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What is an ideal?

Given an algebra A an ideal is an �interesting subset� of the universe A,
that may or may not be a subalgebra of A; an example of the �rst kind is
a normal subgroup of the group and of the second kind is an ideal of a
commutative ring (we follow the modern dictum that every ring has a
multiplicative unit)

• an ideal must have a simple algebraic de�nition;

• ideals must be closed under arbitrary intersections, so that a closure
operator can be de�ned in which the ideals are exactly the closed
sets; this gives raise to an algebraic lattice whose elements are
exactly the ideals;

• ideals must convey meaningful information on the structure of the
algebra.
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The three points are all satis�ed by classical ideals on lattices, by ideals
on a set X , where of course we interpret a set as an algebra in which the
set of fundamental operations is empty and by classical ideals on rings
and so on. . . .

WARNING!
An n ideal on a set X is an ideal (in the lattice sense) on the Boolean
algebra of subsets of X . There also a signi�cant di�erence between ideals
on lattices and ideals on Boolean algebras; in Boolean algebras an ideal is
always the 0-class of a suitable congruence of the algebra (really, of
exactly one congruence), while this is not true in general for lattices.

As a matter of fact, identifying the class of (lower bounded) lattices in
which every ideal is the 0-class of a congruence is a di�cult problem
which is still unsolved, up to our knowledge. Of course the same property
is shared by normal subgroups of group and (two-sided) ideals of a ring
(since they are both congruence kernels).
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The problem of connecting ideals of general algebras to congruence
classes has been foreshadowed in [5] but really tackled by A. Ursini in his
seminal paper [6]. Later, from the late 1980's to the late 1990's, A.
Ursini and the author published a long series of papers on the subject
([7], [2], [3], [4], [1]); the theory developed in those papers will constitute
the basis of these notes.
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We postulated that an ideal must have a simple algebraic de�nition; as
imprecise as this concept might be, in our context there is a natural path
to follow. Given a type (a.k.a. a signature) σ we can consider the
σ-terms (i.e. the elements of Tσ(ω), the absolutely free countably
generated algebra of type σ); a term is denoted by p(x1, . . . , xn) to
emphasize the variable involved and we will use the vector notation x⃗ for
x1, . . . , xn.

Let Γ be a set of σ-terms; we will divide the (�nite) set of variables
z1, . . . , zn+m of each term in two subsets {x1, . . . , xn} and {y1, . . . , ym}
so that every term in Γ can be expressed as p(x⃗ , y⃗) and we allow n = 0,
while m must always be at least 1.

Moreover we ask that Γ be closed under composition on y⃗ ; this means
that if p(x⃗ , y⃗ ∈ Γ), y⃗ = (y1, . . . , ym) and p1(x⃗

1, y⃗1), . . . , pm(x⃗
m, y⃗m) ∈ Γ,

then
p(x⃗ , p1(x⃗

1, y⃗1), . . . , pm(x⃗
m, y⃗m)) ∈ Γ.
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If A has type σ a Γ-ideal of A is an I ⊆ A such that for any
a1, . . . , an ∈ A, b1, . . . , bm ∈ I and p(x , y) ∈ Γ, p(a⃗, b⃗) ∈ I .

Lemma

Let σ be any type, Γ a set of σ-terms closed under composition on y⃗ and
A an algebra of type σ. Then

1 the Γ-ideals of A are closed under arbitrary intersections;

2 the Γ-ideal generated by X ⊆ A, i.e. the intersection of all the
Γ-ideals containing X , is

(X )ΓA = {p(a⃗, b⃗) : a⃗ ∈ A, b⃗ ∈ X , p(x⃗ , y⃗) ∈ Γ};

3 the Γ-ideals of A form an algebraic lattice IdΓ(A).
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As usual a Γ-ideal of A is principal if it generated by a single element.

It is compact if it is compact in the lattice IdΓ(A); this means that it is
generated by a �nite set or equivalently is the join of �nitely many
Γ-ideals.

It is evident that the compact Γ-ideals of A form a join semilattice,
denoted by CIΓ(A).

At this level of generality we cannot say much more; if the type however
contains a constant we can get a more focused de�nition.
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Let V be a variety whose type contains a constant which will denote by
0; a V, 0-ideal term in y1, . . . , ym is a term p(x⃗ , y⃗) such that

V ⊨ p(x⃗ , 0, . . . , 0) ≈ 0.

Let IDV,0 be the set of all V, 0-ideal terms in V; a V, 0-ideal I of A ∈ V
is a IDV,0-ideal of A.

