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Ideal determined varieties

A variety V is congruence O-regular if for all A € V and

0, € Con(A),0/0 = 0/¢ implies § = . O-regularity was introduced and
characterized in [3]; when the variety is also subtractive, then it is said to
be ideal determined.
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Theorem

[5] For a variety V' the following are equivalent:

V is ideal determined;

H any algebra in V has 0-regular and 0-permutable congruences;

there exists a natural number m, binary terms dy(x,y), ..., dn(x, y)

and a m + 3-term q such that

di(x,y) =0 for i=1,...,m implies x = y
di(x,x)~0 for i=1,...,m
q(x,y,0,0,...,0) =~ 0
906y, ¥, di(X,y), - dm(x, ) R x

hold in V;

@ the mapping from Con(A) — Id(A) defined by 6 — 0/6 is a
lattice isomorphism.
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The proof is just an easy modification of the previous one for subtractive
varieties.
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The proof is just an easy modification of the previous one for subtractive
varieties.

Examples of ideal determined varieties: groups, rings, R-modules,

R-algebras, residuated lattices (and any of their fragments containing —
and 1) and many others.
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The proof is just an easy modification of the previous one for subtractive
varieties.

Examples of ideal determined varieties: groups, rings, R-modules,
R-algebras, residuated lattices (and any of their fragments containing —
and 1) and many others.

In an ideal determined variety the congruence permute at 0 and they are
completely determined by the ideals. This does not mean however that
the congruence must permute away from zero.
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Implication algebras

An implication algebra (a.k.a. Hilbert algebra) is a —, 1-subreduct of a
Heyting algebra.
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Implication algebras

An implication algebra (a.k.a. Hilbert algebra) is a —, 1-subreduct of a
Heyting algebra.

It is well-known [2] that implication algebras form a variety axiomatized
by

x—=x~1

(x = y) = x ~ x
(x=y)=yry—x)—x
x=>(y—=2)my—(x—2).
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Implication algebras

An implication algebra (a.k.a. Hilbert algebra) is a —, 1-subreduct of a
Heyting algebra.

It is well-known [2] that implication algebras form a variety axiomatized
by
x—=x~1
(x = y) = x ~x
x—=y)oy=(ly—x)—x
x=>(y—=2)my—(x—2).

Now 1 — x & (x — x) — x & x by the first two equations, so y — x is a
subtraction term relative to 1.
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Implication algebras

An implication algebra (a.k.a. Hilbert algebra) is a —, 1-subreduct of a
Heyting algebra.

It is well-known [2] that implication algebras form a variety axiomatized
by
x—=x~1
(x = y) = x ~x
x—=y)oy=(ly—x)—x
x=>(y—=2)my—(x—2).

Now 1 — x & (x — x) — x & x by the first two equations, so y — x is a
subtraction term relative to 1.

Next if x = y ~ y — x ~ 1 then
xmloaxm(y—x)—x
x=y)mymloy=y.

which of course implies 1-regularity of congruences.



So the variety of implication algebras is ideal determined; it is not
congruence permutable though as shown in [6]. In the same paper it is
shown that it is congruence 3-permutable; this means that for any
implication algebra A and 6y € Con(A), fopof =poboyp.
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So the variety of implication algebras is ideal determined; it is not
congruence permutable though as shown in [6]. In the same paper it is
shown that it is congruence 3-permutable; this means that for any
implication algebra A and 6y € Con(A), fopof =poboyp.

However this is not true in general; in [7] Rafetry proved that the variety
of lower BCK-semilattices is ideal determined and 4-permutable but not
3-permutable.
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So the variety of implication algebras is ideal determined; it is not
congruence permutable though as shown in [6]. In the same paper it is
shown that it is congruence 3-permutable; this means that for any
implication algebra A and 6y € Con(A), fopof =poboyp.

However this is not true in general; in [7] Rafetry proved that the variety
of lower BCK-semilattices is ideal determined and 4-permutable but not
3-permutable.

As a final fact in [4] Barbour and Raftery showed that for every n there is
an ideal determined variety that is congruence n-permutable but not
congruence n + 1-permutable.
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Bases for ideal terms

In many cases there is no need to check for closure under all the ideal
terms to ascertain if a subset of an algebra is an ideal.
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Bases for ideal terms

In many cases there is no need to check for closure under all the ideal
terms to ascertain if a subset of an algebra is an ideal.

This concept can be formalized as follows: if V is a variety a base for
the V-ideal terms is any set T of ideal terms such that Tcontains 0, T
is closed under compositions and the following holds: for any A € V and
any | C A, | € Id(A) if an only if for any t(x,y) € T, d€ Aand b € I,
t(3,b) € 1.
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Bases for ideal terms

In many cases there is no need to check for closure under all the ideal
terms to ascertain if a subset of an algebra is an ideal.

