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A primer on the TC commutator

If α, β are congruences of any algebra A, then

1 M(α, β) is the set of all 2× 2 matrices(
t(a⃗1, b⃗1) t(a⃗2, b⃗2)

t(a⃗2, b⃗1) t(a⃗2, b⃗2)

)

where t is an n +m-ary term, a⃗1 α a⃗2 (componentwise) and b⃗1 β b⃗2

(componentwise).

2 α centralizes β modulo γ (in symbols C (α, β; γ)) if

whenever

(
a b
c d

)
∈ M(α, β) and a γ b then also c γ d .

3 [α, β] =
∧
{γ : C (α, β; γ)}.
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The de�nition is totally general. In case A belongs to a congruence
modular variety, three things happen:

1 the TC-commutator is the unique binary operation on Con(A) that
satis�es the set of conditions we consider meaningful for a honest to
God commutator;

2 the TC-commutator is symmetric, i.e. [α, β] = [β, α];

3 [α, β] may be characterized in a di�erent way (see [2], Chap. IV)
and in particular the Hagemann-Herrmann de�nition is no more
dependent on terms:
let ∆α,β be the congruence on α (regarded as a subalgebra of
A× A), generated by all pairs ⟨⟨u, u⟩, ⟨v , v⟩⟩ where u β v . Then
⟨a, b⟩ ∈ [α, β] if and only if ⟨⟨a, b⟩⟨b, b⟩⟩ ∈ ∆α,β if and only if for
some c , ⟨⟨a, b⟩⟨c , c⟩⟩ ∈ ∆α,β .
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Let V be any variety (with 0); t(x⃗ , y⃗ .z⃗) is a commutator term in y⃗ , z⃗ if
it is an ideal term in y⃗ and and ideal term in z⃗ .

For A ∈ V and nonempty H,K ⊆ A we de�ne the commutator of K and
H as

[K ,H] = {t(a⃗, b⃗, c⃗) : t a commutator term in y⃗ , z⃗ , a⃗ ∈ A, b⃗ ∈ K , c⃗ ∈ H}

We should have written [K ,H]A to stress the algebra or even [K ,H]A,V
to stress the variety too. However we will see that at least the
dependency from V can be avoided.
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Proposition

[4] If V is any variety, A ∈ V and H,K ⊆ A then:

1 [H,K ]A,V ∈ IdV(A);

2 [H,K ]A,V = [K ,H]A,V;

3 [H,K ]A,V = [(H)V
A
, (K )V

A
]A,V.

It follows that the commutator is symmetric and it is worthless to
consider commutators of subsets other than ideals.

In particular, when there is no danger of confusion, we will write [a, b]A
instead of [(a)A, (b)A]A.

To get more information (and a de�nition of commutator that is not
term-dependent) we need to assume that V be subtractive.

Really it is not hard to prove that the ideal commutator in subtractive
varieties satis�es almost all the good properties of the TC-commutator in
congruence modular varieties.
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The property we will use is the following:

Proposition

Let V be a subtractive variety, A ∈ V I ,Kλ ∈ Id(A) for λ ∈ Λ. Then

[I ,
∨
λ∈Λ

Kλ] =
∨
λinΛ

[I ,Kλ].

Let λ, µ ∈ Λ and let a = t(a⃗, i⃗ , l⃗) where t(x⃗ , y⃗ , z⃗) is a commutator term

in y⃗ , z⃗ , a⃗ ∈ A, i⃗ ∈ I , l⃗ ∈ Kλ ∨ Kµ.

Assume that l⃗ = h1, . . . , hr ,m1, . . . ,mt where hi ∈ Kλ and mj ∈ Kµ and

let a′ = t(a⃗, i⃗ , 0, . . . , 0,m1, . . . ,mt).

Then a′ ∈ [I ,Kµ] and moreover

s(t(x⃗ , y⃗ , z1, . . . , zr , u1, . . . , uk), t(x⃗ , y⃗ , 0⃗, u⃗))

is a commutator term in y⃗ , z⃗ . Therefore s(a, a′) ∈ [I ,Kλ], that yields
a ∈ [I ,Kλ] ∨ [I ,Kµ].
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Let now a ∈ [I ,
∨

λ∈Λ Kλ].

Since the ideal closure is algebraic there is a �nite F ⊆ Λ such that
a ∈ [I ,

∨
λ∈F Kλ].

