On Conjugation Quandle Coloring of Torus Knots: a Characterization of GL(2, q)-Colorability

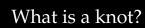
Filippo Spaggiari spaggiari@karlin.mff.cuni.cz

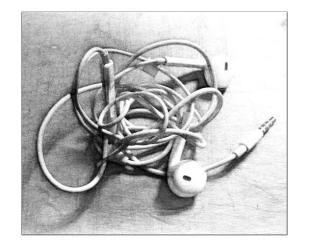
LOOPS'23 – Będlewo, Poland June 25^{th} – July 2^{nd} , 2023

- Fundamentals of Knot Theory
- 2 Torus Knots and Quandles
- **3** Coloring with matrices

F. Spaggiari, On conjugation quandle coloring of torus knots: a characterization of GL(2,q)-colorability, Work in progress, 2023

1. Fundamentals of Knot Theory





This is not a *mathematical* knot!

What is a knot, formally?

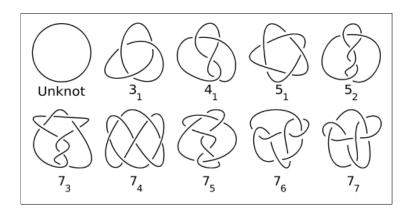
Having loose ends oversimplifies the situation. We need to *glue the ends*.

Definition (Knot)

A **knot** is a closed non-self-intersecting curve in \mathbb{R}^3 .

Equivalence Problem: determine if two given knots can be continuously deformed one into the other, aiming the *classification*.

Classification of knots



Remark: K can be untangled \iff K is equivalent to the unknot.

Classification techniques

Definition (Knot invariant)

A **knot invariant** is a knot function \mathcal{I} such that

$$K_1 \cong K_2 \implies \mathcal{I}(K_1) = \mathcal{I}(K_2).$$

Our invariant is **coloring**: we associate a mathematical object with every **strand** of the knot such that at each **crossing** some conditions are fulfilled.

Where is the Algebra behind knots...?

Definition (Quandle)

A **quandle** is a binar (Q, \triangleright) such that for all $x, y, z \in Q$

- **1. Idempotency:** $x \triangleright x = x$
- **2. Right self-distributivity:** $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$
- **3. Right invertibility:** $w \triangleright x = y$ has a unique solution $w \in Q$.

Example (Conjugation quandle)

Let *G* be a group and define $x \triangleright y = yxy^{-1}$. Then (G, \triangleright) is a *conjugation quandle*, denoted by Conj(G).

Remark: Of particular interest is Conj(GL(2, q)): it produces satisfactory results while being reasonably handy.

Quandles are bizarre

Proposition

Let (Q, \triangleright) be a quandle.

- \bullet \triangleright is associative \Longrightarrow (Q, \triangleright) is a trivial quandle.
- **2** \triangleright has an identity element \implies (Q, \triangleright) is a trivial quandle.

They are far away from being groups.

However...

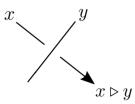
Quandles can be used for coloring knots!

Quandle coloring

Definition (Quandle coloring)

A (Q, \triangleright) -coloring of a knot K is a way to associate elements of Q with the strands of K such that at every crossing of K

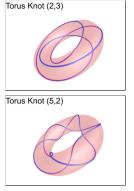
$$x$$
 under y produces z in K \iff $x \triangleright y = z$ in (Q, \triangleright) .

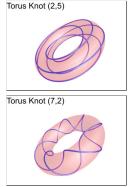


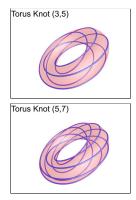
Only **non-trivial colorings** are interesting.

Definition (Torus Knot)

A **torus knot** is any knot that can be embedded on the trivial torus.

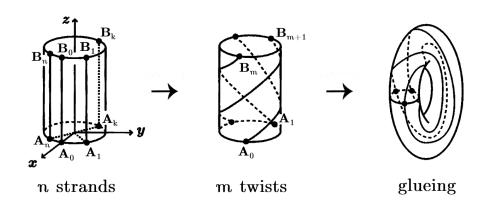






Insight on torus knots

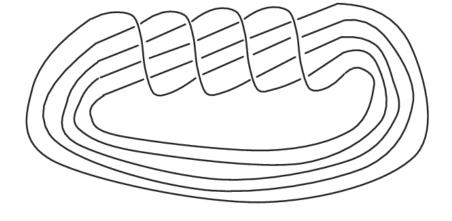
3D construction

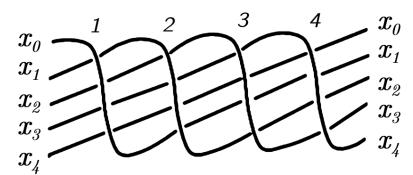


Notation K(m, n)

The **torus knot** with n strands and m twists will be denoted by K(m, n).

2D diagram representation





K(4,5)

2. Torus Knots and Quandles

Problem:

K(m, n) is Conj(G)-colorable

some conditions in G hold

Conjugation quandle coloring of K(m, n)

Theorem

Let G be a group. The following are equivalent:

- **1** K(m, n) *is* Conj(G)-*colorable*.
- **2** $\exists x_0, \dots, x_{n-1} \in G$ such that all the following terms are equal

$${x_{\sigma^k(0)}x_{\sigma^k(1)}\dots x_{\sigma^k(m-1)}: k=0,\dots,n-1},$$

where $\sigma = (0 \ 1 \ 2 \ \dots \ n-1) \in S_n$ is a cyclic permutation of the indices.

