for all $\mathbf{A} \in V$, $a, b \in A$, $I \in \mathrm{Id}(\mathbf{A})$

$$a \in (b)_A \vee I$$
 if and only if $p_i(a, b) \in I$ for $i = 1, ..., n$.

In fact let $I = 0/\theta$ for some $\theta \in Con(\mathbf{A})$; then

$$a \in (b)_{\mathbf{A}} \vee I$$
 if and only if $a \in (b)_{\mathbf{A}} \vee 0/\theta$
if and only if $a/\theta \in (b/\theta)_{\mathbf{A}/\theta}$
if and only if $p_i(a/\theta, b/\theta) = 0/\theta$ for $i = 1, \dots, n$
if and only if $p_i(a, b) \in I$ for $i = 1, \dots, n$.

It follows that the operation

$$(a)*(b)=(p_1(a,b),\ldots,p_n(a,b))_{A}$$

is a dual relative pseudocomplementation in $\mathrm{CI}(\mathbf{A})$ for any two principal ideals of \mathbf{A} .

It follows that the operation

$$(a)*(b)=(p_1(a,b),\ldots,p_n(a,b))_{A}$$

is a dual relative pseudocomplementation in $\mathrm{CI}(\mathbf{A})$ for any two principal ideals of \mathbf{A} .

But it is a general fact (see [7], Lemma 4) that, if any two elements of a generating set of a join semilattice have a dual pseudocomplement, then the semilattice is dually Brouwerian.

For the converse assume that $\mathrm{CI}(\mathbf{A})$ is dually Brouwerian for any $\mathbf{A} \in V$.

For the converse assume that $\mathrm{CI}(\mathbf{A})$ is dually Brouwerian for any $\mathbf{A} \in V$. Let \mathbf{F} be the algebra freely generated in V by $\{x,y,v_i\}_{i\in\omega}$.

For the converse assume that $\mathrm{CI}(\mathbf{A})$ is dually Brouwerian for any $\mathbf{A} \in V$.

Let **F** be the algebra freely generated in V by $\{x, y, v_j\}_{j \in \omega}$.

By hypothesis $(x)_F * (y)_F$ exists in CI(F), hence there are terms $r_i(x, y, v_1, v_2, ...)$, i = 1, ..., n such that

$$(x)_{\mathsf{F}} * (y)_{\mathsf{F}} = \bigvee_{i=1}^{n} (r_i(x, y, v_1, v_2, \dots))_{\mathsf{F}}.$$

Let $p_i(x,y) = r_i(x,y,x,x,...)$ and assume $a \in (b)_A$.

Let $p_i(x, y) = r_i(x, y, x, x, ...)$ and assume $a \in (b)_A$.

Then there is a finitely generated subalgebra **B** of **A** such that $a \in (b)_B$.

Let $p_i(x, y) = r_i(x, y, x, x, ...)$ and assume $a \in (b)_A$.

Then there is a finitely generated subalgebra **B** of **A** such that $a \in (b)_B$. Let φ be a homomorphism from **F** onto **B** such that $\varphi(x) = \varphi(v_j) = a$ and $\varphi(y) = b$.

Let $p_i(x,y) = r_i(x,y,x,x,...)$ and assume $a \in (b)_A$.

Then there is a finitely generated subalgebra **B** of **A** such that $a \in (b)_B$. Let φ be a homomorphism from **F** onto **B** such that $\varphi(x) = \varphi(v_j) = a$ and $\varphi(y) = b$.

Then $J = \varphi^{-1}(0) \in \mathrm{Id}(\mathbf{B})$ and we have

$$a \in (b)_B$$
 if and only if $\varphi(x) \in (\varphi(y))_B$ if and only if for some $t \in (y)_F$, $(x,t) \in ker\varphi$ if and only if $x \in (y)_F \vee J$ if and only if $r_i(x,y,v_1,v_2,\dots) \in J$ for $i=1,\dots,n$ if and only if $\varphi(r_i(x,y,v_1,v_2,\dots) = 0$ for $i=1,\dots,n$ if and only if $r_i(a,b,a,a,\dots) = 0$ for $i=1,\dots,n$ if and only if $p_i(a,b) = 0$ for $i=1,\dots,n$.

Corollary

Every subtractive variety V with EDPI is ideal distributive.