The set IdV,0(A) of V, 0-ideals of A is an algebraic lattice.
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It is also evident that for any θ ∈ Con(A), 0/θ is a V, 0-ideal of A: if

p(x⃗ , y⃗) ∈ IDV,0, a⃗ ∈ A and b⃗ ∈ 0/θ then

p(a⃗, b⃗) θ p(a⃗, 0⃗) = 0.

In general the ideals of an algebra depend on the variety to which it

belongs; we will denote by I(A) the set of all VVV (A), 0-ideals of A.

Clearly I(A) ⊆ IdV,0(A) (and the inclusion may be strict).

Similarly (X )A for X ⊆ A will denote the VVV (A), 0-ideal of A generated by
X .
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Proposition

For any algebra A with 0, I(A) is isomorphic with the ideal lattice of
CI(A) (semilattice ideals in the usual sense).

Proposition

Let R be a subalgebra of A× A such that π2(R) = A, where π2 denotes
the second projection. If K ∈ I(R) and I ∈ I(A), then

(I )K = {b ∈ B : for some a ∈ I , (a, b) ∈ K}

is an ideal of A.

In particular R may be a subdirect product or a re�exive subalgebra of
A× A.
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Proposition

Let θ ∈ Con(A). There is a one-to-one correspondence (which is in fact a
complete lattice isomorphism) between the ideals I of A such that
0/θ ⊆ I and the ideals of A/θ. The correspondence is

I 7−→ I/θ = {a/θ : a ∈ I}
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Normal ideals

We say that V has normal V, 0-ideals if for all A ∈ V for all
I ∈ IdV,0(A) there is a θ ∈ Con(A) with I = 0/θ.

If V has normal V, 0-ideals then of course

Id0(A) = IdV,0(A) = {0/θ : θ ∈ Con(A)}

so we can simply talk about 0-ideals of A without specifying the variety.

Observe that the variety of pointed (by 0) sets has normal 0-ideals, so we
can hardly expect any nice structural theorem for varieties with 0-normal
ideals.
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Theorem

[1] For any algebra A the following are equivalent:

1 A has normal ideals;

2 (X )A = 0/ϑA(X ) for any X ⊆ A;

3 I/ϑA(J) = I ∨ J for any I , J ∈ I(A);

4 I/ϑA(J) = J/ϑA(I ) for any I , J ∈ I(A);

5 the mapping from I(A) to Con(A) sending I 7−→ ϑA(I ) is
one-to-one;

6 the mapping from Con(A) to I(A) sending θ 7−→ 0/θ is onto.
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Ideal irreducibility

In analogy to subdirect irreducibility let us de�ne an algebra A to be
ideal irreducible if for any family (Iλ)λ∈Λ of ideals of A, if⋂

λ∈Λ Iλ = (0), then, for some λ, Iλ = (0); the concept of �nitely ideal

irreducible is de�ned in an obvious way.

An algebra A is ideal irreducible if and only if there is a minimal nonzero
ideal, which then must be principal, generated by a monolithic element

a (namely a ̸= 0 and a ∈ I for any nonzero I ∈ I(A)).
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Proposition

Assume N(A) = I(A). If a ̸= 0, a ∈ A, then there is a θ ∈ Con(A) such
that a/θ is monolithic in A/θ.

Proof.

In fact, let H be maximal in {I ∈ I(A) : a /∈ I}, via Zorn Lemma. Let
H = 0/θ; if J ∈ I(A/θ) then J = I/θ with H ⊆ I . Take b/θ ∈ J with
b/θ ̸= 0/θ; then b ∈ I −H. Hence, by the maximality of H, a ∈ I , Hence
a/θ ∈ J.
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Proposition

Let θ ∈ Con(A). If a /∈ 0/θ and N(A/θ) = I(A/θ), then there is a
φ ∈ Con(A), φ ⊇ θ such that a/φ is monolithic in A/φ.

Proof.

In fact, apply the previous proposition to A/θ and recall that congruences
of A/θ corresponds to congruences of A containing θ. We then get a
congruence φ ⊇ θ such that (a/θ)/(φ/θ) is monolithic in (A/θ)/(φ/θ),
namely a/φ is monolithic in A/φ.
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Subtractive varieties

Almost all varieties with a good theory of ideals have a binary term
whose behavior reminds the di�erence between ordinary numbers and this
is no coincidence.

A variety V is subtractive if there exists a binary term s(x , y) such that
V satis�es the equations

s(x , x) ≈ 0 s(x , 0) ≈ x .

