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Setting m = n = 0 into the latter formula we obtain the product formula for
Legendre polynomials:

H ™
Pi(cos 6,)Pi(cos 82) = - \\ Fi{cos #; cos B — sin 8 sin 8; cos w2 )dps.
0

2.3. Product Formulas for Functions Related to the Groups SOg(n,1)
and SO(n + 1). Using in (31) the expressions for matrix elements of the
representations 77 of the group SOp(n,1) from Sect. 2.4, Chap. 2, we obtain
the product formula for associated Legendre functions

\ sinh PP ¥ (cosh t)CF (cos ©1) sin?? @ dp,

0
(=172 P (0 + 1)I'(~0 — 2p)L"(m + 2p)
T mlle -m+ 1) (—o —m - 2p)(p)

x P, Fleosht)P, ), 7 (coshitz),

{(sinht;sinht,)”?

where cosht = cosht,coshty + sinht;sinhtscos 1, p=(n-2)/2.
Matrix elements of the representations 7" of the group SO(n + 1) lead to
the product formula for Gegenbauer polynomials

T
\. C¥(cos 8 cos w + sin #sin @ cos &le\m?om ¥) sin??~! pdy
0
22k+2p-102(p 4 kY1 - k)T (2p + k — 1)
kIN(2p - 1)(L+ k+ 2p)
% (sin @sin E»anﬂ»?om mvﬁ.wW»w?Om ).

2.4. Product Formulas for Bessel Functions. Applying the formula (31) to
matrix elements of representations of the group IS0O(2) we obtain the product
formula for Bessel functions

H 27 .
Jnem(F1)Jm(r2) = — \ el(me=mea) I (r)dips,
0

27
where 7 and ¢ are determined by formulas (16).
Another product formula for Bessel functions is derived with the help of
matrix elements of representations of the group I150({n), n > 2. We have

QE.T@TJv.ﬁi.ﬂ.umﬂwxjﬂuulw
2P~ 1l (p)

H \uu U .w.ﬁ
AIHvEﬂﬁAS.TME\o ﬂ.wvﬁlQSAnOmﬁvaﬁn.ﬁ_

where 7 = [r? + 72 + 2rirycos 9|2, p=(n-2)/2.
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2.5. Product Formulas for Jacobi Polynomials and for Jacobi Functions.
The formula (19) can be considered as the expansion of the function pip
(cos 28), with cos 28 determined by equality (17a), in Jacobi polynomials of
cos 2 and in Gegenbauer polynomials of cos . Writing down the expression
for coefficients of this expansion we receive the product formula for Jacobi
polynomuals

2r 1
PAm ) (cos 26,) P (cos 263) = ——r ;?Mﬂmmw w P

ks I
x\ \ PleB (cos 26)(1 — r2)2 =8 102+ sin ¢)Pdrdy,
0o Jo
where cos ¢ is replaced by r and cos 26 is determined by formula (17a).

In the same way from formula (20) we derive the product formula for Jacob:
function

R (cosh 2t1 ) R{*#) (cosh 2ty) = z\mﬁﬁcmwhwvﬂﬂwlv 1/2)

T 1

x \. ‘\ R{*#)(2|cosht;coshty + re¥sinht;sinhto]? — 1)
o Jo

x (1 = r2)o= 8128+ (5in )P drdy.

2.6. Product Formulas for Laguerre Polynomials. We set 0 = ~1, 7 =
wp, p € R, in formula (21). Then the left-hand side of this formula may be
considered as the Fourier-series expansion of the function from the right-hand
side. Therefore, we have the product formula for Laguerre polynomials

1

M.:
hﬂ.ik:uvhmﬂ:\ﬁhmwu " lnwla:m_.:lﬂv\ ._‘.uﬁcl_r,v
27 0

x exp(—tse?)e P (o™ (¢ 4 5®)k ALk ($? 4 5% + 2tscos p)dy.
In an analogous way setting o = 1, 7 = iy, y € R in formula (22) we obtain

2
hm:lwﬁlmmvh”ulaﬁmwv — P.m.r.lg.malnﬁ\kara\ " ﬂmanlku
27 0

x exp(tse®)eP @™ (¢ 4 sel?)kmaLak (5% 4% _ 2tssin p)dp.