Corollary

Every subtractive variety V with EDPI is ideal distributive.

If $A \in V$ we already know that $\mathrm{Id}(A)$ is isomorphic with the ideal lattice of $\mathrm{CI}(A)$.

Corollary

Every subtractive variety V with EDPI is ideal distributive.

If $\mathbf{A} \in V$ we already know that $\mathrm{Id}(\mathbf{A})$ is isomorphic with the ideal lattice of $\mathrm{CI}(\mathbf{A})$.

By the previous theorem the latter is a dual Brouwerian semilattice and it is well known that the ideal lattice of a dual Brouwerian semilattice is distributive

$$a \in (b)_A$$
 if and only if $a * b = 0$.

$$a \in (b)_A$$
 if and only if $a * b = 0$.

This means that the binary term giving relative pseudocomplementation witnesses *both* subtractivity and EDPI. In other words in a Brouwerian semilattice **A**

$$(a)_{\mathbf{A}}*(b)_{\mathbf{A}}=(a*b)_{\mathbf{A}}.$$

$$a \in (b)_A$$
 if and only if $a * b = 0$.

This means that the binary term giving relative pseudocomplementation witnesses *both* subtractivity and EDPI. In other words in a Brouwerian semilattice **A**

$$(a)_{\mathbf{A}}*(b)_{\mathbf{A}}=(a*b)_{\mathbf{A}}.$$

Hence the set $\mathrm{PI}(\mathbf{A})$ of principal ideals of \mathbf{A} is closed under * and $\langle \mathrm{PI}(\mathbf{A}), *, (0)_{\mathbf{A}} \rangle$ is a dual Hilbert algebra.

$$a \in (b)_A$$
 if and only if $a * b = 0$.

This means that the binary term giving relative pseudocomplementation witnesses *both* subtractivity and EDPI. In other words in a Brouwerian semilattice **A**

$$(a)_{\mathbf{A}}*(b)_{\mathbf{A}}=(a*b)_{\mathbf{A}}.$$

Hence the set $\operatorname{PI}(\mathbf{A})$ of principal ideals of \mathbf{A} is closed under * and $\langle \operatorname{PI}(\mathbf{A}), *, (0)_{\mathbf{A}} \rangle$ is a dual Hilbert algebra.

Really we can go even further, since we can show that any algebra in a subtractive variety with EDPI has a "weak structure" closely resembling a dual Hilbert algebra.

Theorem

- [2] Let V be subtractive and EDPI. Then there exists a binary term x * y with the following properties.
 - **I** For all $\mathbf{A} \in V$ and $\mathbf{a} \in A$

$$a*a=0$$

 $a*0=0$
 $0*a=a$
 $b \in (a)_A$ if and only if $a*b=0$.

- **2** The relation \leq defined by $a \leq b$ if and only if b*a=0 is reflexive and transitive. The associated equivalence relation $\approx_{\mathbf{A}}$ is a congruence of $\mathbf{A}^* = \langle A, *, 0 \rangle$ and $\mathbf{A}^* / \approx_{\mathbf{A}}$ is a dual Hilbert algebra isomorphic with $\langle \operatorname{PI}(\mathbf{A}), *, (0)_{\mathbf{A}} \rangle$.
- **3** Any principal ideal of **A** is the union of a principal ideal of $\mathbf{A}^*/\approx_{\mathbf{A}}$ and viceversa. In fact $(\mathbf{a})_{\mathbf{A}}=\bigcup (\mathbf{a}/\approx_{\mathbf{A}})_{\mathbf{A}^*/\approx_{\mathbf{A}}}$.

Suppose that s(x, y) is the witness of subtractivity.

Suppose that s(x, y) is the witness of subtractivity.

Then, since V has EDPI, from point (6) of the characterization theorem, we get the existence of a ternary term p(x, y, z) such that, for any $\mathbf{A} \in V$ and $a, b \in A$

$$p(b, a, 0) = 0$$
 $p(b, a, a) = b$ if and only if $b \in (a)_A$.

Suppose that s(x, y) is the witness of subtractivity.

Then, since V has EDPI, from point (6) of the characterization theorem, we get the existence of a ternary term p(x, y, z) such that, for any $\mathbf{A} \in V$ and $a, b \in A$

$$p(b, a, 0) = 0$$
 $p(b, a, a) = b$ if and only if $b \in (a)_A$.