This concept can be formalized as follows: if V is a variety a base for
the V-ideal terms is any set T of ideal terms such that Tcontains 0, T
is closed under compositions and the following holds: for any A € V and
any | C A, | € Id(A) if an only if for any t(x,y) € T, d€ Aand b € I,
t(3,b) € 1.

The interesting case is the one in which the base is finite and the reader
can check in a minute that groups and rings have a finite base for their
ideal terms. This is not a coincidence and to see why we first need a
technical lemma.
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[3] For a variety \V the following are equivalent:
there is an m and binary terms ds, . .., d,, such that the equivalence

di(x,y) = ...~ dn(x,y) =0 if and only if x=y

hold in V;

H there is an m, binary terms dy, ..., dy, an quaternary terms
g1, ---,8&m Such that the equations

gl(XJ’» dl(va)ao) ~ X
8i(x,y,0,di(x,y)) = giv1(x,y, diy1(x,y),0) i=1,....m—1
gm(xa)/707 dm(ny)) =y

hold in V;

V is congruence 0-regular.
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[8] Let V be an ideal determined variety of finite type. Then V has a finite base
for ideal terms.
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[8] Let V be an ideal determined variety of finite type. Then V has a finite base
for ideal terms.

Let di,...,dm be the terms whose existence is guaranteed by the previous
lemma. We first observe that if A € V, 8 € Con(A) and | = 0/6 € Id(A) then
foralla,bc A

(a,b) €0 if and only if di(a,b)e!l i=1,....,m.
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[8] Let V be an ideal determined variety of finite type. Then V has a finite base
for ideal terms.

Let di,...,dm be the terms whose existence is guaranteed by the previous
lemma. We first observe that if A € V, 8 € Con(A) and | = 0/6 € Id(A) then
foralla,bc A

(a,b) €0 if and only if di(a,b)e!l i=1,....,m.

Next if f is an n-ary basic operation of V we consider the free algebra in V
generated by x1,...,Xn, ¥1,...,Ys and the ideal | generated by
{di(xkc,y) :i=1,...,m, k=1.... n};
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[8] Let V be an ideal determined variety of finite type. Then V has a finite base
for ideal terms.

Let di,...,dm be the terms whose existence is guaranteed by the previous
lemma. We first observe that if A € V, 8 € Con(A) and | = 0/6 € Id(A) then
foralla,bc A

(a,b) €0 if and only if di(a,b)e!l i=1,....,m.

Next if f is an n-ary basic operation of V we consider the free algebra in V
generated by x1,...,Xn, ¥1,...,Ys and the ideal | generated by
{di(xkc,y) :i=1,...,m, k=1.... n};

clearly di(f(x),f(¥)) € I for i =1,..., m and thus there exist ideal terms r; r,
i=1,...,nsuch that

fir(x,y,0,...,0) =0
fie (v, di(xi, y1), - ooy dm(xa, 1)y ooy di(Xny Yn)s - - oy dim(Xny ¥n)) = di(F(X), £(¥))

hold in V.
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Next since congruences are symmetric and transitive relations this means
that for i =1,... ndi(x,y),di(z,y) € | implies d;(x, z) € I. Hence
there are terms q;, i = 1,..., n such that

Qi(X,y,Z,O,...,O) ~0
qi(Xa.y7Z; dl(va)7 ey dm(X,_y)7 d1(Z7y), ceey dm(z,y)) ~ d,'(X, Z)

hold in V.
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Next since congruences are symmetric and transitive relations this means
that for i =1,... ndi(x,y),di(z,y) € | implies d;(x, z) € I. Hence
there are terms q;, i = 1,..., n such that

Qi(X,y,Z,O,...,O) ~0
qi(Xa.y7Z; dl(va)7 ey dm(X,_y)7 d1(Z7y), ceey dm(z,y)) ~ d,'(X, Z)

hold in V.

Finally let g be the term whose existence is requested in point (4) of
Theorem 1. We claim that

T = {07 di7 rif,qi, q}

is a base for ideal terms for V.
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Next since congruences are symmetric and transitive relations this means
that for i =1,... ndi(x,y),di(z,y) € | implies d;(x, z) € I. Hence
there are terms q;, i = 1,..., n such that

Qi(X,y,Z,O,...,O) ~0
qi(Xa.y7Z; dl(va)7 ey dm(Xy_y)7 d1(Z7y), ceey dm(zty)) ~ d,'(X, Z)

hold in V.

Finally let g be the term whose existence is requested in point (4) of
Theorem 1. We claim that

T = {07 di7 rif,qi, q}

is a base for ideal terms for V.