Then by the previous point a ∈
∨

λ∈F [I , kλ], which proves one inclusion.

Since the other is trivial the conclusion holds.

Now a de�nition: if A ∈ V and I ∈ Id(A) we de�ne

I# = SubA2(I ∪ {(a, a) : a ∈ J}.

Then it is easy to show that I ∈ Id(A) if and only if 0/I# = I .
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Let now A ∈ V be an algebra and I , J ∈ Id(A) ; we de�ne

KI ,J = the ideal of I# generated by {(a, a) : a ∈ J}
[I , J]0 = 0/KI ,J = {a : (0, a) ∈ KI ,J}

Proposition

For any A ∈ V and I , J ∈ Id(A), [I , J]0 is an ideal and [I , J] ⊆ [I , J]0. If
V is s-subtractive then [I , J] = [I , J]0.
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The �rst claim is easy to prove (and follows from previous results in Part
I).

To avoid cumbersome notations we will consider terms with a minimal
number of variables; however the argument is clearly general.

Let a = t(b, i , j) ∈ [I , J], where t is a commutator term in y , z and
b ∈ A, i ∈ I , j ∈ J. Then in I#

(0, a) = t((b, b), (0, i), (j , j)) ∈ KI ,J .

On the other hand suppose that V is s-subtractive and a ∈ [I , J]0, i.e.
(0, a) ∈ KI ,J .

Then for some ideal term t(x , y) in y and for some (u, v) ∈ I# and r ∈ J
we have

(0, a) = t((u, v), (r , r))

i.e. 0 = t(u, r) and a = t(v , r).
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b ∈ A, i ∈ I , j ∈ J. Then in I#

(0, a) = t((b, b), (0, i), (j , j)) ∈ KI ,J .

On the other hand suppose that V is s-subtractive and a ∈ [I , J]0, i.e.
(0, a) ∈ KI ,J .

Then for some ideal term t(x , y) in y and for some (u, v) ∈ I# and r ∈ J
we have

(0, a) = t((u, v), (r , r))

i.e. 0 = t(u, r) and a = t(v , r).
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On the other hand, since (u, v) ∈ I#, there is a term q(x , y), h ∈ I and
b ∈ A with

(u, v) = q((0, h), (b, b)),

therefore 0 = t(q(0, b), r) and a = t(q(h, b), r).

Hence we get

a = s(s(a, 0), s(0, 0))

= s(s(t(q(h, b), r), t(q(h, b), 0)), s(t(q(0, b), r), t(q(0, b), 0)))

But the term

s(s(t(q(y , x), z), t(q(y , x), 0)), s(t(q(0, x), z), t(q(0, x), 0)))

is a commutator term in y , z . Since h ∈ I and r ∈ J we get a ∈ [I , J].

Ideals in universal algebra III: The Ideal Commutator



On the other hand, since (u, v) ∈ I#, there is a term q(x , y), h ∈ I and
b ∈ A with

(u, v) = q((0, h), (b, b)),

therefore 0 = t(q(0, b), r) and a = t(q(h, b), r).

Hence we get

a = s(s(a, 0), s(0, 0))

= s(s(t(q(h, b), r), t(q(h, b), 0)), s(t(q(0, b), r), t(q(0, b), 0)))

But the term

s(s(t(q(y , x), z), t(q(y , x), 0)), s(t(q(0, x), z), t(q(0, x), 0)))

is a commutator term in y , z . Since h ∈ I and r ∈ J we get a ∈ [I , J].

Ideals in universal algebra III: The Ideal Commutator



On the other hand, since (u, v) ∈ I#, there is a term q(x , y), h ∈ I and
b ∈ A with

(u, v) = q((0, h), (b, b)),

therefore 0 = t(q(0, b), r) and a = t(q(h, b), r).

Hence we get

a = s(s(a, 0), s(0, 0))

= s(s(t(q(h, b), r), t(q(h, b), 0)), s(t(q(0, b), r), t(q(0, b), 0)))

But the term

s(s(t(q(y , x), z), t(q(y , x), 0)), s(t(q(0, x), z), t(q(0, x), 0)))

is a commutator term in y , z . Since h ∈ I and r ∈ J we get a ∈ [I , J].

Ideals in universal algebra III: The Ideal Commutator



Now we can show that the commutators of two ideals in an algebra in a
subtractive variety depends only on the algebra and not on the variety.