Define
$$x * y = s(y, p(y, x, x))$$
. Then

$$a * a = s(a, p(a, a, a)) = s(a, a) = 0;$$

$$a * 0 = s(0, p(0, a, a)) = s(0, 0) = 0;$$

$$0 * a = s(a, p(a, 0, 0)) = s(a, 0) = a.$$

Next, if $b \in (a)_A$, then

$$a * b = s(b, p(b, a, a)) = s(b, b) = 0.$$

Next, if $b \in (a)_A$, then

$$a * b = s(b, p(b, a, a)) = s(b, b) = 0.$$

Conversely, if a*b=0, then s(b,p(b,a,a))=0. Since $0\in(a)_A$ and $p(b,a,a)\in(a)_A$ (p(x,y,z) is an ideal term in z), subtractivity yields $b\in(a)_A$ as well. This takes care of (1).

The fact that \leq is a quasi order is obvious from the fact that * witness EDPI.

The fact that \leq is a quasi order is obvious from the fact that * witness EDPI.

Consider the mapping

$$a \longmapsto (a)_{\mathbf{A}}$$

from \boldsymbol{A} to $\operatorname{PI}(\boldsymbol{A})$.

The fact that \leq is a quasi order is obvious from the fact that * witness EDPI.

Consider the mapping

$$a \longmapsto (a)_{\mathbf{A}}$$

from A to PI(A).

Then $(a)_{\mathbf{A}} * (b)_{\mathbf{A}} = (a * b)_{\mathbf{A}}$, therefore the mapping is a homomorphism from \mathbf{A}^* to $\langle \operatorname{PI}(\mathbf{A}), *, (0)_{\mathbf{A}} \rangle$, whose kernel coincides with $\approx_{\mathbf{A}}$. Hence (2) follows.

Finally if $b \in (a)_A$ then a * b = 0. This implies

$$(a*b)/\approx_{\mathbf{A}}=0/\approx_{\mathbf{A}}$$

and so

$$a/\approx_{\mathbf{A}}*b/\approx_{\mathbf{A}}=0/\approx_{\mathbf{A}}.$$

Finally if $b \in (a)_A$ then a * b = 0. This implies

$$(a*b)/\approx_{\mathbf{A}}=0/\approx_{\mathbf{A}}$$

and so

$$a/\approx_{\mathbf{A}}*b/\approx_{\mathbf{A}}=0/\approx_{\mathbf{A}}$$
 .

But $\mathbf{A}^*/\approx_{\mathbf{A}}$ is a dual Hilbert algebra, thus it has EDPI with witness term *.

Finally if $b \in (a)_A$ then a * b = 0. This implies

$$(a*b)/\approx_{\mathbf{A}}=0/\approx_{\mathbf{A}}$$

and so

$$a/\approx_{\mathbf{A}}*b/\approx_{\mathbf{A}}=0/\approx_{\mathbf{A}}.$$

But $\mathbf{A}^*/\approx_{\mathbf{A}}$ is a dual Hilbert algebra, thus it has EDPI with witness term *.

This implies

$$b/pprox_{\mathbf{A}}\in(a/pprox_{\mathbf{A}})_{\mathbf{A}^*/pprox_{\mathbf{A}}}$$

and so

$$b\in \bigcup (a/\approx_{\mathbf{A}})_{\mathbf{A}^*/\approx_{\mathbf{A}}}.$$

Next if $b\in \bigcup (a/\approx_{\mathbf{A}})_{\mathbf{A}^*/\approx_{\mathbf{A}}}$, then $b\in c/\approx_{\mathbf{A}}\in (a/\approx_{\mathbf{A}})_{\mathbf{A}^*/\approx_{\mathbf{A}}}$, therefore $b\approx_{\mathbf{A}}c$ and $a/\approx_{\mathbf{A}}*c/\approx_{\mathbf{A}}=0/\approx_{\mathbf{A}}$.

Next if $b\in \bigcup (a/\approx_A)_{A^*/\approx_A}$, then $b\in c/\approx_A\in (a/\approx_A)_{A^*/\approx_A}$, therefore $b\approx_A c$ and

$$a/\approx_{\mbox{\bf A}}*c/\approx_{\mbox{\bf A}}=0/\approx_{\mbox{\bf A}}$$
 .