An algebra A ∈ V is said to be 0-permutable, or to have 0-permutable

congruences if for all a ∈ A and θ, φ ∈ Con(A) , if (a, 0) ∈ θ ◦ φ, then
(a, 0) ∈ φ ◦ θ.

An algebra A is called ideal-coherent if, for any I ∈ I(A) and
θ ∈ Con(A), 0/θ ⊆ I yields that I is a union of θ-blocks.
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V satis�es the equations

s(x , x) ≈ 0 s(x , 0) ≈ x .

An algebra A ∈ V is said to be 0-permutable, or to have 0-permutable

congruences if for all a ∈ A and θ, φ ∈ Con(A) , if (a, 0) ∈ θ ◦ φ, then
(a, 0) ∈ φ ◦ θ.

An algebra A is called ideal-coherent if, for any I ∈ I(A) and
θ ∈ Con(A), 0/θ ⊆ I yields that I is a union of θ-blocks.

Paolo Aglianò agliano@live.com Ideals in universal algebra I: De�nitions and �rst results



Subtractive varieties

Almost all varieties with a good theory of ideals have a binary term
whose behavior reminds the di�erence between ordinary numbers and this
is no coincidence.

A variety V is subtractive if there exists a binary term s(x , y) such that
V satis�es the equations

s(x , x) ≈ 0 s(x , 0) ≈ x .

An algebra A ∈ V is said to be 0-permutable, or to have 0-permutable

congruences if for all a ∈ A and θ, φ ∈ Con(A) , if (a, 0) ∈ θ ◦ φ, then
(a, 0) ∈ φ ◦ θ.

An algebra A is called ideal-coherent if, for any I ∈ I(A) and
θ ∈ Con(A), 0/θ ⊆ I yields that I is a union of θ-blocks.

Paolo Aglianò agliano@live.com Ideals in universal algebra I: De�nitions and �rst results



Subtractive varieties

Almost all varieties with a good theory of ideals have a binary term
whose behavior reminds the di�erence between ordinary numbers and this
is no coincidence.

A variety V is subtractive if there exists a binary term s(x , y) such that
V satis�es the equations

s(x , x) ≈ 0 s(x , 0) ≈ x .

An algebra A ∈ V is said to be 0-permutable, or to have 0-permutable

congruences if for all a ∈ A and θ, φ ∈ Con(A) , if (a, 0) ∈ θ ◦ φ, then
(a, 0) ∈ φ ◦ θ.

An algebra A is called ideal-coherent if, for any I ∈ I(A) and
θ ∈ Con(A), 0/θ ⊆ I yields that I is a union of θ-blocks.

Paolo Aglianò agliano@live.com Ideals in universal algebra I: De�nitions and �rst results



Theorem

[1] For a variety V the following are equivalent:

1 for all A ∈ V and θ, φ ∈ Con(A) we have 0/(θ ∨ φ) = 0/(θ ◦ φ);
2 every algebra in V has 0-permutable congruences;

3 V is subtractive ;

4 there is a ternary term w(x , y , z) of V such that

w(x , y , y) ≈ x w(x , x , 0) ≈ 0

hold in V;

5 there exists a positive integer m, binary terms d1(x , y), . . . , dm(x , y) and
an m + 3-ary term q(x1, . . . , xm+3) of V such that

di (x , x) ≈ 0 for i = 1, . . . ,m

q(x , y , 0, 0, . . . , 0) ≈ 0

q(x , y , y , d1(x , y), . . . , dm(x , y)) ≈ x

hold in V;

6 V is ideal-coherent;

7 for all A ∈ V, the mapping Con(A) −→ I(A) de�ned by θ 7−→ 0/θ is a
complete and onto lattice homomorphism.
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(1)-(4) are equivalent

(1) trivially implies (2).

Assume (2) and consider F = FV(x , y); if θ = ϑF(x , y) and φ = ϑF(y , 0),
then (x , 0) ∈ θ ◦ φ.

Then (x , 0) ∈ φ ◦ θ and so the usual Mal'cev argument yields a term
s(x , y) satisfying the equations.

If (3) holds we set w(x , y , z) := s(x , s(y , z)) and we check that the
equations in (4) hold.

Finally if (4) holds and (a, 0) ∈ θ ◦ φ then there is a b such that
a θ b φ 0; hence

a = w(a, 0, 0) φ w(a, b, 0) θ w(b, b, 0) = 0.