We have to check that T is closed under composition and that is is in
fact a base. Both proofs are routine and are left as an exercise.
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Protomodular varieties

In many ideal determined varieties there is a strong additive structure in
the following sense: if s(x, y) is the subtraction term, then there is
another binary term t(x,y) such that t(y, s(x,y)) = y holds in the
variety. This happens for instance in groups, rings and Boolean algebras.
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Protomodular varieties

In many ideal determined varieties there is a strong additive structure in
the following sense: if s(x, y) is the subtraction term, then there is
another binary term t(x,y) such that t(y, s(x,y)) = y holds in the
variety. This happens for instance in groups, rings and Boolean algebras.

This property, when properly generalized, corresponds to an interesting
categorical property called protomodularity. Let us stress that
protomodularity is a concept defined in category theory; besides the
rather unfortunate choice of the name when one tries to translate it into
the universal algebraic language some adjustments must be made.
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Protomodular varieties

In many ideal determined varieties there is a strong additive structure in
the following sense: if s(x, y) is the subtraction term, then there is
another binary term t(x,y) such that t(y, s(x,y)) = y holds in the
variety. This happens for instance in groups, rings and Boolean algebras.

This property, when properly generalized, corresponds to an interesting
categorical property called protomodularity. Let us stress that
protomodularity is a concept defined in category theory; besides the
rather unfortunate choice of the name when one tries to translate it into
the universal algebraic language some adjustments must be made.

Let V be a variety of algebras; if A,B,CeVand f: A — C,

g : B — C are homomorphisms, the pullback of A and B along C,
denoted by A x¢ B is the subalgebra of A x B consisting of all the pairs
(a, b) such that f(a) = g(b).
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Protomodular varieties

In many ideal determined varieties there is a strong additive structure in
the following sense: if s(x, y) is the subtraction term, then there is
another binary term t(x,y) such that t(y, s(x,y)) = y holds in the
variety. This happens for instance in groups, rings and Boolean algebras.

This property, when properly generalized, corresponds to an interesting
categorical property called protomodularity. Let us stress that
protomodularity is a concept defined in category theory; besides the
rather unfortunate choice of the name when one tries to translate it into
the universal algebraic language some adjustments must be made.

Let V be a variety of algebras; if A,B,CeVand f: A — C,

g : B — C are homomorphisms, the pullback of A and B along C,
denoted by A x¢ B is the subalgebra of A x B consisting of all the pairs
(a, b) such that f(a) = g(b).

It is readily checked that A x¢ B is a subalgebra of A x B.
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The Square Lemma

if pa, pg are the projections of A x¢c B into A, B then the square in
Figure 1 has the universal mapping property in the following sense.
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The Square Lemma

if pa, pg are the projections of A x¢c B into A, B then the square in
Figure 1 has the universal mapping property in the following sense.

Lemma

Let A,B,C €V, consider the pullback of A and B along C, let D € V
such that f' : D — A, g’ :— B be homomorphism. If ff' = gg’, then
the function h: D — A x¢ B defined by h(d) = (f'(d), g’(d)) is the
unique homomorphism such that the following diagram commutes:

Figure: Pullback
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Let now B in V and let r(B) = {A € K: B is a retract of A}.
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Let now B in V and let r(B) = {A € K: B is a retract of A}.

Theorem

Let E,B €V and let f : E — B be a homomorphism; if A, A" € r(B)
and g : A" — A is a homomorphism, then there is a unique
homomorphism f*(g) : E xg A’ — E xg A that makes the diagram in
Figure 2 commute.

E xg A Pa’ A
\f*(g) Y
E xg A A
E / ; B
Figure
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Let now B in V and let r(B) = {A € K: B is a retract of A}.

Theorem

Let E,B €V and let f : E — B be a homomorphism; if A, A" € r(B)
and g : A" — A is a homomorphism, then there is a unique
homomorphism f*(g) : E xg A’ — E xg A that makes the diagram in
Figure 2 commute.

E xg A Pa’ A
\f*(g) Y
E xg A A
E / ; B
Figure

It is enough to apply the Square Lemma to the pullback of E and A
along B.
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Let R(B) be the category whose objects are in r(B) and whose
morphisms are just homomorphisms between algebras in r(B); then f*
can be seen as a functor from R(B) to R(E), where f*(A) = E xg A.
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Let R(B) be the category whose objects are in r(B) and whose
morphisms are just homomorphisms between algebras in r(B); then f*
can be seen as a functor from R(B) to R(E), where f*(A) = E xg A.

A variety V of algebras is protomodular if for all E,B € V and for all
f : E — B the functor f* reflects isomorphisms.
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Let R(B) be the category whose objects are in r(B) and whose
morphisms are just homomorphisms between algebras in r(B); then f*
can be seen as a functor from R(B) to R(E), where f*(A) = E xg A.

