Ideals in universal algebra III: The Ideal Commutator

Blansko, 8-12 September 2025

The classes

A primer on the TC commutator

If α, β are congruences of any algebra **A**, then

1 $M(\alpha, \beta)$ is the set of all 2×2 matrices

$$\begin{pmatrix} t(\vec{a}^1, \vec{b}^1) & t(\vec{a}^2, \vec{b}^2) \\ t(\vec{a}^2, \vec{b}^1) & t(\vec{a}^2, \vec{b}^2) \end{pmatrix}$$

where t is an n+m-ary term, \vec{a}^1 α \vec{a}^2 (componentwise) and \vec{b}^1 β \vec{b}^2 (componentwise).

2 α centralizes β modulo γ (in symbols $C(\alpha, \beta; \gamma)$) if

whenever
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(\alpha, \beta)$$
 and $a \gamma b$ then also $c \gamma d$.

1 the TC-commutator is the unique binary operation on Con(A) that satisfies the set of conditions we consider meaningful for a *honest to God* commutator:

- **1** the TC-commutator is the unique binary operation on Con(**A**) that satisfies the set of conditions we consider meaningful for a *honest to God* commutator;
- **2** the TC-commutator is symmetric, i.e. $[\alpha, \beta] = [\beta, \alpha]$;

- the TC-commutator is the unique binary operation on Con(A) that satisfies the set of conditions we consider meaningful for a honest to God commutator;
- **2** the TC-commutator is symmetric, i.e. $[\alpha, \beta] = [\beta, \alpha]$;
- $[\alpha, \beta]$ may be characterized in a different way (see [2], Chap. IV) and in particular the Hagemann-Herrmann definition is no more dependent on terms:

- the TC-commutator is the unique binary operation on Con(A) that satisfies the set of conditions we consider meaningful for a honest to God commutator:
- **2** the TC-commutator is symmetric, i.e. $[\alpha, \beta] = [\beta, \alpha]$;
- $[\alpha, \beta]$ may be characterized in a different way (see [2], Chap. IV) and in particular the Hagemann-Herrmann definition is no more dependent on terms:

let $\Delta_{\alpha,\beta}$ be the congruence on α (regarded as a subalgebra of $\mathbf{A} \times \mathbf{A}$), generated by all pairs $\langle \langle u, u \rangle, \langle v, v \rangle \rangle$ where $u \beta v$. Then $\langle a, b \rangle \in [\alpha, \beta]$ if and only if $\langle \langle a, b \rangle \langle b, b \rangle \rangle \in \Delta_{\alpha,\beta}$ if and only if for some c, $\langle \langle a, b \rangle \langle c, c \rangle \rangle \in \Delta_{\alpha,\beta}$.

Let V be any variety (with 0); $t(\vec{x}, \vec{y}.\vec{z})$ is a **commutator term** in \vec{y}, \vec{z} if it is an ideal term in \vec{y} and and ideal term in \vec{z} .

Let V be any variety (with 0); $t(\vec{x}, \vec{y}.\vec{z})$ is a **commutator term** in \vec{y}, \vec{z} if it is an ideal term in \vec{y} and and ideal term in \vec{z} .

For $\mathbf{A} \in V$ and nonempty $H, K \subseteq A$ we define the **commutator** of K and H as

 $[K,H] = \{t(\vec{a},\vec{b},\vec{c}) : t \text{ a commutator term in } \vec{y},\vec{z}, \ \vec{a} \in A, \vec{b} \in K, \vec{c} \in H\}$

Let V be any variety (with 0); $t(\vec{x}, \vec{y}.\vec{z})$ is a **commutator term** in \vec{y} , \vec{z} if it is an ideal term in \vec{y} and and ideal term in \vec{z} .

For $\mathbf{A} \in V$ and nonempty $H, K \subseteq A$ we define the **commutator** of K and H as

$$[K,H] = \{t(\vec{a},\vec{b},\vec{c}) : t \text{ a commutator term in } \vec{y},\vec{z}, \ \vec{a} \in A, \vec{b} \in K, \vec{c} \in H\}$$

We should have written $[K, H]_A$ to stress the algebra or even $[K, H]_{A,V}$ to stress the variety too. However we will see that at least the dependency from V can be avoided.

[4] If V is any variety, $\mathbf{A} \in V$ and $H, K \subseteq A$ then:

- $\blacksquare [H,K]_{\mathbf{A},\mathsf{V}}\in \mathrm{Id}_{\mathsf{V}}(\mathbf{A});$
- $[H,K]_{A,V} = [K,H]_{A,V};$
- $[H,K]_{A,V} = [(H)_A^V, (K)_A^V]_{A,V}.$

[4] If V is any variety, $\mathbf{A} \in V$ and $H, K \subseteq A$ then:

- $[H,K]_{A,V} = [K,H]_{A,V};$
- $[H,K]_{A,V} = [(H)_A^V, (K)_A^V]_{A,V}.$

It follows that the commutator is symmetric and it is worthless to consider commutators of subsets other than ideals.

[4] If V is any variety, $\mathbf{A} \in V$ and $H, K \subseteq A$ then:

- $[H,K]_{A,V} = [K,H]_{A,V};$
- $[H,K]_{A,V} = [(H)_A^V, (K)_A^V]_{A,V}.$

It follows that the commutator is symmetric and it is worthless to consider commutators of subsets other than ideals.

In particular, when there is no danger of confusion, we will write $[a, b]_A$ instead of $[(a)_A, (b)_A]_A$.

[4] If V is any variety, $\mathbf{A} \in V$ and $H, K \subseteq A$ then:

- $[H,K]_{A,V} = [K,H]_{A,V};$
- $[H,K]_{A,V} = [(H)_A^V, (K)_A^V]_{A,V}.$

It follows that the commutator is symmetric and it is worthless to consider commutators of subsets other than ideals.

In particular, when there is no danger of confusion, we will write $[a, b]_A$ instead of $[(a)_A, (b)_A]_A$.

To get more information (and a definition of commutator that is not term-dependent) we need to assume that V be subtractive.