Proposition

If V is subtractive, A ∈ V and I , J ∈ Id(A), then

[I , J]A = {t(a⃗, i⃗ , j⃗) : t any term, a⃗ ∈ A, i⃗ ∈ I , j⃗ ∈ J and

t(a⃗, 0⃗, 0⃗) = t(a⃗, i⃗ , 0⃗) = t(a⃗, 0⃗, j⃗) = 0}
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Sketch of the proof

Let
ΣI ,J = SubI#×I#({((0, 0), (a, a)) : a ∈ J};

and check that KI ,J = 0/ΣI ,J .

Check also that, if X ,Y ⊆ A× A, then

SubA×A(X ∪ SubA×A(Y )) = SubA×A(X ∪ Y ).

Hence

ΣI ,J = SubI#×I#({⟨(0, 0), (b, b)⟩ : b ∈ J}∪
{⟨(a, a), (a, a)⟩ : a ∈ A} ∪ {⟨(0, c), (0, c)⟩ : c ∈ I}).

Therefore (c , d) ∈ KI ,J if and only if ⟨(0, 0), (c , d)⟩ ∈ ΣI ,J if and only if
there is a term t(x⃗ , y⃗ , z⃗) such that

⟨(0, 0), (c , d)⟩ = t(⟨
−−−−−−−→
(0, 0)(b, b)⟩, ⟨

−−−−−−−→
(a, a), (a, a)⟩, ⟨

−−−−−−−→
(0, i), (0, i)⟩)

for some b⃗ ∈ J, a⃗ ∈ A and i⃗ ∈ I .

The conclusion follows.
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From the previous Proposition we can infer other similar characterizations
for [I , J] in a subtractive algebra.

Proposition

If A is subtractive and I , J ∈ Id(A), then

1 [I , J]A = {s(t (⃗i , j⃗), t (⃗i , 0⃗)) :
t a polynomial of A, i⃗ ∈ I , j⃗ ∈ J and s(t (⃗0, j⃗), t (⃗0, 0⃗)) = 0};

2 [I , J]A = {s(s(t (⃗i , j⃗), t (⃗i , 0⃗)), s(t (⃗0, j⃗), t (⃗0, 0⃗))) :
t a polynomial of A, i⃗ ∈ I , j⃗ ∈ J}.
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An easy observation

Lemma

Let A, B belong to a subtractive variety V; let I , J ∈ Id(A) and let g be
a homomorphism from A onto B. Then g([I , J]A) = [g(I ), g(J)]B.

Let u ∈ g([I , J]A); then there is a commutator term for V in y⃗ , z⃗ and

elements a⃗ ∈ A, b⃗ ∈ I and c⃗ ∈ J with

u = g(t(a⃗, b⃗, c⃗)) = t(g(a⃗), g(b⃗), g(c⃗)) ∈ [g(I ), g(J)]B.

The reverse inclusion is equally obvious.
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The dependency on A of the commutator cannot be avoided even in case
of ideal determined varieties.

In [2] there is an example of a loop G having a normal subloop N such
that [N,N]N = {1} but [N,N]G ̸= {1}.

In groups this cannot happen, since in groups we can describe the
commutator of two (normal) subgroups using the commutators.

Those, in our language, are pure (i.e. without parameters) commutator
terms. Namely if G is a group and N,M ◁ G then

[N,M]G = SubG({n−1m−1nm : n ∈ N,m ∈ M}).

In other words the only commutator term we have to concern about is
y−1z−1yz and this clearly implies that the commutator of N,M is the
same in any group that contains both of them.
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Commutator identities

Consider an algebraic language having symbols for the join, intersection,
0,1 and the commutator; identities in that language are called
commutator identities. Note that Id(A) can be seen as a model of the
language.

We say that a class K of algebras satis�es the commutator identity
p ≈ q and we will write

K ⊨id p ≈ q,

if p ≈ q holds in Id(A) for all A ∈ K.
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One shows routinely the following:

Proposition

For any algebra A the following are equivalent:

1 A ⊨id [x , y ] = x ∩ y ∩ [A,A];

2 A ⊨id [x , y ∩ z ] = [x , y ] ∩ z ;

3 A ⊨id [x , y ] = [x ,A] ∩ y ;

4 A ⊨id [x , x ] = x ∩ [A,A];

5 A ⊨id x ⊆ [A,A] =⇒ x = [x , x ];

6 for all a ∈ A, if a ∈ [A,A] then [a, a] = (a)A.
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Is there an equivalent algebraic condition corresponding to the
satisfaction of any of the conditions in the previous proposition? Yes, but
we need some de�nitions.