But this implies $(a*c)/\approx_{\mathbf{A}} = 0/\approx_{\mathbf{A}}$ and so a*c=0 (since $0/\approx_{\mathbf{A}} = \{0\}$, via (1)).

Next if $b \in \bigcup (a/\approx_A)_{A^*/\approx_A}$, then $b \in c/\approx_A \in (a/\approx_A)_{A^*/\approx_A}$, therefore $b\approx_A c$ and

$$a/\approx_{\mathbf{A}}*c/\approx_{\mathbf{A}}=0/\approx_{\mathbf{A}}$$
 .

But this implies $(a*c)/\approx_{\mathbf{A}} = 0/\approx_{\mathbf{A}}$ and so a*c=0 (since $0/\approx_{\mathbf{A}} = \{0\}$, via (1)).

From a*c=0 and c*b=0 we get (via (2)) a*b=0 and therefore $b\in(a)_{\mathbf{A}}$.

As a matter of fact the previous result has a converse which we state without proof.

As a matter of fact the previous result has a converse which we state without proof.

Theorem

[2] Let V be a variety with a constant 0 and such that the following hold.

1 There exists a binary term x * y such that for any $A \in V$ and $a \in A$

$$a*a = 0$$

$$a*0 = 0$$

$$0*a = 0 \Rightarrow a = 0.$$

- 2 The relation $\approx_{\mathbf{A}}$ defined by $\mathbf{a} \approx \mathbf{b}$ if and only if $\mathbf{a} * \mathbf{b} = \mathbf{b} * \mathbf{a} = \mathbf{0}$ is a congruence of $\mathbf{A}^* = \langle A, *, \mathbf{0} \rangle$ and $\mathbf{A}^* / \approx_{\mathbf{A}}$ has EDPI defined by $u / \approx_{\mathbf{A}} \in (\mathbf{v} / \approx_{\mathbf{A}})_{\mathbf{A}^* / \approx_{\mathbf{A}}}$ if and only if $u / \approx_{\mathbf{A}} * \mathbf{v} / \approx_{\mathbf{A}} = \mathbf{0} / \approx_{\mathbf{A}}$.
- \blacksquare For any $a \in A$

$$(a)_{\mathbf{A}} = \bigcup (a/\approx_{\mathbf{A}})_{\mathbf{A}^*/\approx_{\mathbf{A}}}.$$

Then V is subtractive and has EDPI: for any $\mathbf{A} \in V$ and $\mathbf{a}, \mathbf{b} \in A$

$$a \in (b)_A$$
 if and only if $a * b = 0$.

Meet and join generator terms

A class K has an *n*-system of principal ideal intersection terms if there are binary terms q_1, \ldots, q_n such that for any $\mathbf{A} \in K$ and $a, b \in A$,

$$(a)_{\mathtt{A}}\cap (b)_{\mathtt{A}}=\bigvee_{i=1}^n(q_i(a,b))_{\mathtt{A}}.$$

Meet and join generator terms

A class K has an *n*-system of principal ideal intersection terms if there are binary terms q_1, \ldots, q_n such that for any $\mathbf{A} \in K$ and $a, b \in A$,

$$(a)_{\mathtt{A}}\cap (b)_{\mathtt{A}}=\bigvee_{i=1}^n(q_i(a,b))_{\mathtt{A}}.$$

Theorem

- [2] For a subtractive variety V the following are equivalent.
 - V has an n-system of principal ideal intersection terms.
 - 2 V is ideal distributive and the compact ideals of any algebra in V are closed under intersections.

Note that $q_i(x, y)$ is a commutator term in x, y by definition, so for any $\mathbf{A} \in V$ and $a, b \in A$ $[a, b]_{\mathbf{A}} = (a)_{\mathbf{A}} \cap (b)_{\mathbf{A}}$.

Note that $q_i(x, y)$ is a commutator term in x, y by definition, so for any $\mathbf{A} \in V$ and $a, b \in A$ $[a, b]_{\mathbf{A}} = (a)_{\mathbf{A}} \cap (b)_{\mathbf{A}}$.

Therefore the commutator is neutral and thus V is ideal distributive.

Note that $q_i(x, y)$ is a commutator term in x, y by definition, so for any $\mathbf{A} \in V$ and $a, b \in A$ $[a, b]_{\mathbf{A}} = (a)_{\mathbf{A}} \cap (b)_{\mathbf{A}}$.