[4] If V is any variety, $\mathbf{A} \in V$ and $H, K \subseteq A$ then:

- $[H,K]_{A,V} = [K,H]_{A,V};$
- $[H,K]_{A,V} = [(H)_A^V, (K)_A^V]_{A,V}.$

It follows that the commutator is symmetric and it is worthless to consider commutators of subsets other than ideals.

In particular, when there is no danger of confusion, we will write $[a, b]_A$ instead of $[(a)_A, (b)_A]_A$.

To get more information (and a definition of commutator that is not term-dependent) we need to assume that V be subtractive.

Really it is not hard to prove that the ideal commutator in subtractive varieties satisfies almost all the good properties of the TC-commutator in congruence modular varieties.

Proposition

Let V be a subtractive variety, $\mathbf{A} \in V \setminus K_{\lambda} \in \mathrm{Id}(\mathbf{A})$ for $\lambda \in \Lambda$. Then

$$[I,\bigvee_{\lambda\in\Lambda}K_{\lambda}]=\bigvee_{\lambda\text{in}\Lambda}[I,K_{\lambda}].$$

Proposition

Let V be a subtractive variety, $\mathbf{A} \in V \setminus K_{\lambda} \in \mathrm{Id}(\mathbf{A})$ for $\lambda \in \Lambda$. Then

$$[I,\bigvee_{\lambda\in\Lambda}K_{\lambda}]=\bigvee_{\lambda\text{in}\Lambda}[I,K_{\lambda}].$$

Let $\lambda, \mu \in \Lambda$ and let $a = t(\vec{a}, \vec{i}, \vec{l})$ where $t(\vec{x}, \vec{y}, \vec{z})$ is a commutator term in $\vec{y}, \vec{z}, \vec{a} \in A, \vec{i} \in I, \vec{l} \in K_{\lambda} \vee K_{\mu}$.

Proposition

Let V be a subtractive variety, $\mathbf{A} \in V \ I, K_{\lambda} \in \mathrm{Id}(\mathbf{A})$ for $\lambda \in \Lambda$. Then

$$[I,\bigvee_{\lambda\in\Lambda}K_{\lambda}]=\bigvee_{\lambda\text{in}\Lambda}[I,K_{\lambda}].$$

Let $\lambda, \mu \in \Lambda$ and let $a = t(\vec{a}, \vec{i}, \vec{l})$ where $t(\vec{x}, \vec{y}, \vec{z})$ is a commutator term in $\vec{y}, \vec{z}, \vec{a} \in A, \vec{i} \in I, \vec{l} \in K_{\lambda} \vee K_{\mu}$.

Assume that $\vec{l} = h_1, \ldots, h_r, m_1, \ldots, m_t$ where $h_i \in K_\lambda$ and $m_j \in K_\mu$ and let $a' = t(\vec{a}, \vec{i}, 0, \ldots, 0, m_1, \ldots, m_t)$.

Proposition

Let V be a subtractive variety, $\mathbf{A} \in V \ I, K_{\lambda} \in \mathrm{Id}(\mathbf{A})$ for $\lambda \in \Lambda$. Then

$$[I,\bigvee_{\lambda\in\Lambda}K_{\lambda}]=\bigvee_{\lambda in\Lambda}[I,K_{\lambda}].$$

Let $\lambda, \mu \in \Lambda$ and let $a = t(\vec{a}, \vec{i}, \vec{l})$ where $t(\vec{x}, \vec{y}, \vec{z})$ is a commutator term in $\vec{y}, \vec{z}, \vec{a} \in A, \vec{i} \in I, \vec{l} \in K_{\lambda} \vee K_{\mu}$.

Assume that $\vec{l} = h_1, \dots, h_r, m_1, \dots, m_t$ where $h_i \in K_\lambda$ and $m_j \in K_\mu$ and let $a' = t(\vec{a}, \vec{i}, 0, \dots, 0, m_1, \dots, m_t)$.

Then $a' \in [I, K_{\mu}]$ and moreover

$$s(t(\vec{x},\vec{y},z_1,\ldots,z_r,u_1,\ldots,u_k),t(\vec{x},\vec{y},\vec{0},\vec{u}))$$

is a commutator term in \vec{y}, \vec{z} . Therefore $s(a, a') \in [I, K_{\lambda}]$, that yields $a \in [I, K_{\lambda}] \vee [I, K_{\mu}]$.

Since the ideal closure is algebraic there is a finite $F \subseteq \Lambda$ such that $a \in [I, \bigvee_{\lambda \in F} K_{\lambda}]$.

Since the ideal closure is algebraic there is a finite $F \subseteq \Lambda$ such that $a \in [I, \bigvee_{\lambda \in F} K_{\lambda}]$.

Then by the previous point $a \in \bigvee_{\lambda \in F} [I, k_{\lambda}]$, which proves one inclusion.

Since the ideal closure is algebraic there is a finite $F \subseteq \Lambda$ such that $a \in [I, \bigvee_{\lambda \in F} K_{\lambda}]$.

Then by the previous point $a \in \bigvee_{\lambda \in F} [I, k_{\lambda}]$, which proves one inclusion.

Since the other is trivial the conclusion holds.

Since the ideal closure is algebraic there is a finite $F \subseteq \Lambda$ such that $a \in [I, \bigvee_{\lambda \in F} K_{\lambda}]$.

Then by the previous point $a \in \bigvee_{\lambda \in F} [I, k_{\lambda}]$, which proves one inclusion.

Since the other is trivial the conclusion holds.

Now a definition: if $\mathbf{A} \in V$ and $I \in Id(\mathbf{A})$ we define

$$I^{\#} = \operatorname{Sub}_{\mathbf{A}^{2}}(I \cup \{(a, a) : a \in J\}.$$

Then it is easy to show that $I \in \mathrm{Id}(\mathbf{A})$ if and only if $0/I^{\#} = I$.

Let now $\mathbf{A} \in V$ be an algebra and $I, J \in \mathrm{Id}(\mathbf{A})$; we define

$$K_{I,J} =$$
the ideal of $I^{\#}$ generated by $\{(a,a) : a \in J\}$
 $[I,J]_0 = 0/K_{I,J} = \{a : (0,a) \in K_{I,J}\}$

Let now $\mathbf{A} \in V$ be an algebra and $I, J \in \mathrm{Id}(\mathbf{A})$; we define

$$K_{I,J} = \text{the ideal of } I^{\#} \text{ generated by } \{(a,a) : a \in J\}$$

 $[I,J]_0 = 0/K_{I,J} = \{a : (0,a) \in K_{I,J}\}$

Proposition

For any $\mathbf{A} \in V$ and $I, J \in \mathrm{Id}(\mathbf{A})$, $[I, J]_0$ is an ideal and $[I, J] \subseteq [I, J]_0$. If V is s-subtractive then $[I, J] = [I, J]_0$.