A variety V of algebras is protomodular if for all E,B € V and for all
f : E — B the functor f* reflects isomorphisms.

In other words if for any A,A" € r(A) and g : A" — A

f*(g) is an isomorphism implies g is an isomorphism.
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As a monomorphism is just a subalgebra injection up to isomorphisms we
can reformulate the theorem in the following way.
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As a monomorphism is just a subalgebra injection up to isomorphisms we
can reformulate the theorem in the following way.

For a prevariety V the following are equivalent:
V is protomodular;
B fE<B<A <AEcV with B a retract of A, witness «, if
a YE) < A, then A' = A;

ifE<B < A €V with B a retract of A, witness «, then
A = Suba(a~}(E) U B).
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Point (3) of the previous theorem can be taken as the simplest algebraic
definition of a protomodular variety.
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Point (3) of the previous theorem can be taken as the simplest algebraic
definition of a protomodular variety.

Really, nothing has been done with it since the formulation which is more
common for categories is the one in which the category has an initial
object. When we go to algebraic categories, then an initial object is not
necessarily present.
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Point (3) of the previous theorem can be taken as the simplest algebraic
definition of a protomodular variety.

Really, nothing has been done with it since the formulation which is more
common for categories is the one in which the category has an initial
object. When we go to algebraic categories, then an initial object is not
necessarily present.

However since any variety V can be seen as a concrete category with free
objects, the initial object, if it exists, is exactly the free algebra over the
empty set.
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Point (3) of the previous theorem can be taken as the simplest algebraic
definition of a protomodular variety.

Really, nothing has been done with it since the formulation which is more
common for categories is the one in which the category has an initial
object. When we go to algebraic categories, then an initial object is not
necessarily present.

However since any variety V can be seen as a concrete category with free
objects, the initial object, if it exists, is exactly the free algebra over the
empty set.

Now for any variety Fy () exists if and only if the language of V contains
at least a constant and in this case it is the algebra generated by the
constant elements. We will see in the next section that in this case
protomodularity has a nice algebraic description.
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Theorem
For a variety V with a constant O the following are equivalent:
V is protomodular;

H for all A,B € V, where B is a retract of A via o and E is the
subalgebra of B generated by 0, then A = Suba(a~1(E) U B);

thereisann €N, e1,...,e, € E, an n+ 1-ary term t and binary
terms di, ..., d, such that

di(x, x) ~ € i=1,...,n
t(yv dl(Xa)/)w"adn(Xv)/)) ~ X
holds in V.
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(1) implies (2) by the previous theorem.

Ideals in universal algebra Il: Regularity of congruences



(1) implies (2) by the previous theorem.

Assume then (2) and let A = Fy(x,y) and B = Fy(y); then
a(x) = a(y) = y and A = Suba(a~Y(E) U B) where E is the subalgebra
of B generated by the constants.
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(1) implies (2) by the previous theorem.
Assume then (2) and let A = Fy(x,y) and B = Fy(y); then

a(x) = a(y) = y and A = Suba(a~Y(E) U B) where E is the subalgebra
of B generated by the constants.

Since x € A, there is an n+ l-ary term t and binary terms di, ..., d,
such that
X~ t(y7 dl(Xa.y)a"'adn(Xay))

where t1,...,t, € E. This means that di(y,y) = a(di(x,y)) is in the
subalgebra generated by the constants. It follows that there are
e1,...,e, € Ey such that di(x,x) =~ e;, i =1,...,n. This proves (3).
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Assume now (3) and let B < A € V where B is a retract of A via a.
Then if E is the subalgebra of B generated by the constants and a € A
we have

a = t(a(a),di(a(a), a),...,d(a(a),a))
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Assume now (3) and let B < A € V where B is a retract of A via a.
Then if E is the subalgebra of B generated by the constants and a € A
we have

a = t(a(a),di(a(a), a),...,d(a(a),a))

= ¢; € E. Therefore
<B<AE€V,then E<E and, a
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Assume now (3) and let B < A € V where B is a retract of A via a.
Then if E is the subalgebra of B generated by the constants and a € A

we have
a = t(a(a), di(a(a), a), ..., dn((a), a))

(a
and a(d;(a(a),a)) = di(a(a),a(a)) = e; € E. Therefore
A = Suba(a}(E) U B). Now if E’ g <A€V, then E<E and, a
fortiori, A = Suba(a~(E’) U B).

Thus V is protomodular by the previous theorem.
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Assume now (3) and let B < A € V where B is a retract of A via a.
Then if E is the subalgebra of B generated by the constants and a € A
we have

a = t(a(a), di(a(a),a),.. ., dn(x(a), 3))

(a
and a(d;(a(a),a)) = di(a(a),a(a)) = e; € E. Therefore
A = Suba(a}(E) U B). Now if E’ g <A€V, then E<E and, a
fortiori, A = Suba(a~(E’) U B).