§3. Generating Functions

3.1. The General Form. Let T be a representation of the group G = KAK
in a Hilbert space $ of functions on K and let {fn|n = 0,1,2,...} be an
orthonormal basis of $. Then for the matrix elements t,n(h), b € A, of this
representation we have
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tran(h) = \x (T(h) fu) (6) For (R Y k.

This equality may be considered as the formula for coefficients of expansion
of the function (I'(k)f.)(k) in the basis functions fm(k). Therefore,

oo
(TCR)(k) = D tmnlh) fm (k). (32)
m=0
This formula shows that the function (T'(h) fa)(k) is a generating funetion

for the matrix elements t,.,(h), m = 0,1,2,.. ., if it is expanded in the basis
functions f,,.

For representations (18a), Chap. 1, of a semisimple noncompact Lie group
formula (32) takes the form

e}

ME ) falkn) = 3 tonn(B) fim(K), (33)

m=0

and for representations (27), Chap. 1, of an inhomogeneous group the form

exp(=v()) fa(k) = 3 tma(h) fim(k). (34)

m=0

Writing down formulas (33) and (34) for the associated spherical functions
tmo(h) of the representation T° we have

MR = S tno(R) fm k), (35)
m=0
exp(=v(h)) = Y timo(h) frm (k). (35a)
m=0

3.2, Generating Functions for Prmnl(z). Setting g = g, = ¢(0,¢,0) in for-

mula (15) of Chap. 2 and replacing thin(ge) by B7.... (cosh t) we derive the
relation

cosh ‘ +sinh Ego) " h : inh fe=i9) e g
- —€ = T =171
3 5 cos 5 + sinh € e
oo
= M Pr..(cosht)e ™?
m=-09
Replacing ¢ by z we have
t 4 Nl t i
P(z,t) = ( zcosh 5 + &::m zsinh — + cosh -
2 2
= D Pl.(cosht)z™ T (36)

m=—00
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This equality shows that @(z,t) is a generating function for the special func-
tions P7 . (cosh t), m =0,+1,£2,.. ..

Let us take formula (36) for 7 = 7, m = my, n = ny, and then for 7 = 19,
m = my, n = ny. We multiply these formulas side by side and apply expansion
(36) to the left-hand side of the relation obtained. Comparing coefficients at
the same powers of z we find

[o o]

Ptz (cosh t) = MU NE_?Om: t) NIE_.S?Omr t)- (362)

m,n+ne
T =—00

In particular,

o0
T en(cosh ) = > P (cosh )P (cosh t).

T1+72
n=-—o00

We replace €'? by z in formula (15) of Chap. 2 and then reduce the formula
obtained to the form

1 2 1 T ¢ ¢ 2n
cosh t) = Gk ﬂ' cosh t + %lmwsv nu An&: 3 + zsinh mv
m Jr Z

x NSI:I—&N,

mn

where " is the circle |z| = a and 1 < a < cosh (¢/2). Deforming the contour
I' and replacing the variable of integration we transform this formula into

oo 2n
i - t t
Prunlcosh t) = E\ w™™ ™| cosh = + zsinh =
T 0 2 2
(37)
y 2ZM T dw
vVw?+ 2wcosh t + 1
where
—w — cosh t + vVw? + 2wcosh t + 1
2= . . (38)
sinh t
In particular,
sin(r) \8 w” dw
oo(cosh t) = P {cosh t) = ; 39)
ol I Hk ) ﬂ o Vw?+2wcosht+1 (

Applying to equality (37) the inversion formula for Mellin transform we have

Anomw w + zsinh wuw: Al
Vw? + 2wcosh t +1
; ‘\e+_oo P71 (cosh nv@\ﬂ\_ﬂﬂ

F(w,cosh t) =

2

)

mn
i sin (77)
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where —1 < a < m — n and z is determined by formula (38). This relation
shows that the function F(w,cosh t) is a continual generating function for
T n(cosh t) with fixed m and n.
In the same way we obtain from (39) that

. a+ioco —r—1
1 B _«\ Pr(cosh t)w dr,

Vw? t 2weosht +1 2 sin ()

a-—ico

where —1 < a < 0.