To avoid cumbersome notations we will consider terms with a minimal number of variables; however the argument is clearly general.

To avoid cumbersome notations we will consider terms with a minimal number of variables; however the argument is clearly general.

Let $a = t(b, i, j) \in [I, J]$, where t is a commutator term in y, z and $b \in A$, $i \in I$, $j \in J$. Then in $I^{\#}$

$$(0,a)=t((b,b),(0,i),(j,j))\in K_{I,J}.$$

To avoid cumbersome notations we will consider terms with a minimal number of variables; however the argument is clearly general.

Let $a = t(b, i, j) \in [I, J]$, where t is a commutator term in y, z and $b \in A$, $i \in I$, $j \in J$. Then in $I^{\#}$

$$(0,a)=t((b,b),(0,i),(j,j))\in K_{I,J}.$$

On the other hand suppose that V is s-subtractive and $a \in [I, J]_0$, i.e. $(0, a) \in K_{I,J}$.

To avoid cumbersome notations we will consider terms with a minimal number of variables; however the argument is clearly general.

Let $a = t(b, i, j) \in [I, J]$, where t is a commutator term in y, z and $b \in A$, $i \in I$, $j \in J$. Then in $I^{\#}$

$$(0,a) = t((b,b),(0,i),(j,j)) \in K_{I,J}.$$

On the other hand suppose that V is s-subtractive and $a \in [I, J]_0$, i.e. $(0, a) \in K_{I,J}$.

Then for some ideal term t(x,y) in y and for some $(u,v) \in I^{\#}$ and $r \in J$ we have

$$(0,a) = t((u,v),(r,r))$$

i.e. 0 = t(u, r) and a = t(v, r).

On the other hand, since $(u,v) \in I^{\#}$, there is a term q(x,y), $h \in I$ and $b \in A$ with

$$(u, v) = q((0, h), (b, b)),$$

therefore 0 = t(q(0, b), r) and a = t(q(h, b), r).

On the other hand, since $(u,v) \in I^{\#}$, there is a term q(x,y), $h \in I$ and $b \in A$ with

$$(u, v) = q((0, h), (b, b)),$$

therefore 0 = t(q(0, b), r) and a = t(q(h, b), r).

Hence we get

$$a = s(s(a, 0), s(0, 0))$$

= $s(s(t(q(h, b), r), t(q(h, b), 0)), s(t(q(0, b), r), t(q(0, b), 0)))$

On the other hand, since $(u,v) \in I^{\#}$, there is a term q(x,y), $h \in I$ and $b \in A$ with

$$(u, v) = q((0, h), (b, b)),$$

therefore 0 = t(q(0, b), r) and a = t(q(h, b), r).

Hence we get

$$a = s(s(a, 0), s(0, 0))$$

= $s(s(t(q(h, b), r), t(q(h, b), 0)), s(t(q(0, b), r), t(q(0, b), 0)))$

But the term

$$s(s(t(q(y,x),z),t(q(y,x),0)),s(t(q(0,x),z),t(q(0,x),0)))$$

is a commutator term in y, z. Since $h \in I$ and $r \in J$ we get $a \in [I, J]$.

Now we can show that the commutators of two ideals in an algebra in a subtractive variety depends only on the algebra and not on the variety.

Now we can show that the commutators of two ideals in an algebra in a subtractive variety depends only on the algebra and not on the variety.

Proposition

If V is subtractive, $\mathbf{A} \in V$ and $I, J \in \mathrm{Id}(\mathbf{A})$, then

$$[I,J]_{\mathbf{A}} = \{t(\vec{a},\vec{i},\vec{j}) : t \text{ any term}, \ \vec{a} \in A, \vec{i} \in I, \vec{j} \in J \text{ and}$$
$$t(\vec{a},\vec{0},\vec{0}) = t(\vec{a},\vec{i},\vec{0}) = t(\vec{a},\vec{0},\vec{j}) = 0\}$$

Let

$$\Sigma_{I,J} = \mathrm{Sub}_{I^{\#} \times I^{\#}} \big(\{ \big((0,0), (a,a) \big) : a \in J \};$$

and check that $K_{I,J} = 0/\Sigma_{I,J}$.

Let

$$\Sigma_{I,J}=\mathrm{Sub}_{I^\#\times I^\#}\big(\{((0,0),(a,a)):a\in J\};$$

and check that $K_{I,J} = 0/\Sigma_{I,J}$.

Check also that, if $X, Y \subseteq A \times A$, then

$$\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(X\cup\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(Y))=\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(X\cup Y).$$

Let

$$\Sigma_{I,J} = \operatorname{Sub}_{I^{\#} \times I^{\#}} (\{((0,0),(a,a)) : a \in J\};$$

and check that $K_{I,J} = 0/\Sigma_{I,J}$.

Check also that, if $X, Y \subseteq A \times A$, then

$$\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(X\cup\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(Y))=\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(X\cup Y).$$

Hence

$$\begin{split} \Sigma_{I,J} &= \mathrm{Sub}_{I^{\#} \times I^{\#}} \big(\{ \langle (0,0), (b,b) \rangle : b \in J \} \cup \\ \{ \langle (a,a), (a,a) \rangle : a \in A \} \cup \{ \langle (0,c), (0,c) \rangle : c \in I \} \big). \end{split}$$

Let

$$\Sigma_{I,J} = \operatorname{Sub}_{I^{\#} \times I^{\#}} (\{((0,0),(a,a)) : a \in J\};$$

and check that $K_{I,J} = 0/\Sigma_{I,J}$.