Therefore the commutator is neutral and thus V is ideal distributive.

This fact and the principal ideal intersection terms yield

$$\bigvee_{j=1}^{m} (a_{j})_{A} \cap \bigvee_{l=1}^{k} (b_{l})_{A} = \bigvee_{j=1}^{m} \bigvee_{l=1}^{k} \bigvee_{i=1}^{n} (q_{i}(a_{j}, b_{l}))_{A},$$

so (2) holds.

Assume now (2) and let **F** be the algebra in V freely generated by x, y, v_1, v_2, \ldots

Assume now (2) and let **F** be the algebra in V freely generated by x, y, v_1, v_2, \ldots

Since the compact ideal are closed under intersections we have that

$$(x)_{\mathsf{F}} \cap (y)_{\mathsf{F}} = \bigvee_{i=1}^{n} (t_i(x, y, v_{i_1}, \dots, v_{i_k}))_{\mathsf{F}}.$$

Assume now (2) and let **F** be the algebra in V freely generated by x, y, v_1, v_2, \ldots

Since the compact ideal are closed under intersections we have that

$$(x)_{\mathsf{F}} \cap (y)_{\mathsf{F}} = \bigvee_{i=1}^{n} (t_i(x, y, v_{i_1}, \dots, v_{i_k}))_{\mathsf{F}}.$$

Define $q_i(x, y) = t_i(x, y, x, \dots, x)$ for $i = 1, \dots, n$.

Then there is a homomorphism f of \mathbf{F} onto \mathbf{A} such that $f(x) = f(v_{i_i}) = a$ and f(y) = b.

Then there is a homomorphism f of \mathbf{F} onto \mathbf{A} such that $f(x) = f(v_{i_j}) = a$ and f(y) = b.

Now

$$c \in (a)_{\mathbf{A}} \cap (b)_{\mathbf{A}}$$
 if and only if $c \in (f(x))_{\mathbf{A}} \cap (f(y))_{\mathbf{A}}$ if and only if $c \in [f(x), f(y)]_{\mathbf{F}}$ if and only if $c \in f([x, y]_{\mathbf{F}})$ if and only if $c \in f((x), f(y))_{\mathbf{F}})$ if and only if $c \in f((x), f(y))_{\mathbf{F}})$ if and only if there is an ideal term $c \in f((x), f(x), f(x),$

Then there is a homomorphism f of \mathbf{F} onto \mathbf{A} such that $f(x) = f(v_{i_j}) = a$ and f(y) = b.

Now

$$c \in (a)_{\mathbf{A}} \cap (b)_{\mathbf{A}}$$
 if and only if $c \in (f(x))_{\mathbf{A}} \cap (f(y))_{\mathbf{A}}$ if and only if $c \in [f(x), f(y)]_{\mathbf{F}}$ if and only if $c \in f([x, y]_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if and only if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if any if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if any if $c \in f((x)_{\mathbf{F}} \cap (y)_{\mathbf{F}})$ if any if $c \in f((x)_{\mathbf$

if and only if there is an ideal term t such that

$$c = f(t(u_1, \dots, u_n, t_1(x, y, v_{1_1}, \dots, v_{1_k}), \dots, t_n(x, y, v_{n_1}, \dots, v_{n_k})))$$
 if and only if $c = t(f(u_1), \dots, f(u_n), t_1(a, b, a, \dots, a), \dots, t_n(a, b, a, \dots, a))$ if and only if $c = t(f(u_1), \dots, f(u_n), q_1(a, b), \dots, q_n(a, b))$ if and only if $c \in \bigvee^n (q_i(a, b))_{\mathbf{A}}$.

So the conclusion holds if **A** is finitely generated.

However, if $c \in (a)_A \cap (b)_A$ then there is a finitely generated subalgebra **B** of **A** such that $c \in (a)_B \cap (b)_B$.

However, if $c \in (a)_A \cap (b)_A$ then there is a finitely generated subalgebra **B** of **A** such that $c \in (a)_B \cap (b)_B$.

Therefore the conclusion holds in general and q_1, \ldots, q_n is an *n*-system of principal ideal intersection terms for V.

The case n=1 in the definition of n-system of principal ideal intersection terms deserves a special name: the binary term witnessing that is called a **meet generator** for V and is denoted by \square .