Thus V is protomodular by the previous theorem.

We stress, even if there is no need, that we are not asking that the
constants ey, ..., e, be distinct.
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Corollary

IfV is protomodular then it is congruence permutable. If the previous
theorem holds for e = --- = e, = 0, then it is ideal determined.
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Corollary

IfV is protomodular then it is congruence permutable. If the previous
theorem holds for e = --- = e, = 0, then it is ideal determined.

If V is protomodular, then the term

m(x,y,z):=t(z,di(x,¥),...,da(x,¥)),

is easily shown to be a Mal'cev term for V, which is then congruence
permutable.
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Corollary

IfV is protomodular then it is congruence permutable. If the previous
theorem holds for e = --- = e, = 0, then it is ideal determined.

If V is protomodular, then the term

m(x,y,z):=t(z,di(x,¥),...,da(x,¥)),

is easily shown to be a Mal'cev term for V, which is then congruence
permutable.

If it is pointed then E = {0} and so di(x,x) ~ 0 for i =1,...,n. Hence
the term s(x, y) = t(0, di(x,y), ..., dn(x,y)) is a subtraction term for V.
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Corollary

IfV is protomodular then it is congruence permutable. If the previous
theorem holds for e = --- = e, = 0, then it is ideal determined.

If V is protomodular, then the term

m(x,y,z):=t(z,di(x,¥),...,da(x,¥)),

is easily shown to be a Mal'cev term for V, which is then congruence
permutable.

If it is pointed then E = {0} and so di(x,x) ~ 0 for i =1,...,n. Hence
the term s(x, y) = t(0, di(x,y), ..., dn(x,y)) is a subtraction term for V.

Moreover if d;(x,y) = 0 for i =1,...,n then

X~ t(yadl(xay)7"'adn(x7y)) ~ t(y307"'a0)
~tly,di(y,y), .., da(y,y)) = y.

This shows that V is O-regular and hence ideal determined.
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Classically ideal determined varieties

Clearly if a variety is protomodular and pointed, i.e. there is exactly one
constant, then the hypotheses of the Corollary are automatically satisfied.
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Classically ideal determined varieties

Clearly if a variety is protomodular and pointed, i.e. there is exactly one
constant, then the hypotheses of the Corollary are automatically satisfied.

However the variety of Boolean algebras is ideal determined, not pointed since
E = {0,1} and still satisfies the hypotheses of the Corollary for
ee=---=¢€ =0 (or1).
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Classically ideal determined varieties

Clearly if a variety is protomodular and pointed, i.e. there is exactly one
constant, then the hypotheses of the Corollary are automatically satisfied.

However the variety of Boolean algebras is ideal determined, not pointed since
E = {0,1} and still satisfies the hypotheses of the Corollary for
ee=---=¢€ =0 (or1).

This suggests a definition: a variety V is classically ideal determined if it
satisfies (4) of the previous Theorem with e = --- =, = 0.
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Classically ideal determined varieties

Clearly if a variety is protomodular and pointed, i.e. there is exactly one
constant, then the hypotheses of the Corollary are automatically satisfied.

However the variety of Boolean algebras is ideal determined, not pointed since
E = {0,1} and still satisfies the hypotheses of the Corollary for
ee=---=¢€ =0 (or1).

This suggests a definition: a variety V is classically ideal determined if it
satisfies (4) of the previous Theorem with e = --- =, = 0.

In other words a variety V is classically ideal determined is there is an n € N,
binary terms di, ..., d, and a n+ l-ary term t such that

di(x,x)=~0 i=1....,n
t(y,dl(X,y),...,dn(X,y)) ~ X.
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Classically ideal determined varieties

Clearly if a variety is protomodular and pointed, i.e. there is exactly one
constant, then the hypotheses of the Corollary are automatically satisfied.

However the variety of Boolean algebras is ideal determined, not pointed since
E = {0,1} and still satisfies the hypotheses of the Corollary for
ee=---=¢€ =0 (or1).

This suggests a definition: a variety V is classically ideal determined if it
satisfies (4) of the previous Theorem with e = --- =, = 0.