Check also that, if $X, Y \subseteq A \times A$, then

$$\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(X\cup\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(Y))=\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(X\cup Y).$$

Hence

$$\begin{split} \Sigma_{I,J} &= \mathrm{Sub}_{\mathsf{I}^{\#} \times \mathsf{I}^{\#}} (\{\langle (0,0), (b,b) \rangle : b \in J\} \cup \\ \{\langle (a,a), (a,a) \rangle : a \in A\} \cup \{\langle (0,c), (0,c) \rangle : c \in I\}). \end{split}$$

Therefore $(c,d) \in K_{I,J}$ if and only if $\langle (0,0),(c,d) \rangle \in \Sigma_{I,J}$ if and only if there is a term $t(\vec{x},\vec{y},\vec{z})$ such that

$$\langle (0,0),(c,d)\rangle = t(\langle \overrightarrow{(0,0)(b,b)}\rangle,\langle \overrightarrow{(a,a),(a,a)}\rangle,\langle \overrightarrow{(0,i),(0,i)}\rangle)$$

for some $\vec{b} \in J$, $\vec{a} \in A$ and $\vec{i} \in I$.

Let

$$\Sigma_{I,J} = \operatorname{Sub}_{I^{\#} \times I^{\#}} (\{((0,0),(a,a)) : a \in J\};$$

and check that $K_{I,J} = 0/\Sigma_{I,J}$.

Check also that, if $X, Y \subseteq A \times A$, then

$$\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(X\cup\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(Y))=\operatorname{Sub}_{\mathbf{A}\times\mathbf{A}}(X\cup Y).$$

Hence

$$\begin{split} \Sigma_{I,J} &= \mathrm{Sub}_{\mathsf{I}^{\#} \times \mathsf{I}^{\#}} (\{\langle (0,0), (b,b) \rangle : b \in J\} \cup \\ \{\langle (a,a), (a,a) \rangle : a \in A\} \cup \{\langle (0,c), (0,c) \rangle : c \in I\}). \end{split}$$

Therefore $(c,d) \in K_{I,J}$ if and only if $\langle (0,0),(c,d) \rangle \in \Sigma_{I,J}$ if and only if there is a term $t(\vec{x},\vec{y},\vec{z})$ such that

$$\langle (0,0),(c,d)\rangle = t(\langle \overrightarrow{(0,0)(b,b)}\rangle, \langle \overrightarrow{(a,a),(a,a)}\rangle, \langle \overrightarrow{(0,i),(0,i)}\rangle)$$

for some $\vec{b} \in J$, $\vec{a} \in A$ and $\vec{i} \in I$.

The conclusion follows.

From the previous Proposition we can infer other similar characterizations for [I, J] in a subtractive algebra.

From the previous Proposition we can infer other similar characterizations for [I, J] in a subtractive algebra.

Proposition

If **A** is subtractive and $I, J \in Id(\mathbf{A})$, then

- **1** $[I, J]_{A} = \{s(t(\vec{i}, \vec{j}), t(\vec{i}, \vec{0})) : t \text{ a polynomial of } A, \vec{i} \in I, \vec{j} \in J \text{ and } s(t(\vec{0}, \vec{j}), t(\vec{0}, \vec{0})) = 0\};$
- $[I, J]_{\mathbf{A}} = \{s(s(t(\vec{i}, \vec{j}), t(\vec{i}, \vec{0})), s(t(\vec{0}, \vec{j}), t(\vec{0}, \vec{0}))) : t \text{ a polynomial of } \mathbf{A}, \vec{i} \in I, \vec{j} \in J\}.$

Lemma

Let **A**, **B** belong to a subtractive variety V; let $I, J \in Id(\mathbf{A})$ and let g be a homomorphism from **A** onto **B**. Then $g([I, J]_{\mathbf{A}}) = [g(I), g(J)]_{\mathbf{B}}$.

Lemma

Let A, B belong to a subtractive variety V; let I, $J \in Id(A)$ and let g be a homomorphism from A onto B. Then $g([I,J]_A) = [g(I),g(J)]_B$.

Let $u \in g([I, J]_A)$; then there is a commutator term for V in \vec{y}, \vec{z} and elements $\vec{a} \in A$, $\vec{b} \in I$ and $\vec{c} \in J$ with

$$u = g(t(\vec{a}, \vec{b}, \vec{c})) = t(g(\vec{a}), g(\vec{b}), g(\vec{c})) \in [g(I), g(J)]_{B}.$$

Lemma

Let **A**, **B** belong to a subtractive variety V; let $I, J \in \operatorname{Id}(\mathbf{A})$ and let g be a homomorphism from **A** onto **B**. Then $g([I,J]_{\mathbf{A}}) = [g(I),g(J)]_{\mathbf{B}}$.

Let $u \in g([I, J]_A)$; then there is a commutator term for V in \vec{y}, \vec{z} and elements $\vec{a} \in A$, $\vec{b} \in I$ and $\vec{c} \in J$ with

$$u = g(t(\vec{a}, \vec{b}, \vec{c})) = t(g(\vec{a}), g(\vec{b}), g(\vec{c})) \in [g(I), g(J)]_{B}.$$

The reverse inclusion is equally obvious.

Lemma

Let **A**, **B** belong to a subtractive variety V; let $I, J \in \operatorname{Id}(\mathbf{A})$ and let g be a homomorphism from **A** onto **B**. Then $g([I,J]_{\mathbf{A}}) = [g(I),g(J)]_{\mathbf{B}}$.

Let $u \in g([I, J]_A)$; then there is a commutator term for V in \vec{y}, \vec{z} and elements $\vec{a} \in A$, $\vec{b} \in I$ and $\vec{c} \in J$ with

$$u = g(t(\vec{a}, \vec{b}, \vec{c})) = t(g(\vec{a}), g(\vec{b}), g(\vec{c})) \in [g(I), g(J)]_{B}.$$

The reverse inclusion is equally obvious.

In [2] there is an example of a loop **G** having a normal subloop **N** such that $[\mathbf{N}, \mathbf{N}]_{\mathbf{N}} = \{1\}$ but $[\mathbf{N}, \mathbf{N}]_{\mathbf{G}} \neq \{1\}$.

In [2] there is an example of a loop **G** having a normal subloop **N** such that $[\mathbf{N}, \mathbf{N}]_{\mathbf{N}} = \{1\}$ but $[\mathbf{N}, \mathbf{N}]_{\mathbf{G}} \neq \{1\}$.