The case n=1 in the definition of n-system of principal ideal intersection terms deserves a special name: the binary term witnessing that is called a **meet generator** for V and is denoted by \square .

Then, for any $\mathbf{A} \in V$ and $a, b \in A$

$$(a)_{\mathsf{A}}\cap (b)_{\mathsf{A}}=(a\sqcap b)_{\mathsf{A}}.$$

The case n=1 in the definition of n-system of principal ideal intersection terms deserves a special name: the binary term witnessing that is called a **meet generator** for V and is denoted by \square .

Then, for any $\mathbf{A} \in V$ and $a, b \in A$

$$(a)_{\mathbf{A}}\cap (b)_{\mathbf{A}}=(a\sqcap b)_{\mathbf{A}}.$$

Just by looking at the proof of the previous theorem one sees that a subtractive variety has a meet generator term if and only if it is ideal distributive and the meet of two principal ideals is principal.

If a subtractive EDPI variety V has a meet generator term \Box , then the principal ideals are closed under both intersection and dual relative pseudocomplementation.

If a subtractive EDPI variety V has a meet generator term \Box , then the principal ideals are closed under both intersection and dual relative pseudocomplementation.

It follows that, for any $\mathbf{A} \in V$, $\langle \operatorname{PI}(\mathbf{A}), *, \cap, (0)_{\mathbf{A}} \rangle$ is a $*, \cap$ -subreduct of a dual Brouwerian semilattice.

If a subtractive EDPI variety V has a meet generator term \Box , then the principal ideals are closed under both intersection and dual relative pseudocomplementation.

It follows that, for any $\mathbf{A} \in V$, $\langle \operatorname{PI}(\mathbf{A}), *, \cap, (0)_{\mathbf{A}} \rangle$ is a $*, \cap$ -subreduct of a dual Brouwerian semilattice.

Moreover, via the meet generator term and distributivity of ideals, the compact ideals themselves are closed under intersection, hence $\langle \operatorname{CI}(\mathbf{A}), *, \vee, \cap, (0)_{\mathbf{A}} \rangle$ is a dual relatively pseudocomplemented lattice.

A **join generator** for a pointed variety V is a binary term $x \sqcup y$ such that for any $\mathbf{A} \in \mathsf{V}$ and $a,b \in A$

$$(a)_{\mathbf{A}} \vee (b)_{\mathbf{A}} = (a \sqcup b)_{\mathbf{A}}.$$

A **join generator** for a pointed variety V is a binary term $x \sqcup y$ such that for any $\mathbf{A} \in \mathsf{V}$ and $a,b \in A$

$$(a)_{\mathbf{A}} \vee (b)_{\mathbf{A}} = (a \sqcup b)_{\mathbf{A}}.$$

Proposition

[2] Let V be a pointed variety; then the following are equivalent.

- 1 The join of two principal ideals is principal.
- Every compact ideal is principal.
- $oxed{3}$ There are a binary term oxdot and two ternary terms r and t such that

$$0 \sqcup 0 \approx 0$$

$$r(x, y, 0) \approx t(x, y, 0) \approx 0$$

$$r(x, y, x \sqcup y) \approx x$$

$$t(x, y, x \sqcup y) \approx y.$$

4 V has a join generator term.

A **join generator** for a pointed variety V is a binary term $x \sqcup y$ such that for any $\mathbf{A} \in \mathsf{V}$ and $a,b \in A$

$$(a)_{\mathbf{A}} \vee (b)_{\mathbf{A}} = (a \sqcup b)_{\mathbf{A}}.$$

Proposition

[2] Let V be a pointed variety; then the following are equivalent.

- The join of two principal ideals is principal.
- Every compact ideal is principal.
- lacksquare There are a binary term ldeu and two ternary terms r and t such that

$$0 \sqcup 0 \approx 0$$

$$r(x, y, 0) \approx t(x, y, 0) \approx 0$$

$$r(x, y, x \sqcup y) \approx x$$

$$t(x, y, x \sqcup y) \approx y.$$

4 V has a join generator term.

Note that subtractivity is not needed.

If a subtractive variety has EDPI and a join generator term we can obtain a stronger characterization theorem.

If a subtractive variety has EDPI and a join generator term we can obtain a stronger characterization theorem.