In other words a variety V is classically ideal determined is there is an n € N,
binary terms di, ..., d, and a n+ l-ary term t such that

di(x,x)=~0 i=1....,n
t(y,d1(X,y),...,dn(X,y)) ~ X

Proposition

A classically ideal determined variety is 0-regular and congruence permutable,
hence ideal determined.
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Varieties that are O-regular and congruence permutable have been
described in [1]:
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Varieties that are O-regular and congruence permutable have been
described in [1]:

[1] For a variety V' the following are equivalent:
V is 0-regular and congruence permutable;

A there is an n € N, an n+ 2-ary term p and binary terms d, ..., d,
such that

di(x,x) =0 i=1,...,n
p(x,y,0,...,0) =y
P(Xa%dl(X,}’)w-~>dn(Xa}/)) ~ X
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To produce and example of a example of a 0-regular and congruence
permutable variety that is not classically ideal determined, we need a
better characterization of classically ideal determined variety.
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To produce and example of a example of a 0-regular and congruence
permutable variety that is not classically ideal determined, we need a
better characterization of classically ideal determined variety.

A subalgebra S < A x A is classical if (a, b) € S implies (a,a) € S.
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To produce and example of a example of a 0-regular and congruence
permutable variety that is not classically ideal determined, we need a
better characterization of classically ideal determined variety.

A subalgebra S < A x A is classical if (a, b) € S implies (a,a) € S.

Of course any congruence is a classical subalgebra of A x A and a
standard argument shows that the classical subalgebras of A x A form an
algebraic lattice CS(A).
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To produce and example of a example of a 0-regular and congruence
permutable variety that is not classically ideal determined, we need a
better characterization of classically ideal determined variety.

A subalgebra S < A x A is classical if (a, b) € S implies (a,a) € S.

Of course any congruence is a classical subalgebra of A x A and a
standard argument shows that the classical subalgebras of A x A form an
algebraic lattice CS(A).

A variety V is classically 0-regular if for all A € V and S, T € Cs(A) if
0/S=0/Tand SAC T and TA C S, then S = T. Clearly every
classically O-regular variety is O-regular as well.
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To produce and example of a example of a 0-regular and congruence
permutable variety that is not classically ideal determined, we need a
better characterization of classically ideal determined variety.

A subalgebra S < A x A is classical if (a, b) € S implies (a,a) € S.

Of course any congruence is a classical subalgebra of A x A and a
standard argument shows that the classical subalgebras of A x A form an
algebraic lattice CS(A).

A variety V is classically 0-regular if for all A € V and S, T € Cs(A) if
0/S=0/Tand SAC T and TA C S, then S = T. Clearly every
classically O-regular variety is O-regular as well.

A variety V is 0-coherent if for all A € B, for all # € Con(A) and for all
B <A, if 0/0 C B, then B is a union of #-blocks.
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Theorem

[9] For a variety V the following are equivalent:
V is classically ideal determined;
H V is classically 0-regular;
V is 0-coherent.
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Theorem

[9] For a variety V the following are equivalent:
V is classically ideal determined;
H V is classically 0-regular;
V is 0-coherent.

The proof is rather technical, albeit similar to the ones we have already
seen. Therefore we omit it.
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An example

Let A ={0,a, b, c}; on A we define the following operations:
e d(x,y) is a binary operation whose table is
d|0 a b ¢

0/]0 a b c
ala 0 ¢ a
b|b ¢ 0 a
clc a a a

e t(x,y,z) is a ternary operation defined by
x, ifz=0;

glx,y,z2)=1 vy, ifdlxy)=2z
z, otherwise.
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We spare the tedious verification that in A the following equations hold:

d(x,x) =0
t(x,y,0) = x
t(x,y,d(x,y)) = x.
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We spare the tedious verification that in A the following equations hold:

d(x,x) =0
t(x,y,0) = x
t(x,y,d(x,y)) = x.

By the characterization Theorem , V(A) is a congruence permutable
O-regular variety.
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We spare the tedious verification that in A the following equations hold:
d(x,x) =0
t(x,y,0) = x
t(x,y,d(x,y)) = x.

By the characterization Theorem , V(A) is a congruence permutable
O-regular variety.

However it is easy to check that the partition {{a, b}, {0, c}} induces a
congruence on A and that {0, a, c} is the universe of a subalgebra of A.
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We spare the tedious verification that in A the following equations hold:
d(x,x) =0
t(x,y,0) = x
t(x,y,d(x,y)) = x.

By the characterization Theorem , V(A) is a congruence permutable
O-regular variety.

However it is easy to check that the partition {{a, b}, {0, c}} induces a
congruence on A and that {0, a, c} is the universe of a subalgebra of A.

So V(A) is not 0-coherent and thus it is not classically ideal determined.
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Strongly subtractive varieties

Let V be a subtractive variety, witness s(x, y); we say that V is strongly
subtractive if for all A € V and | € Id(A) the relation

(a,b) e I” if and only if  s(b,a) €/

is a congruence of A.
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Strongly subtractive varieties

Let V be a subtractive variety, witness s(x, y); we say that V is strongly
subtractive if for all A € V and | € Id(A) the relation

(a,b) e I” if and only if  s(b,a) €/
is a congruence of A.