In groups this cannot happen, since in groups we can describe the commutator of two (normal) subgroups using the commutators.

In [2] there is an example of a loop **G** having a normal subloop **N** such that $[\mathbf{N}, \mathbf{N}]_{\mathbf{N}} = \{1\}$ but $[\mathbf{N}, \mathbf{N}]_{\mathbf{G}} \neq \{1\}$.

In groups this cannot happen, since in groups we can describe the commutator of two (normal) subgroups using the commutators.

Those, in our language, are *pure* (i.e. without parameters) commutator terms. Namely if G is a group and $N, M \triangleleft G$ then

$$[N, M]_G = Sub_G(\{n^{-1}m^{-1}nm : n \in N, m \in M\}).$$

In [2] there is an example of a loop **G** having a normal subloop **N** such that $[\mathbf{N}, \mathbf{N}]_{\mathbf{N}} = \{1\}$ but $[\mathbf{N}, \mathbf{N}]_{\mathbf{G}} \neq \{1\}$.

In groups this cannot happen, since in groups we can describe the commutator of two (normal) subgroups using the commutators.

Those, in our language, are *pure* (i.e. without parameters) commutator terms. Namely if G is a group and $N, M \triangleleft G$ then

$$[N, M]_G = Sub_G(\{n^{-1}m^{-1}nm : n \in N, m \in M\}).$$

In other words the only commutator term we have to concern about is $y^{-1}z^{-1}yz$ and this clearly implies that the commutator of \mathbf{N}, \mathbf{M} is the same in any group that contains both of them.

Commutator identities

Consider an algebraic language having symbols for the join, intersection, 0,1 and the commutator; identities in that language are called *commutator identities*. Note that $\operatorname{Id}(\mathbf{A})$ can be seen as a model of the language.

Commutator identities

Consider an algebraic language having symbols for the join, intersection, 0,1 and the commutator; identities in that language are called *commutator identities*. Note that $\operatorname{Id}(\mathbf{A})$ can be seen as a model of the language.

We say that a class K of algebras satisfies the commutator identity $p \approx q$ and we will write

$$\mathsf{K} \vDash_{id} p \approx q$$
,

if $p \approx q$ holds in $\mathrm{Id}(\mathbf{A})$ for all $\mathbf{A} \in \mathsf{K}$.

One shows routinely the following:

One shows routinely the following:

Proposition

For any algebra A the following are equivalent:

- **1 A** $\vDash_{id} [x, y] = x \cap y \cap [A, A];$
- **2 A** $\vDash_{id} [x, y \cap z] = [x, y] \cap z;$
- **3 A** $\vDash_{id} [x, y] = [x, A] \cap y;$
- **4** $A \vDash_{id} [x, x] = x \cap [A, A];$
- 6 for all $a \in A$, if $a \in [A, A]$ then $[a, a] = (a)_A$.

An algebra **A** is **(finitely)** ideal irreducible if every (finite) family of ideals different form $\{0\}$ does not intersect to $\{0\}$.

An algebra **A** is **(finitely)** ideal irreducible if every (finite) family of ideals different form $\{0\}$ does not intersect to $\{0\}$.

Ideal irreducibility is equivalent to the existence of a minimal nonzero ideal which has to be generated by a single element, called the **monolithical** element of **A**.

An algebra **A** is **(finitely)** ideal irreducible if every (finite) family of ideals different form $\{0\}$ does not intersect to $\{0\}$.

Ideal irreducibility is equivalent to the existence of a minimal nonzero ideal which has to be generated by a single element, called the **monolithical** element of **A**.

An algebra **A** is **ideal abelian** if $[A, A] = \{0\}$.

An algebra **A** is **(finitely)** ideal irreducible if every (finite) family of ideals different form $\{0\}$ does not intersect to $\{0\}$.

Ideal irreducibility is equivalent to the existence of a minimal nonzero ideal which has to be generated by a single element, called the **monolithical** element of **A**.

An algebra **A** is **ideal abelian** if $[A, A] = \{0\}$.

An algebra **A** is **ideal prime** if for all $I, J \in Id(\mathbf{A})$, $[I, J] = \{0\}$ implies $I = \{0\}$ or $J = \{0\}$.

Theorem

- [1] For a subtractive variety V the following are equivalent:

 - 2 every ideal irreducible algebra in V is either ideal abelian or ideal prime.

Assume (1) and let $I,J\in {\rm Id}({\bf A})$ with $[I,J]=\{0\}$. Then $[I,J]=I\cap J\cap [A,A].$

Assume (1) and let $I,J\in {\rm Id}({\bf A})$ with $[I,J]=\{0\}.$ Then $[I,J]=I\cap J\cap [A,A].$

and if **A** is not abelian then $[A, A] \neq \{0\}$.

Assume (1) and let $I,J\in \mathrm{Id}(\mathbf{A})$ with $[I,J]=\{0\}$. Then $[I,J]=I\cap J\cap [A,A].$

and if ${\bf A}$ is not abelian then $[A,A] \neq \{0\}.$ Since ${\bf A}$ is ideal irreducible,

 $I \cap J = \{0\}$ and again either $I = \{0\}$ or $J = \{0\}$; i.e. **A** is ideal prime.

Assume (1) and let $I,J\in \mathrm{Id}(\mathbf{A})$ with $[I,J]=\{0\}.$ Then

$$[I,J]=I\cap J\cap [A,A].$$

and if **A** is not abelian then $[A, A] \neq \{0\}$. Since **A** is ideal irreducible,

 $I \cap J = \{0\}$ and again either $I = \{0\}$ or $J = \{0\}$; i.e. **A** is ideal prime.

Assume (2); by the previous proposition it is enough to show that if $\mathbf{A} \in V$, $I \in \mathrm{Id}(\mathbf{A})$ and $I \subseteq [A, A]$ then [I, I] = I.

Assume (1) and let $I, J \in \mathrm{Id}(\mathbf{A})$ with $[I, J] = \{0\}$. Then

$$[I,J]=I\cap J\cap [A,A].$$

and if **A** is not abelian then $[A, A] \neq \{0\}$. Since **A** is ideal irreducible,

 $I \cap J = \{0\}$ and again either $I = \{0\}$ or $J = \{0\}$; i.e. **A** is ideal prime.

