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1. Fundamentals of Knot Theory



This is not a mathematical knot!

What is a knot?
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Having loose ends oversimplifies the situation. We need to glue the ends.

Definition (Knot)

A knot is a closed non-self-intersecting curve in R3.

Equivalence Problem: determine if two given knots can be continuously
deformed one into the other, aiming the classification.

What is a knot, formally?
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Remark: K can be untangled ⇐⇒ K is equivalent to the unknot.

Classification of knots
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Definition (Knot invariant)

A knot invariant is a knot function I such that

K1 ∼= K2 =⇒ I(K1) = I(K2).

Our invariant is coloring: we associate a mathematical object with every strand of
the knot such that at each crossing some conditions are fulfilled.

Where is the Algebra behind knots...?

Classification techniques
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Definition (Quandle)

A quandle is a binar (Q,▷) such that for all x, y, z ∈ Q
1. Idempotency: x ▷ x = x
2. Right self-distributivity: (x ▷ y)▷ z = (x ▷ z)▷ (y ▷ z)
3. Right invertibility: w ▷ x = y has a unique solution w ∈ Q.

Example (Conjugation quandle)

Let G be a group and define x ▷ y = yxy−1. Then (G,▷) is a conjugation quandle,
denoted by Conj(G).

Remark: Of particular interest is Conj(GL(2, q)): it produces satisfactory results
while being reasonably handy.

Quandles
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Proposition

Let (Q,▷) be a quandle.
1 ▷ is associative =⇒ (Q,▷) is a trivial quandle.
2 ▷ has an identity element =⇒ (Q,▷) is a trivial quandle.

They are far away from being groups.

However...

Quandles can be used for coloring knots!

Quandles are bizarre
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Definition (Quandle coloring)

A (Q,▷)-coloring of a knot K is a way to associate elements of Q with the strands
of K such that at every crossing of K

x under y produces z in K ⇐⇒ x ▷ y = z in (Q,▷).

Only non-trivial colorings are interesting.

Quandle coloring
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Definition (Torus Knot)

A torus knot is any knot that can be embedded on the trivial torus.

Torus knots
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Notation K(m,n)

The torus knot with n strands and m twists will be denoted by K(m,n).

3D construction
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Insight on torus knots
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2D diagram representation
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K(4, 5)

Standard representation
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2. Torus Knots and Quandles



Problem:

K(m,n) is Conj(G)-colorable~w�
some conditions in G hold



Theorem
Let G be a group. The following are equivalent:

1 K(m,n) is Conj(G)-colorable.
2 ∃x0, . . . , xn−1 ∈ G such that all the following terms are equal

{xσk(0)xσk(1) . . . xσk(m−1) : k = 0, . . . ,n − 1},

where σ = (0 1 2 . . . n − 1) ∈ Sn is a cyclic permutation of the indices.
3 ∃x0, . . . , xn−1 ∈ G such that for u = xn−mxn−m+1 . . . xn−2xn−1 we have

xi ▷ u = xi−m (mod n) ∀ i = 0, . . . ,n − 1.

Remark: It translates a geometric coloring condition only in terms of quandle or
group equations (n.b. quandles are nice, but groups are better!).

Conjugation quandle coloring of K(m,n)
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Theorem
K(m,n) is Conj(G)-colorable if and only if there is a prime factor p of m and a prime factor
q of n such that K(p, q) is Conj(G)-colorable.

Theorem
Let m ∈ N and p be a prime such that p ∤ m. Then K(m, p) is Conj(G)-colorable if and only
if there is u ∈ G such that the centralizers CG(up) \ CG(u) ̸= ∅.

Remark: The colorability of K(m, p)
• Depends on a single element u ∈ G.
• It does not depend on m.

Weakening the problem

YRAC 2023 19 F. Spaggiari



3. Coloring with matrices



Problem:

K(m, p) is Conj(GL(2, q))-colorable~w�
f (m, p, q) holds



We know the conjugacy classes of G, the representatives, and their centralizers.

Type u CGL(2,q)(u)

Type 1
(

a 0
0 a

)
GL(2, q)

Type 2
(

a 0
0 b

) {(
u 0
0 v

)
∈ GL(2, q) : u, v ̸= 0

}
Type 3

(
a 1
0 a

) {(
u v
0 u

)
∈ GL(2, q) : u ̸= 0

}
Type 4

(
0 1
a b

) {(
u v
au u + bv

)
∈ GL(2, q) : u ̸= 0 or v ̸= 0

}

Divide et impera
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Type up CGL(2,q)(up) \ CGL(2,q)(u) ̸= ∅

Type 1
(

ap 0
0 ap

)
Never

Type 2
(

ap 0
0 bp

)
p | q − 1

Type 3
(

ap pap−1

0 ap

)
p = q

Type 4
(

xp−1 yp−1
ayp−1 xp−1 + byp−1

)
p | q + 1

where

{
x0 = 0
y0 = 1

{
xn = ayn−1

yn = xn−1 + byn−1.
n ≥ 1.

So, when does the centralizer expand?
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Theorem (GL(2, q) coloring characterization)

The following conditions are equivalent.
1 p | q(q + 1)(q − 1).
2 K(m, p) is Conj(GL(2, q))-colorable.
3 K(m, p) is Conj(SL(2, q))-colorable.

Main result
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4. Coloring with Dn and Sn



Problem:

K(m, p) is Conj(Dn ( or Sn))-colorable~w�
f (n, p) holds



Let m, p ∈ N be such that 1 < m < p and p prime.

Theorem (Dn coloring characterization)

K(m, p) is Conj(Dn)-colorable if and only if p | n.

Theorem (Sn coloring characterization)

K(m, p) is Conj(Sn)-colorable if and only if p ≤ n.

The characterization for Dn and Sn
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Summary:
• We have developed tools to analyze Conj(G)-coloring of a torus knot K(m,n).

• We may assume m,n to be primes.
• The colorability only depends on n and on one element in the group.

• We have completely characterized the colorability in terms of a numeric
condition for the groups GL(2, q), SL(2, q),Dn, and Sn.

New horizons:
• Conj(G)-coloring of K(m, p) for other groups G.
• Relations among Conj(G)-coloring and the Jones polynomial.
• Conj(G)-coloring of the Whitehead double of K(m, p).

Conclusions
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Summary:
• We have developed tools to analyze Conj(G)-coloring of a torus knot K(m,n).

• We may assume m,n to be primes.
• The colorability only depends on n and on one element in the group.

• We have completely characterized the colorability in terms of a numeric
condition for the groups GL(2, q), SL(2, q),Dn, and Sn.

New horizons:
• Conj(G)-coloring of K(m, p) for other groups G.
• Relations among Conj(G)-coloring and the Jones polynomial. There’s none!
• Conj(G)-coloring of the Whitehead double of K(m, p). Hopeless!
• Proceed with the next project!

Conclusions
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That’s all, thanks!

Do you have questions, or knot?

spaggiari@karlin.mff.cuni.cz
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