Note that /* is necessarily reflexive and this allows us to prove a result
similar to the one by Werner [10] in congruence permutable variety.
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Strongly subtractive varieties

Let V be a subtractive variety, witness s(x, y); we say that V is strongly
subtractive if for all A € V and | € Id(A) the relation

(a,b) e I” if and only if  s(b,a) €/
is a congruence of A.

Note that /* is necessarily reflexive and this allows us to prove a result
similar to the one by Werner [10] in congruence permutable variety.

Proposition

Let A be an algebra in a subtractive variety and | € Id(A); then the
following are equivalent:

I* is a congruence;
I* is a subalgebra of A x A.
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If'V is 0-regular and strongly subtractive then it is classically ideal
determined.
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Theorem

If'V is 0-regular and strongly subtractive then it is classically ideal
determined.

If the hypotheses hold then V is subtractive witness, say, s(x, y).
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Theorem

If'V is 0-regular and strongly subtractive then it is classically ideal
determined.

If the hypotheses hold then V is subtractive witness, say, s(x, y).

Let F = Fy(x,y) and let § = ¥¢(x,y) and let | = 0/6; since V is
strongly subtractive the relation

(u,v)elr” if and only if  s(v,u) el

is a congruence of F.
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Theorem

If'V is 0-regular and strongly subtractive then it is classically ideal
determined.

If the hypotheses hold then V is subtractive witness, say, s(x, y).

Let F = Fy(x,y) and let § = ¥¢(x,y) and let | = 0/6; since V is
strongly subtractive the relation

(u,v)elr” if and only if  s(v,u) el

is a congruence of F.

Now u € 0//* if and only if u € | =0/0; as V is O-regular, § = I* and in
particular (x,y) € I*.
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Theorem

If'V is 0-regular and strongly subtractive then it is classically ideal
determined.

If the hypotheses hold then V is subtractive witness, say, s(x, y).
Let F = Fy(x,y) and let § = ¥¢(x,y) and let | = 0/6; since V is
strongly subtractive the relation

(u,v)elr” if and only if  s(v,u) el

is a congruence of F.

Now u € 0//* if and only if u € | =0/0; as V is O-regular, § = I* and in
particular (x,y) € I*.

Therefore (x, y) belongs to the subalgebra of F? generated by

{(y,y)} U{(s(u,v),0) : s(u,v) € 0/6}; since the lattice of subalgebras is
algebraic, there is an nand uy,...,up, v1,..., Vv, € F such that (x,y)
belongs to the subalgebra generated by

{(y,y)}U{(s(u,-(x,y),v,-(x,y)),O) L= 1""7’7}'
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Let now d; := s(u;, v;) for i =1,..., n; then there is an n+ l-ary term t
such that

(Xa}/) = t((y,y)7 (dl(Xv}/)ﬂO)7 ) (dn(Xv}/)ﬂO))

and thus x = t(y, di(x,¥), ..., dn(x,¥)).
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Let now d; := s(u;, v;) for i =1,..., n; then there is an n+ l-ary term t
such that

(Xa}/) = t((y,y)7 (dl(Xv}/)ﬂO)7 ) (dn(Xv}/)ﬂO))

and thus x = t(y, di(x,¥), ..., dn(x,¥)).

Next let ¢ be endomorphism of F sending x,y — x; then 6 C ker(¢p).
So
di(XvX) = S(Ui(X’X)v Vi(va)) ¢ S(Ui(xa)/)7 Vi(X7}/)) 60

and thus
di(Xv X) = f(di(va)) = f(O) =0

fori=1,...,n.
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Let now d; := s(u;, v;) for i =1,..., n; then there is an n+ l-ary term t
such that

(Xa}/) = t((y,y)7 (dl(Xv}/)ﬂO)7 ) (dn(Xv}/)ﬂO))

and thus x = t(y, di(x,¥), ..., dn(x,¥)).

Next let ¢ be endomorphism of F sending x,y — x; then 6 C ker(¢p).
So
di(XvX) = S(Ui(X’X)v Vi(va)) ¢ S(Ui(xa)/)7 Vi(X7}/)) 60

and thus
di(Xv X) = f(di(va)) = f(O) =0

fori=1,...,n.

Hence V is classically ideal determined.
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Many examples of strongly subtractive varieties come either from
classical algebras or the algebraization of logical systems. In the first
class we quote groups, rings, R-modules and more generally associative
algebras over a ring.
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Many examples of strongly subtractive varieties come either from
classical algebras or the algebraization of logical systems. In the first
class we quote groups, rings, R-modules and more generally associative
algebras over a ring.

Note that they are all congruence permutable and O-regular (for a
suitable constant) so they are classically ideal determined.
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Many examples of strongly subtractive varieties come either from
classical algebras or the algebraization of logical systems. In the first
class we quote groups, rings, R-modules and more generally associative
algebras over a ring.