Assume (2); by the previous proposition it is enough to show that if $\mathbf{A} \in V$, $I \in \mathrm{Id}(\mathbf{A})$ and $I \subseteq [A,A]$ then [I,I]=I.

Assume by contradiction that there exists $a \in I \setminus [I, I]$; using Zorn Lemma let U be maximal in

$$\{J \in \mathrm{Id}(\mathbf{A}) : [I,I] \subseteq J, a \notin J\}$$

and let $\theta \in Con(\mathbf{A})$ such that $U = 0/\theta$.

Assume (1) and let $I, J \in \mathrm{Id}(\mathbf{A})$ with $[I, J] = \{0\}$. Then

$$[I,J]=I\cap J\cap [A,A].$$

and if **A** is not abelian then $[A, A] \neq \{0\}$. Since **A** is ideal irreducible,

 $I\cap J=\{0\}$ and again either $I=\{0\}$ or $J=\{0\}$; i.e. **A** is ideal prime.

Assume (2); by the previous proposition it is enough to show that if $\mathbf{A} \in V$, $I \in \mathrm{Id}(\mathbf{A})$ and $I \subseteq [A, A]$ then [I, I] = I.

Assume by contradiction that there exists $a \in I \setminus [I, I]$; using Zorn Lemma let U be maximal in

$$\{J \in \mathrm{Id}(\mathbf{A}) : [I,I] \subseteq J, a \notin J\}$$

and let $\theta \in \mathsf{Con}(\mathbf{A})$ such that $U = 0/\theta$.

Let L be a nonzero ideal of \mathbf{A}/θ ; for some $J \supseteq U$ we have $L = \{b/\theta : b \in J\}$ and for some $b \in J$, $(0,b) \notin \theta$, i.e. $b \in J - U$. So $a \in J$, namely $a/\theta \in L$ and \mathbf{A}/θ is ideal irreducible; by hypothesis \mathbf{A}/θ is either ideal abelian or ideal prime.

Observe that $[I,I] \subseteq U$, $I \not\subseteq U$ and

$$[U \lor I, U \lor I] \subseteq U \lor [I, I] = U,$$

Observe that $[I, I] \subseteq U$, $I \not\subseteq U$ and

$$[U \vee I, U \vee I] \subseteq U \vee [I, I] = U,$$

therefore

$$[(U \vee I)/\theta, (U \vee I)/\theta]_{\mathbf{A}/\theta} = [U \vee I, U \vee I]/\theta \subseteq U/\theta = \{0/\theta\},$$

while $(U \vee I)/\theta \neq \{0/\theta\}$, since $a/\theta \in (U \vee I)/\theta$.

Observe that $[I,I] \subseteq U$, $I \not\subseteq U$ and

$$[U \vee I, U \vee I] \subseteq U \vee [I, I] = U,$$

therefore

$$[(U \lor I)/\theta, (U \lor I)/\theta]_{\mathbf{A}/\theta} = [U \lor I, U \lor I]/\theta \subseteq U/\theta = \{0/\theta\},$$

while $(U \vee I)/\theta \neq \{0/\theta\}$, since $a/\theta \in (U \vee I)/\theta$.

Hence \mathbf{A}/θ is not ideal prime and so it must be ideal Abelian. This implies

$$\{0/\theta\} = [A/\theta, A/\theta]_{\mathbf{A}/\theta} = [A, A]/\theta$$

and since $I \subseteq [A, A]$ we would have $I/\theta = \{0/\theta\}$, which is absurd since $a/\theta \neq \{0/\theta\}$.

Observe that $[I,I] \subseteq U$, $I \not\subseteq U$ and

$$[U \vee I, U \vee I] \subseteq U \vee [I, I] = U,$$

therefore

$$[(U \lor I)/\theta, (U \lor I)/\theta]_{\mathbf{A}/\theta} = [U \lor I, U \lor I]/\theta \subseteq U/\theta = \{0/\theta\},$$

while $(U \vee I)/\theta \neq \{0/\theta\}$, since $a/\theta \in (U \vee I)/\theta$.

Hence \mathbf{A}/θ is not ideal prime and so it must be ideal Abelian. This implies

$$\{0/\theta\} = [A/\theta, A/\theta]_{\mathbf{A}/\theta} = [A, A]/\theta$$

and since $I \subseteq [A, A]$ we would have $I/\theta = \{0/\theta\}$, which is absurd since $a/\theta \neq \{0/\theta\}$.

It follows by contradiction that (2) implies (1).

An algebra ${\bf A}$ is **ideal neutral** if the commutator of ideals reduces to the intersection.

An algebra **A** is **ideal neutral** if the commutator of ideals reduces to the intersection.

This is equivalent to saying that $\mathbf{A} \vDash_{id} [x, y] \approx x \cap y$.

An algebra **A** is **ideal neutral** if the commutator of ideals reduces to the intersection.

This is equivalent to saying that $\mathbf{A} \vDash_{id} [x, y] \approx x \cap y$.

A variety V is **ideal distributive** if for all $\mathbf{A} \in V$, $\mathrm{Id}(\mathbf{A})$ is a distributive lattice.

An algebra **A** is **ideal neutral** if the commutator of ideals reduces to the intersection.

This is equivalent to saying that $\mathbf{A} \vDash_{id} [x, y] \approx x \cap y$.

A variety V is **ideal distributive** if for all $\mathbf{A} \in V$, $\mathrm{Id}(\mathbf{A})$ is a distributive lattice.

Proposition

For a subtractive variety V the following are equivalent:

- 1 V is ideal distributive;
- **2** for all $\mathbf{A} \in V$ and $\theta, \varphi, \psi \in Con(\mathbf{A})$

$$0/(\theta \vee \varphi) \wedge \psi = 0/(\theta \wedge \psi) \vee (\varphi \wedge \psi).$$

Theorem

- [1] For a subtractive variety V the following are equivalent:

 - 2 V is ideal distributive;
 - 3 there are four ternary terms q_1, \ldots, q_4 such that the following identities hold in V:

$$q_i(x, y, 0) = 0$$
 $i = 1, ..., 4$
 $q_1(x, y, x) = q_2(x, y, y)$
 $q_3(x, y, x) = q_4(x, y, s(x, y)) = s(x, q_1(x, y, x));$

4 there is a binary term b(x,y) such that the following identities hold in V:

$$b(x,x) = 0$$
 $b(0,x) = 0$ $b(x,0) = x$.