An algebra A is (�nitely) ideal irreducible if every (�nite) family of
ideals di�erent form {0} does not intersect to {0}.

Ideal irreducibility is equivalent to the existence of a minimal nonzero
ideal which has to be generated by a single element, called the
monolithical element of A.

An algebra A is ideal abelian if [A,A] = {0}.

An algebra A is ideal prime if for all I , J ∈ Id(A), [I , J] = {0} implies
I = {0} or J = {0}.
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Theorem

[1] For a subtractive variety V the following are equivalent:

1 V ⊨id [x , y ∩ z ] ≈ [x , y ] ∩ z ;

2 every ideal irreducible algebra in V is either ideal abelian or ideal
prime.
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Assume (1) and let I , J ∈ Id(A) with [I , J] = {0}. Then

[I , J] = I ∩ J ∩ [A,A].

and if A is not abelian then [A,A] ̸= {0}. Since A is ideal irreducible,

I ∩ J = {0} and again either I = {0} or J = {0}; i.e. A is ideal prime.

Assume (2); by the previous proposition it is enough to show that if
A ∈ V, I ∈ Id(A) and I ⊆ [A,A] then [I , I ] = I .
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Observe that [I , I ] ⊆ U, I ̸⊆ U and

[U ∨ I ,U ∨ I ] ⊆ U ∨ [I , I ] = U,

therefore

[(U ∨ I )/θ, (U ∨ I )/θ]A/θ = [U ∨ I ,U ∨ I ]/θ ⊆ U/θ = {0/θ},

while (U ∨ I )/θ ̸= {0/θ}, since a/θ ∈ (U ∨ I )/θ.

Hence A/θ is not ideal prime and so it must be ideal Abelian. This
implies

{0/θ} = [A/θ,A/θ]A/θ = [A,A]/θ

and since I ⊆ [A,A] we would have I/θ = {0/θ}, which is absurd since
a/θ ̸= {0/θ}.

It follows by contradiction that (2) implies (1).
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Ideal neutral algebras

An algebra A is ideal neutral if the commutator of ideals reduces to the
intersection.

This is equivalent to saying that A ⊨id [x , y ] ≈ x ∩ y .

A variety V is ideal distributive if for all A ∈ V, Id(A) is a distributive
lattice.

Proposition

For a subtractive variety V the following are equivalent:

1 V is ideal distributive;

2 for all A ∈ V and θ, φ, ψ ∈ Con(A)

0/(θ ∨ φ) ∧ ψ = 0/(θ ∧ ψ) ∨ (φ ∧ ψ).
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Theorem

[1] For a subtractive variety V the following are equivalent:

1 V ⊨id [x , y ] = x ∩ y ;

2 V is ideal distributive ;

3 there are four ternary terms q1, . . . , q4 such that the following
identities hold in V:

qi (x , y , 0) = 0 i = 1, . . . , 4

q1(x , y , x) = q2(x , y , y)

q3(x , y , x) = q4(x , y , s(x , y)) = s(x , q1(x , y , x));

4 there is a binary term b(x , y) such that the following identities hold
in V:

b(x , x) = 0 b(0, x) = 0 b(x , 0) = x .
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Ideal abelian algebras

Let A be any algebra; A is called abelian (see [3]) if for every term
t(x , y⃗), for every a, b, u⃗, v⃗ ∈ A, if t(a, u⃗) = t(a, v⃗) then t(b, u⃗) = t(b, v⃗).

By Mal'cev criterion, this is equivalent to saying that the diagonal of
D(A) = {(a, a) : a ∈ A} is a congruence class of A× A.

In congruence modular varieties, this is equivalent to: [1A, 1A] = 0A in
Con(A) [2].