So (a, 0) ∈ θ ◦ φ. This implies that 0/θ ◦ φ = 0/φ ◦ θ and also very easily
(1).
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(3) implies (5) which is equivalent to (6)

Clearly (3) implies (5) if one puts m = 1, d1(x , y) = s(x , y) and
q(x , y , z ,w) = s(x , s(s(x , z),w)).

Let I ∈ I(A), θ ∈ Con(A) and 0/θ ⊆ I . Let v ∈ I with (u, v) ∈ θ; then
for all i ≤ m we have di (u, v) θ di (v , v) = 0, hence di (u, v) ∈ I . Note
that q(x , y , z⃗) is an ideal term in z⃗ , so we must have

u = q(u, v , v , d1(u, v), . . . , dm(u, v)) ∈ I .

Assume that V is ideal-coherent and look at FV(x , y). Let θf be the
congruence associated with the endomorphism of FV(x , y) de�ned by
f (x) = f (y) = x and f (0) = 0. Let

I = IdA({y} ∪ {d(x , y) ∈ FVx , y : d(x , y) ∈ 0/θf }).

Then clearly 0/θf ⊆ I , y ∈ I and (x , y) ∈ θf . Thus ideal-coherency yields
x ∈ I .
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Then there is an ideal term t(x⃗ , y , z⃗) in y ∪ z⃗ and
d1(x , y), . . . , dm(x , y) ∈ 0/θf with

t(u⃗, y , d1(x , y), . . . , dm(x , y)) = x .

Since any uj = uj(x , y) we do get m + 3-ary term by setting

q(x , y , y , z1, . . . , zm) = t(u⃗, y , z1, . . . , zm).

But then q(x , y , 0, 0, . . . , 0) = 0, since q is an ideal term in y ∪ z⃗ . As
showed above q(x , y , y , d1(x , y), . . . , dm(x , y)) = x and �nally, for all i ,
di (x , y) ∈ 0/θf that yields di (x , x) = f (di (x , y)) = f (0) = 0. Therefore
(5) and (6) are equivalent.
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(5) implies (2)

Assume again (5). Let A ∈ V, θ, φ ∈ Con(A) and a ∈ 0/(θ ◦ φ).

Then there is a b ∈ A with (0, b) ∈ θ and (b, a) ∈ φ.

Hence we get di (a, b) φ di (b, b) φ 0 for all i . So

0 = q(a, b, 0, 0, . . . , 0)

φ q(a, b, 0, d1(a, b), . . . , dm(a, b))

θ q(a, b, b, d1(a, b), . . . , dm(a, b)) = a,

hence (0, a) ∈ φ ◦ θ and V is 0-permutable. Therefore (5) implies (2).
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(3) implies (7)

Assume now (3). Let A ∈ V, θ, φ ∈ Con(A) and a ∈ 0/(θ ∨ φ). Then
there are a1, . . . , an ∈ A with

a θ a1 φ α2 θ . . . θ an φ 0.

Let us set t(x , y , z , ) = s(x , s(s(x , y), z , )) and let us induct on n. If
n = 1 then a θ a1 φ 0. Hence s(a, a1) θ 0, therefore

a = t(a, a1, s(a, a1)) ∈ 0/(θ ∨ φ)

being t(x , y , z) an ideal term in y , z .
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Let now assume the statement true for n and let

a θ a1 φ α2 θ . . . θ an φ an+1 θ 0.

Then s(a, an+1) φ s(a, an) θ . . . θ s(a, a) = 0, so, by induction
hypothesis, s(a, an+1) ∈ 0/θ ∨ 0/φ. But since an+1 ∈ 0/θ we get again

a = t(a, an+1, s(a, an+1)) ∈ 0/θ ∨ 0/φ.

The case an+1 φ 0 is totally similar hence we conclude that
0/(θ ∨ φ) ⊆ 0/θ ∨ 0/φ.

For the converse let a ∈ 0/θ ∨ 0/φ; then there are an ideal term
p(x⃗ , y⃗ , z⃗) in y⃗ ∪ z⃗ , a⃗ ∈ A, u⃗ ∈ 0/θ and v⃗ ∈ 0/φ with a = p(a⃗, u⃗, v⃗).

If we now set b = p(a⃗, u⃗, 0, . . . , 0) we get (b, 0) ∈ θ and (a, b) ∈ φ;
therefore a ∈ 0/(θ ∨ φ).

Hence we conclude that (3) implies (7).
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therefore a ∈ 0/(θ ∨ φ).