Theorem

[2] Let V a subtractive EDPI variety in which the join of two principal ideals is principal. Then there are binary terms * and \sqcup such that the following hold.

1 For all $\mathbf{A} \in V$ and $\mathbf{a}, \mathbf{b}, \mathbf{c} \in A$

$$a*a = 0$$
 $(c*a)*((c*b)*(c*(a \sqcup b))) = 0$
 $a*0 = 0$ $(a \sqcup b)*b = (a \sqcup b)*a = 0$
 $0*a = a$
 $b \in (a)_A$ if and only if $a*b = 0$

- 2 The relation \leq defined by a \leq b if and only if b * a = 0 is reflexive and transitive. The associated equivalence relation $\approx_{\mathbf{A}}$ is a congruence of $\mathbf{A}^{\sqcup} = \langle A, *, \sqcup, 0 \rangle$ and $\mathbf{A}^{\sqcup} / \approx_{\mathbf{A}}$ is a dual Brouwerian semilattice isomorphic with $\langle \operatorname{PI}(\mathbf{A}), *, \vee, (0)_{\mathbf{A}} \rangle$.
- 3 Any principal ideal of **A** is the union of a principal ideal of $\mathbf{A}^{\perp}/\approx_{\mathbf{A}}$ and viceversa. In fact $(\mathbf{a})_{\mathbf{A}} = \bigcup (\mathbf{a}/\approx_{\mathbf{A}})_{\mathbf{A}^{\perp}/\approx_{\mathbf{A}}}$.

The proof of the previous theorem is similar to others we have already seen. More interesting is the following:

The proof of the previous theorem is similar to others we have already seen. More interesting is the following:

Proposition

[2] Suppose V is a subtractive variety with EDPI and join generator term . Then V has also a meet generator term.

The proof of the previous theorem is similar to others we have already seen. More interesting is the following:

Proposition

[2] Suppose V is a subtractive variety with EDPI and join generator term . Then V has also a meet generator term.

First we observe that the equation

$$(x*(x*y)) \lor (y*(y*x)) \approx x \land y$$

holds in any dual relatively pseudocomplemented lattice (see for instance [8]).

$$x \sqcap y = (x * (x * y)) \sqcup (y * (y * x)).$$

$$x \sqcap y = (x * (x * y)) \sqcup (y * (y * x)).$$

Now let $\mathbf{A} \in V$ and $a, b \in A$.

$$x \sqcap y = (x * (x * y)) \sqcup (y * (y * x)).$$

Now let $\mathbf{A} \in V$ and $a, b \in A$.

Since V has EDPI and a join generator term

$$(a \sqcap b)_{A} = [(a)_{A} * ((a)_{A} * (b)_{A})] \vee [(a)_{A} * ((a)_{A} * (b)_{A})] = (a)_{A} \cap (b)_{A},$$

$$x \sqcap y = (x * (x * y)) \sqcup (y * (y * x)).$$

Now let $\mathbf{A} \in V$ and $a, b \in A$.

Since V has EDPI and a join generator term

$$(a \sqcap b)_{A} = [(a)_{A} * ((a)_{A} * (b)_{A})] \vee [(a)_{A} * ((a)_{A} * (b)_{A})] = (a)_{A} \cap (b)_{A},$$

where we have used the fact that the compact ideals form a dual relatively pseudocomplemented lattice.

$$x \sqcap y = (x * (x * y)) \sqcup (y * (y * x)).$$

Now let $\mathbf{A} \in V$ and $a, b \in A$.

Since V has EDPI and a join generator term

$$(a \sqcap b)_{A} = [(a)_{A} * ((a)_{A} * (b)_{A})] \vee [(a)_{A} * ((a)_{A} * (b)_{A})] = (a)_{A} \cap (b)_{A},$$

where we have used the fact that the compact ideals form a dual relatively pseudocomplemented lattice.

Hence $x \sqcap y$ is a meet generator for V.

Theorem

[2] Let V a subtractive variety with EDPI in which the join and the meet of two principal ideals is principal. Then there are binary terms *, \sqcup and \sqcap such that the following hold.