3 $\exists x_0, \dots, x_{n-1} \in G$ such that for $u = x_{n-m}x_{n-m+1} \dots x_{n-2}x_{n-1}$ we have

$$x_i \triangleright u = x_{i-m \pmod{n}} \quad \forall i = 0, \dots, n-1.$$

Remark: It translates a geometric coloring condition only in terms of quandle or group equations (*n.b.* quandles are nice, but groups are better!).

Inducing colorings

Proposition

Let y_0, \ldots, y_{tn-1} be a coloring of K(m, tn). Define

$$x_i = \prod_{j=0}^{t-1} y_{it+j}, \quad \text{for } i = 0, \dots, n-1.$$

Then x_0, \ldots, x_{n-1} is a (possibly trivial) coloring of K(m, n).

The **prime factorization of the parameters** plays an important role.

Corollary

Let x_0, \ldots, x_{p-1} be a coloring of K(m, p). Then either it is the trivial coloring or all the colors are distinct.

Weakening the problem

Theorem

 $\mathsf{K}(m,n)$ is $\mathsf{Conj}(G)$ -colorable if and only if there is a prime factor p of m and a prime factor q of n such that $\mathsf{K}(p,q)$ is $\mathsf{Conj}(G)$ -colorable.

Theorem

Let $m \in \mathbb{N}$ and p be a prime such that $p \nmid m$. Then K(m,p) is Conj(G)-colorable if and only if there is $u \in G$ such that the centralizers $C_G(u^p) \setminus C_G(u) \neq \emptyset$.

Remark: The colorability of K(m, p)

- Depends on a single element $u \in G$.
- It does not depend on *m*.

3. Coloring with matrices

Problem:

$$K(m, p)$$
 is $Conj(GL(2, q))$ -colorable

f(m, p, q) holds

We know the conjugacy classes of *G*, the representatives, and their centralizers.

Туре	и	$C_{GL(2,q)}(u)$
Type 1	$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	$GL(2,q)$ $GL(2,q)$ $\left\{ \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \in GL(2,q) \colon u,v \neq 0 \right\}$ $\left\{ \begin{pmatrix} u & v \\ 0 & u \end{pmatrix} \in GL(2,q) \colon u \neq 0 \right\}$
Type 2	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$	$\left\{ \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \in GL(2,q) \colon u,v \neq 0 \right\}$
Type 3	$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$	$\left\{ \begin{pmatrix} u & v \\ 0 & u \end{pmatrix} \in GL(2,q) \colon u \neq 0 \right\}$
Type 4	$\left \begin{array}{cc} \begin{pmatrix} 0 & 1 \\ a & b \end{array} \right $	$\left\{ \begin{pmatrix} u & v \\ au & u + bv \end{pmatrix} \in GL(2,q) \colon u \neq 0 \text{ or } v \neq 0 \right\}$

LOOPS'23 23 F. Spaggiari

So, when does the centralizer expand?

Туре	u^p	$C_{GL(2,q)}(u^p)\setminusC_{GL(2,q)}(u)\neq\emptyset$		
Туре 1	$\begin{pmatrix} a^p & 0 \\ 0 & a^p \end{pmatrix}$	Never		
Type 2	$\begin{pmatrix} a^p & 0 \\ 0 & b^p \end{pmatrix}$	$p \mid q-1$		
Туре 3	$\begin{pmatrix} a^{p} & pa^{p-1} \\ 0 & a^{p} \end{pmatrix}$ $\begin{pmatrix} x_{p-1} & y_{p-1} \\ ay_{p-1} & x_{p-1} + by_{p-1} \end{pmatrix}$	p=q		
Type 4	$\left(\begin{array}{cc} x_{p-1} & y_{p-1} \\ ay_{p-1} & x_{p-1} + by_{p-1} \end{array} \right)$	$p \mid q+1$		
where $\begin{cases} x_0 = 0 \\ y_0 = 1 \end{cases}$ $\begin{cases} x_n = ay_{n-1} \\ y_n = x_{n-1} + by_{n-1}. \end{cases}$ $n \ge 1.$				

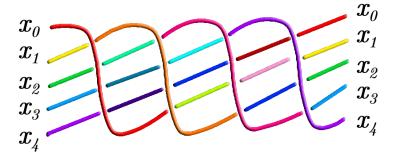
LOOPS'23

The solution

Theorem (Main Result)

The following conditions are equivalent.

- **1** $p \mid q(q+1)(q-1)$.
- **2** K(m, p) *is* Conj(GL(2, q))-*colorable.*
- **3** K(m, p) *is* Conj(SL(2, q))-*colorable*.



Summary:

- We have developed tools to analyze Conj(G)-coloring of a torus knot K(m, n).
 - We may assume m, n to be primes.
 - The colorability only depends on *n* and on one element in the group.
- Taking G = GL(2, q) or G = SL(2, q), we have completely characterized the colorability in terms of a numeric condition involving divisibility.

New horizons:

- Conj(G)-coloring of K(m, p) for other groups G.
- Relations among Conj(*G*)-coloring and the Jones polynomial.
- Conj(G)-coloring of the Whitehead double of K(m, p).

That's all, thanks!

- [1] F. Spaggiari, On conjugation quandle coloring of torus knots: a characterization of GL(2, q)-colorability, Work in progress, 2023.
- [2] K. Murasugi, Knot Theory and Its Applications, Birkhäuser Boston, 1996.
- [3] M. Richling, Torus Knots, 2022, https://www.mitchr.me/SS/torusKnots/index.html#orgcfdc49b (visited on 06/23/2023).

Do you have questions, or knot?

spaggiari@karlin.mff.cuni.cz