Hence we conclude that (3) implies (7).
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(7) implies (2)

That (7) implies (2) follows from the fact that a ∈ 0/(θ ∨ φ) implies
a ∈ 0/θ ∨ 0/φ, hence (a, 0) ∈ θ ◦ φ.

(1) (2) (7)

(4) (3) (5) (6)
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the term u(x , y , z)

If s(x , y) witnesses subtractivity for V we de�ne a ternary term
u(x , y , z) := s(x , s(s(x , y), z)) and we observe note that the following
identities hold:

1 u(x , y , s(x , y)) ≈ x

2 u(x , 0, 0) ≈ 0

3 u(x , x , 0) ≈ x

4 u(x , 0, y) ≈ u(x , y , 0).

This term is very useful; the �rst application is yet other equivalent
conditions for subtractivity that one may add to the ones in the previous
theorem.
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Proposition

For a variety V with 0 the following are equivalent:

1 V is subtractive;

2 there is a binary term t(x , y) of V such that t(x , x) ≈ 0 and for any
A ∈ V and a, b ∈ A

a ∈ (b)A ∨ (t(a, b))A;

3 there is a binary term t(x , y) of V such that t(x , x) ≈ 0 and for any
A ∈ V and a ∈ A

a ∈ (t(a, 0))A;

The proof is straightforward an it is left as an exercise.
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Mal'cv criterion

Another consequence is that subtractive varieties have normal ideals and
the quickest way to show it is to use the so called Mal'cev criterion
whose proof is left again as an exercise,

Lemma

(Mal'cev) Let A be an algebra and let I ⊆ A, I non empty; then the
following are equivalent

1 there is a θ ∈ Con(A) with I = a/θ for some a ∈ A;

2 for every unary polynomial g(x) of A if a, b, g(a) ∈ I then g(b) ∈ I .
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Proposition

Every subtractive variety V has normal ideals.

Proof.

Let A ∈ V and I ∈ I(A). Let g(x) be a unary polynomial of A; then
there is an n + 1-term t(y⃗ , x) and a⃗ ∈ A with t(a⃗, x) = g(x).

Let a, b, g(a) ∈ I and observe that s(t(y⃗ , x1), t(y⃗ , x2)) is an ideal term in
x1, x2.

Therefore s(g(b), g(a)) ∈ I ; as g(a) ∈ I we get that
g(b) = u(g(b), g(a), s(g(b), g(a))) ∈ I .

By Mal'cev criterion I is a congruence class, hence it is 0/θ for some
θ ∈ Con(A).
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In a subtractive variety V we can describe the join of two ideals in the
ideal lattice very e�ectively.

Lemma

If V is subtractive, A ∈ V and I , J ∈ I(A) then

I ∨ J = {u(a, b, c) : a ∈ A, b ∈ I , c ∈ J}.
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Proof.

Let K = {u(a, b, c) : a ∈ A, b ∈ I , J ∈ J}; a generic element b ∈ (K )A is
of the form

p(a⃗, u(d1, e1, f1), . . . , u(dm, em, fm))

where p(x⃗ , y⃗) is an ideal term in y⃗ , a⃗, d1, . . . , dm ∈ A, e1, . . . , em ∈ I ,
f1, . . . , fm ∈ J.

Let
c = p(a⃗, u(d1, e1, 0), . . . , u(dm, em, 0));

hence c ∈ I .

Since

s(p(x⃗ , u(z1, y1,w1), . . . , u(zk , yk ,wk))), p(x⃗ , u(z1, y1, 0), . . . , u(zk , yk , 0))

is an ideal term in w⃗ we have that s(b, c) ∈ J. It follows that
b = u(b, c , s(b, c)) ∈ K . Hence (K )A ⊆ K and thus equality holds.

So K is an ideal containing I , J and it is clearly the smallest. This proves
the thesis.
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Finally:

Proposition

If V is subtractive, then for all A ∈ V, I(A) is a modular lattice.

Proof.

Let I , J,H ∈ I(A) and suppose that I ⊆ J, I ∨ H = J ∨ H and
I ∩ H = J ∩ H.

If a ∈ J, then a ∈ I ∨ H, so by (the proof of) Lemma 12 for some c ∈ I
we have that s(a, c) ∈ H. As I ⊆ J, c ∈ J, and thus
s(a, c) ∈ J ∩ H = I ∩ H.

In particular s(a, c) ∈ I and thus a = u(a, c , s(a, c)) ∈ I . So J ⊆ I and
hence I = J; this proves modularity of I(A).
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THANK YOU!
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