Note that they are all congruence permutable and O-regular (for a
suitable constant) so they are classically ideal determined.

We stress also that there are congruence permutable strongly subtractive
varieties that fail to be O-regular and also classically ideal determined
varieties that fail to be strongly subtractive (even though the examples
are rather contrived).
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Many examples of strongly subtractive varieties come either from
classical algebras or the algebraization of logical systems. In the first
class we quote groups, rings, R-modules and more generally associative
algebras over a ring.

Note that they are all congruence permutable and O-regular (for a
suitable constant) so they are classically ideal determined.

We stress also that there are congruence permutable strongly subtractive
varieties that fail to be O-regular and also classically ideal determined
varieties that fail to be strongly subtractive (even though the examples
are rather contrived).

We conclude with a characterization of strongly subtractive varieties.
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For a variety V the following are equivalent:
V is strongly subtractive witness s(x,y);

H V is subtractive and for all n-ary basic operation f of V there is an
3n-ary term r¢ such that

S(f(X), f(y)) ~ rf(xa Y, S(X17y1)a ey S(Xn,}’n))
holds in V.
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For a variety V the following are equivalent:
V is strongly subtractive witness s(x,y);

H V is subtractive and for all n-ary basic operation f of V there is an
3n-ary term r¢ such that

S(f(X), f(Y)) ~ rf(xa Y, 5(X17y1)a ceey S(Xna}/n))

holds in V.

Assume (1) and let f be an n-ary operation. Consider the free algebra F
in V generated by xy,...,%y, ¥1,...,¥s and let | be the ideal generated

by {S(Xiayi)a = 17 L) n}'
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For a variety V the following are equivalent:
V is strongly subtractive witness s(x,y);

H V is subtractive and for all n-ary basic operation f of V there is an
3n-ary term r¢ such that

S(f(X), f(y)) ~ rf(xa Y, 5(X17y1)a ey S(Xn,}/n))
holds in V.

Assume (1) and let f be an n-ary operation. Consider the free algebra F
in V generated by xy,...,%y, ¥1,...,¥s and let | be the ideal generated
by {S(Xiayi)a = 17 L) n}'

Since V is subtractive, the is a congruence 6 of F with / = 0/6. Since V
is strongly subtractive, (f(X), f(¥)) € 0*. Hence (s(f(x), f(¥)),0) € 0
and so s(f(x), f(¥)) € I. From here a standard argument yields a term r¢
with the desired properties. Thus we can conclude that V satisfies (2).
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Conversely assume (2) and let A € V and 6 € Con(A).
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Conversely assume (2) and let A € V and 6 € Con(A).

Let ¢ be the subalgebra generated by 6*; then if (a,0) € ¢ there are
ai,...,an, b1,..., b, with (a;, b;) € 0* and a term u such that
u(a1,...,an) =aand u(by,...,b,) =0.
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Conversely assume (2) and let A € V and 6 € Con(A).
Let ¢ be the subalgebra generated by 6*; then if (a,0) € ¢ there are

ai,...,an, b1,..., b, with (a;, b;) € 0* and a term u such that
u(a1,...,an) =aand u(by,...,b,) =0.
Then

a=s(a,0)=s(u(ar,...,an), u(b1,...,bn))
- ri,u(a7 b75(317 b1)7 cee 75(an7 bn));
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Conversely assume (2) and let A € V and 6 € Con(A).

Let ¢ be the subalgebra generated by 6*; then if (a,0) € ¢ there are

ai,...,an, b1,..., b, with (a;, b;) € 0* and a term u such that
u(a1,...,an) =aand u(by,...,b,) =0.
Then

a=s(a,0)=s(u(ar,...,an), u(b1,...,bn))
- ri,u(a7 b75(317 b1)7 cee 75(an7 bn));

since s(a;, b;) € 0/6 for all i we may conclude that a € 0/6 and hence
that (a,0) € 6*.
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Conversely assume (2) and let A € V and 6 € Con(A).

Let ¢ be the subalgebra generated by 6*; then if (a,0) € ¢ there are

ai,...,an, b1,..., b, with (a;, b;) € 0* and a term u such that
u(a1,...,an) =aand u(by,...,b,) =0.
Then

a=s(a,0)=s(u(ar,...,an), u(b1,...,bn))
- ri,u(a7 b75(317 b1)7 cee 75(an7 bn));

since s(a;, b;) € 0/6 for all i we may conclude that a € 0/6 and hence
that (a,0) € 6*.

This implies that 0/¢ = 0/0* for all i. The fact that this implies that 6*
is a subalgebra is left as an exercise to the reader.
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THANK YOU!
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