Let **A** be any algebra; **A** is called **abelian** (see [3]) if for every term $t(x, \vec{y})$, for every $a, b, \vec{u}, \vec{v} \in A$, if $t(a, \vec{u}) = t(a, \vec{v})$ then $t(b, \vec{u}) = t(b, \vec{v})$.

Let **A** be any algebra; **A** is called **abelian** (see [3]) if for every term $t(x, \vec{y})$, for every $a, b, \vec{u}, \vec{v} \in A$, if $t(a, \vec{u}) = t(a, \vec{v})$ then $t(b, \vec{u}) = t(b, \vec{v})$.

By Mal'cev criterion, this is equivalent to saying that the diagonal of $D(\mathbf{A}) = \{(a, a) : a \in A\}$ is a congruence class of $\mathbf{A} \times \mathbf{A}$.

Let **A** be any algebra; **A** is called **abelian** (see [3]) if for every term $t(x, \vec{y})$, for every $a, b, \vec{u}, \vec{v} \in A$, if $t(a, \vec{u}) = t(a, \vec{v})$ then $t(b, \vec{u}) = t(b, \vec{v})$.

By Mal'cev criterion, this is equivalent to saying that the diagonal of $D(\mathbf{A}) = \{(a, a) : a \in A\}$ is a congruence class of $\mathbf{A} \times \mathbf{A}$.

In congruence modular varieties, this is equivalent to: $[1_A, 1_A] = 0_A$ in Con(A) [2].

Let **A** be any algebra; **A** is called **abelian** (see [3]) if for every term $t(x, \vec{y})$, for every $a, b, \vec{u}, \vec{v} \in A$, if $t(a, \vec{u}) = t(a, \vec{v})$ then $t(b, \vec{u}) = t(b, \vec{v})$.

By Mal'cev criterion, this is equivalent to saying that the diagonal of $D(\mathbf{A}) = \{(a, a) : a \in A\}$ is a congruence class of $\mathbf{A} \times \mathbf{A}$.

In congruence modular varieties, this is equivalent to: $[1_A, 1_A] = 0_A$ in Con(A) [2].

We remind that a subtractive algebra **A** is ideal abelian if $[A, A] = \{0\}$.

Let **A** be any algebra; **A** is called **abelian** (see [3]) if for every term $t(x, \vec{y})$, for every $a, b, \vec{u}, \vec{v} \in A$, if $t(a, \vec{u}) = t(a, \vec{v})$ then $t(b, \vec{u}) = t(b, \vec{v})$.

By Mal'cev criterion, this is equivalent to saying that the diagonal of $D(\mathbf{A}) = \{(a, a) : a \in A\}$ is a congruence class of $\mathbf{A} \times \mathbf{A}$.

In congruence modular varieties, this is equivalent to: $[1_A, 1_A] = 0_A$ in Con(A) [2].

We remind that a subtractive algebra **A** is ideal abelian if $[A, A] = \{0\}$.

From the description of the commutator of ideals we get two equivalent conditions for being ideal abelian:

From the description of the commutator of ideals we get two equivalent conditions for being ideal abelian:

From the description of the commutator of ideals we get two equivalent conditions for being ideal abelian:

$$\forall t(x, \vec{y}) \text{ term}, \ \forall u, v, \vec{a}, \vec{b} \in A$$
 (TC_i)
 $s(t(u, \vec{a}), t(u, \vec{b})) = 0$ if and only if $s(t(v, \vec{a}), t(v, \vec{b})) = 0$

$$\begin{split} \forall \ t(x,\vec{y}) \ \text{term}, \ \forall \ v,\vec{a},\vec{b} \in A, \\ s(t(0,\vec{a}),t(0,\vec{b})) = 0 \qquad \text{if and only if} \qquad s(t(v,\vec{a}),t(v,\vec{b})) = 0 \end{split}$$

Then, since by (TC_i) or (TC_0) the condition of being ideal abelian is expressible by quasiequations, IAB(V) is closed under subalgebras and direct products.

Then, since by (TC_i) or (TC_0) the condition of being ideal abelian is expressible by quasiequations, IAB(V) is closed under subalgebras and direct products.

However remember this lemma:

Lemma

Let A, B belong to a subtractive variety V; let $I, J \in \operatorname{Id}(A)$ and let g be a homomorphism from A onto B. Then $g([I,J]_A) = [g(I),g(J)]_B$.

Then, since by (TC_i) or (TC_0) the condition of being ideal abelian is expressible by quasiequations, IAB(V) is closed under subalgebras and direct products.

However remember this lemma:

Lemma

Let A, B belong to a subtractive variety V; let $I, J \in \operatorname{Id}(A)$ and let g be a homomorphism from A onto B. Then $g([I,J]_A) = [g(I),g(J)]_B$.

Proposition

For every subtractive variety V, IAB(V) is a variety.

Proposition

For every subtractive variety V, IAB(V) is a variety.

We need only observe that if $g: \mathbf{A} \longrightarrow \mathbf{B}$ is a onto homomorphism and $U, V \in \mathrm{Id}(\mathbf{B})$, then $g^{-1}(U), g^{-1}(V) \in \mathrm{Id}(\mathbf{A})$. Then we apply the lemma.

Proposition

For every subtractive variety V, IAB(V) is a variety.

We need only observe that if $g: \mathbf{A} \longrightarrow \mathbf{B}$ is a onto homomorphism and $U, V \in \mathrm{Id}(\mathbf{B})$, then $g^{-1}(U), g^{-1}(V) \in \mathrm{Id}(\mathbf{A})$. Then we apply the lemma.

A more interesting observation is the following:

Proposition

[4] If V is subtractive then IAB(V) is strongly subtractive.

Proposition

For every subtractive variety V, IAB(V) is a variety.

We need only observe that if $g: \mathbf{A} \longrightarrow \mathbf{B}$ is a onto homomorphism and $U, V \in \mathrm{Id}(\mathbf{B})$, then $g^{-1}(U), g^{-1}(V) \in \mathrm{Id}(\mathbf{A})$. Then we apply the lemma.