We remind that a subtractive algebra A is ideal abelian if [A,A] = {0}.
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From the description of the commutator of ideals we get two equivalent
conditions for being ideal abelian:

∀ t(x , y⃗) term, ∀ u, v , a⃗, b⃗ ∈ A (TCi )

s(t(u, a⃗), t(u, b⃗)) = 0 if and only if s(t(v , a⃗), t(v , b⃗)) = 0

∀ t(x , y⃗) term, ∀ v , a⃗, b⃗ ∈ A, (TC0)

s(t(0, a⃗), t(0, b⃗)) = 0 if and only if s(t(v , a⃗), t(v , b⃗)) = 0
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Let now V be a subtractive variety and let IAB(V) be the class of ideal
abelian algebras in V.

Then, since by (TCi ) or (TC0) the condition of being ideal abelian is
expressible by quasiequations, IAB(V) is closed under subalgebras and
direct products.

However remember this lemma:

Lemma

Let A, B belong to a subtractive variety V; let I , J ∈ Id(A) and let g be
a homomorphism from A onto B. Then g([I , J]A) = [g(I ), g(J)]B.
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Thus we get:

Proposition

For every subtractive variety V, IAB(V) is a variety.

We need only observe that if g : A −→ B is a onto homomorphism and
U,V ∈ Id(B), then g−1(U), g−1(V ) ∈ Id(A). Then we apply the
lemma.

A more interesting observation is the following:

Proposition

[4] If V is subtractive then IAB(V) is strongly subtractive.

We will show that if A ∈ IAB(V) and I ∈ Id(A), then I ∗ is a subalgebra
of A× A.
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First observe that if t(x⃗ , y⃗) is an ideal term in y⃗ , then the identity

s(t(x⃗ , y⃗), t(z⃗ , y⃗)) ≈ 0

holds in IAB(V), simply because the shown term is a commutator term in

x⃗ ∗ z⃗ , y⃗ .

Let f be an n-ary operation; then

s(f (u(x1, y1, 0), . . . , u(xn, yn, 0)), f (y⃗))

is an ideal term in y⃗ .

Therefore in IAB(V)

0 ≈ s(s(f (u(x1, y1, 0), . . . , u(xn, yn, 0)), f (y⃗)), s(f (u(y1, y1, 0), . . . , u(yn, yn, 0)), f (y⃗)))

≈ s(s(f (u(x1, y1, 0), . . . , u(xn, yn, 0)), f (y⃗)), s(f (y⃗), f (y⃗)))

≈ s(f (u(x1, y1, 0), . . . , u(xn, yn, 0)), f (y⃗)).

This means that

s(f (u(x1, y1, z1), . . . , u(xn, yn, zn)), f (y⃗))

is an ideal term for IAB(V) in z⃗ .

Therefore, if (ai , bi ) ∈ I ∗ then also (f (a⃗), f (b⃗)) ∈ I ∗. This proves the

conclusion.
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s(f (u(x1, y1, 0), . . . , u(xn, yn, 0)), f (y⃗))

is an ideal term in y⃗ .

Therefore in IAB(V)

0 ≈ s(s(f (u(x1, y1, 0), . . . , u(xn, yn, 0)), f (y⃗)), s(f (u(y1, y1, 0), . . . , u(yn, yn, 0)), f (y⃗)))

≈ s(s(f (u(x1, y1, 0), . . . , u(xn, yn, 0)), f (y⃗)), s(f (y⃗), f (y⃗)))

≈ s(f (u(x1, y1, 0), . . . , u(xn, yn, 0)), f (y⃗)).

This means that

s(f (u(x1, y1, z1), . . . , u(xn, yn, zn)), f (y⃗))

is an ideal term for IAB(V) in z⃗ .

Therefore, if (ai , bi ) ∈ I ∗ then also (f (a⃗), f (b⃗)) ∈ I ∗. This proves the

conclusion.
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The classes (improved)

SUBTRACTIVE 0-REGULAR

STRONGLY SUB IDEAL DETERMINED PROTOMODULAR

IDEAL ABELIAN CLASSICALLY ID
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The three groups theorem

The last thing we show is a version of the so-called �Three groups
theorem� for ideal abelian algebras.

Proposition

[1] Let A be subtractive. If M3 is a 0-1-sublattice of Id(A), then A is
ideal Abelian. Moreover the following are equivalent:

1 A is ideal Abelian and non trivial;

2 Id(A× A) has M3 as a 0-1-sublattice;

3 π−1

1
(0) and π−1

2
(0) have a common complement in Id(A× A);

4 for some subdirect product S of A× A, Id(S) has an M3 as a
0-1-sublattice.
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THANK YOU!
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