1 For all $\mathbf{A} \in V$ and $\mathbf{a}, \mathbf{b}, \mathbf{c} \in A$

$$a*a = 0$$
 $(c*a)*((c*b)*(c*(a \sqcup b))) = 0$
 $a*0 = 0$ $(a \sqcup b)*b = (a \sqcup b)*a = 0$
 $0*a = a$ $(a*c)*((b*c)*((a \sqcap b)*c)) = 0$
 $b \in (a)_A$ iff $a*b = 0$ $a*(a \sqcap b) = b*(a \sqcap b) = 0$.

- **2** The relation \leq defined by $a \leq b$ iff b*a=0 is reflexive and transitive. The associated equivalence relation $\approx_{\mathbf{A}}$ is a congruence of $\mathbf{A}^{\square} = \langle A, *, \sqcup, \sqcap, 0 \rangle$ and $\mathbf{A}^{\square} / \approx_{\mathbf{A}}$ is a relatively pseudocomplemented lattice isomorphic with $\langle \operatorname{PI}(\mathbf{A}), *, \vee, \cap, (0)_{\mathbf{A}} \rangle$.
- **3** Any principal ideal of **A** is the union of a principal ideal of $\mathbf{A}^{\sqcap}/\approx_{\mathbf{A}}$ and viceversa. In fact $(\mathbf{a})_{\mathbf{A}} = \bigcup (\mathbf{a}/\approx_{\mathbf{A}})_{\mathbf{A}^{\sqcap}/\approx_{\mathbf{A}}}$.

Pseudocomplemented semilattices

A pseudocomplemented semilattice is an algebra of type $\langle \wedge, *, 0 \rangle$ defined by the following identities

- 1 a set of identities defining meet semilattices;
- $x \wedge (x \wedge y)^* = x \wedge y^*$;
- $x \wedge 0^* = x$;
- $0^{**} = 0.$

Note that by 3. $1 = 0^*$ is the top element in the semilattice ordering.

Pseudocomplemented semilattices

A pseudocomplemented semilattice is an algebra of type $\langle \wedge, *, 0 \rangle$ defined by the following identities

- 1 a set of identities defining meet semilattices;
- $x \wedge (x \wedge y)^* = x \wedge y^*$;
- $x \wedge 0^* = x$;
- $0^{**} = 0.$

Note that by 3. $1 = 0^*$ is the top element in the semilattice ordering.

Pseudocomplemented semilattices form a variety PS which is subtractive with witness term $x \wedge y^*$.

Pseudocomplemented semilattices

A pseudocomplemented semilattice is an algebra of type $\langle \wedge, *, 0 \rangle$ defined by the following identities

- 1 a set of identities defining meet semilattices;
- $x \wedge 0^* = x$;
- $0^{**} = 0.$

Note that by 3. $1 = 0^*$ is the top element in the semilattice ordering.

Pseudocomplemented semilattices form a variety PS which is subtractive with witness term $x \wedge y^*$.

Moreover if $\mathbf{L} \in \mathsf{PS}$ and $a \in L$, then a^* is the *pseudocomplement* of a, i.e. for any $b \in L$

$$b \le a^*$$
 if and only if $a \wedge b = 0$.

It can be shown that

- PS has EDPI
- 2 $x \sqcap y := x^{**} \wedge y^{**}$ is a meet generator term;
- $x \sqcup y := (x^* \wedge y^*)^*$ is a join generator term.
- 4 PS is not congruence regular so it is not ideal determined.

THANK YOU!

- P. Aglianò and A. Ursini, *On subtractive varieties II: General properties*, Algebra Universalis **36** (1996), 222–259.
- _____, On subtractive varieties IV: Definability of principal ideals, Algebra Universalis **38** (1997), 355–389.
- W.J. Blok, P. Köhler, and D. Pigozzi, *On the structure of varieties with equationally definable principal congruences II*, Algebra Universalis **18** (1984), 334–379.
- W.J. Blok and D. Pigozzi, On the structure of varieties with equationally definable principal congruences I, Algebra Universalis 15 (1982), 195–227.
- E. Fried, G. Grätzer, and R. Quackenbush, *Uniform congruence schemes*, Algebra Universalis **10** (1980), 176–188.
- P. Köhler, *Brouwerian semilattices*, Trans. Amer. Math. Soc. (1981), 103–126.
- P. Köhler and D. Pigozzi, Varieties with equationally definable principal congruences, Algebra Universalis 11 (1980), 213–219.

W. Nemitz and T. Whaley, *Varieties of implicative semilattices*, Pacific J. Math. **37** (1971), 759–769.