A more interesting observation is the following:

Proposition

[4] If V is subtractive then IAB(V) is strongly subtractive.

We will show that if $\mathbf{A} \in IAB(V)$ and $I \in Id(\mathbf{A})$, then I^* is a subalgebra of $\mathbf{A} \times \mathbf{A}$.

$$s(t(\vec{x}, \vec{y}), t(\vec{z}, \vec{y})) \approx 0$$

holds in IAB(V), simply because the shown term is a commutator term in $\vec{x} * \vec{z}, \vec{y}$.

$$s(t(\vec{x}, \vec{y}), t(\vec{z}, \vec{y})) \approx 0$$

holds in IAB(V), simply because the shown term is a commutator term in $\vec{x}*\vec{z},\vec{y}$.

Let f be an n-ary operation; then

$$s(f(u(x_1,y_1,0),\ldots,u(x_n,y_n,0)),f(\vec{y}))$$

is an ideal term in \vec{y} .

$$s(t(\vec{x}, \vec{y}), t(\vec{z}, \vec{y})) \approx 0$$

holds in IAB(V), simply because the shown term is a commutator term in $\vec{x}*\vec{z},\vec{y}$.

Let f be an n-ary operation; then

$$s(f(u(x_1,y_1,0),\ldots,u(x_n,y_n,0)),f(\vec{y}))$$

is an ideal term in \vec{y} .

Therefore in IAB(V)

$$0 \approx s(s(f(u(x_1, y_1, 0), \dots, u(x_n, y_n, 0)), f(\vec{y})), s(f(u(y_1, y_1, 0), \dots, u(y_n, y_n, 0)), f(\vec{y})))$$

$$\approx s(s(f(u(x_1, y_1, 0), \dots, u(x_n, y_n, 0)), f(\vec{y})), s(f(\vec{y}), f(\vec{y})))$$

$$\approx s(f(u(x_1, y_1, 0), \dots, u(x_n, y_n, 0)), f(\vec{y})).$$

$$s(t(\vec{x}, \vec{y}), t(\vec{z}, \vec{y})) \approx 0$$

holds in IAB(V), simply because the shown term is a commutator term in $\vec{x} * \vec{z}, \vec{y}$.

Let f be an n-ary operation; then

$$s(f(u(x_1, y_1, 0), \ldots, u(x_n, y_n, 0)), f(\vec{y}))$$

is an ideal term in \vec{y} .

Therefore in IAB(V)

$$0 \approx s(s(f(u(x_1, y_1, 0), \dots, u(x_n, y_n, 0)), f(\vec{y})), s(f(u(y_1, y_1, 0), \dots, u(y_n, y_n, 0)), f(\vec{y})))$$

$$\approx s(s(f(u(x_1, y_1, 0), \dots, u(x_n, y_n, 0)), f(\vec{y})), s(f(\vec{y}), f(\vec{y})))$$

$$\approx s(f(u(x_1, y_1, 0), \dots, u(x_n, y_n, 0)), f(\vec{y})).$$

This means that

$$s(f(u(x_1, y_1, z_1), \ldots, u(x_n, y_n, z_n)), f(\vec{y}))$$

is an ideal term for IAB(V) in \vec{z} .

$$s(t(\vec{x}, \vec{y}), t(\vec{z}, \vec{y})) \approx 0$$

holds in IAB(V), simply because the shown term is a commutator term in $\vec{x}*\vec{z},\vec{y}$.

Let f be an n-ary operation; then

$$s(f(u(x_1,y_1,0),\ldots,u(x_n,y_n,0)),f(\vec{y}))$$

is an ideal term in \vec{y} .

Therefore in IAB(V)

$$0 \approx s(s(f(u(x_1, y_1, 0), \dots, u(x_n, y_n, 0)), f(\vec{y})), s(f(u(y_1, y_1, 0), \dots, u(y_n, y_n, 0)), f(\vec{y})))$$

$$\approx s(s(f(u(x_1, y_1, 0), \dots, u(x_n, y_n, 0)), f(\vec{y})), s(f(\vec{y}), f(\vec{y})))$$

$$\approx s(f(u(x_1, y_1, 0), \dots, u(x_n, y_n, 0)), f(\vec{y})).$$

This means that

$$s(f(u(x_1,y_1,z_1),\ldots,u(x_n,y_n,z_n)),f(\vec{y}))$$

is an ideal term for IAB(V) in \vec{z} .

Therefore, if $(a_i, b_i) \in I^*$ then also $(f(\vec{a}), f(\vec{b})) \in I^*$. This proves the conclusion.

The classes (improved)

The three groups theorem

The last thing we show is a version of the so-called "Three groups theorem" for ideal abelian algebras.

The three groups theorem

The last thing we show is a version of the so-called "Three groups theorem" for ideal abelian algebras.

Proposition

- [1] Let **A** be subtractive. If M_3 is a 0-1-sublattice of $\operatorname{Id}(\mathbf{A})$, then **A** is ideal Abelian. Moreover the following are equivalent:
 - A is ideal Abelian and non trivial;
 - 2 $\operatorname{Id}(\mathbf{A} \times \mathbf{A})$ has \mathbf{M}_3 as a 0-1-sublattice;
 - \blacksquare $\pi_1^{-1}(0)$ and $\pi_2^{-1}(0)$ have a common complement in $\mathrm{Id}(\mathbf{A}\times\mathbf{A})$;
 - 4 for some subdirect product **S** of $\mathbf{A} \times \mathbf{A}$, $\mathrm{Id}(\mathbf{S})$ has an \mathbf{M}_3 as a 0-1-sublattice.

THANK YOU!

- P. Aglianò and A. Ursini, *On subtractive varieties II: General properties*, Algebra Universalis **36** (1996), 222–259.
- R. Freese and R. McKenzie, Commutator Theory for Congruence Modular Varieties, no. 125, Cambridge University Press, 1987.
- R. McKenzie, G. McNulty, and W. Taylor, *Algebras, Lattices, Varieties, Volume 1*, Wadsworth & Brooks/Cole, Belmont, CA, 1987.
- A. Ursini, *On subtractive varieties I*, Algebra Universalis **31** (1994), 204–222