If in formula (36) 7 is a negative integral or half-integral number and n < 7,
then part of functions P7. (cosh t) vanishes. Nonvanishing functions corre-
spond to the representation 1, _, of the discrete series. Going over from the
functions P7 . (cosh t) to ﬁ::?og t) we obtain the generating function for

P! (cosh t):
Y A tn - :HTa
P(z,t) = | zcos m+E: 3 zsin m+8m 2
— [Tl —n+1)I(— Nl:u L
=3 sht).
FU—miDl(i—m) mnleosht)

m=1

3.3. Generating Functions for P! _ (cosh 8). The formula (15) of Chap. 2
for integral or half-integral non-negative values of 7 = [ and for |m| < [,
|nn] < [ gives an integral representation of matrix elements of irreducible finite-
dimensional representations of the group SU(1,1). Making the appropriate
analytic continuation (Sect. 2.4, Chap. 1) we obtain the integral representation
of matrix elements of representations of the group SU(2). Using the functions
P! (cosh 8) we have

inm [ —m)l(L+m) )2 g
&UMEJAGOU. mv = : A ﬂz_v ﬁ - .zq.v l\x cOos |m~€\u
2r | (= n)I({ +n)! 0 2
Q ) I-n ' m ) I+n
+isin —e”"#/? isin —e¥/? 4 cos —e”1¥/? e™dy.
2 2 2
As for the group SU(1, 1), we derive from here that
1 g AN g T
F(w, cos 8) = weos — +isin = iwsin — + cos —
(I —n)(l +n)! 2 2 2 2
!
.mi
— M jm—n S:AGOM mv .E_h\a.h. AADV

V= m)( +m)!

‘Thus, F'(w, cos #) is a generating function for the functions P!, (cosh 8) with
fixed { and n.
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The analogue of relation (37) for the functions P!, (z) is of the form
1 [ =m)(+m) ]t
2mi | (I = n)i{I +n)!

x % w'™™ ( cos m + it sin AN e
P 2 2 Vw? +2wcosh 8+ 1

P! (cos §) =

mi

where

w —cos 6+ Vw2 +2wcos §+1
isin @ '

In order to obtain from formula (41) a generating function for P! (cosh8)
we make the substitution w = 1/h in the integral and use the Cauchy formula
for coefficients of the Taylor series. For |m| < n we have

W.o“ (L= )+ n)t 12 Pl (cos )b~ = ™" (it sin (8/2) + cos (8/2))2"
(l = m)i(l + m)! mo .

l=n
As particular cases, we obtain from here generating functions for the associ-
ated Legendre functions P/™(cos ¢) and for Legendre polynomials:

! it)ym
|~u~ (cos B)h! = (i) )
{t +m)! v/'1 — 2hcos 8 + h?

1

V1 - 2hcos 0+ hZ

gk

m

Pi(cos 8)h! =

gk

T
<

3.4. Generating Functions for Other Special Functions. Applying formula
(35) to matrix elements of the representations T of the group SOg(n, 1) from
Sect. 2.4, Chap. 2, we have

(cosh t — cosgsinh t)7 = mwiﬁ?ﬂ + 1) (p)sinh™P¢

AM\@ &Huv —k—p P
X Mo To-k+1) Botp (cosh t)CL(cos ),

i.e., the function (cosh t — cos @sinh t)° is a generating function for the set
of functions
sinh Ptk

under the expansion in Gegenbauer polynomials.
Applying formula. (35a) to matrix elements of representations of the group
150(2) we derive that

" Plcosh t), k=0,1,2,..

oo

irsm 8 inf
e = M dmkE)e ™,

n=-—-00

ie., %0 ig 4 generating function for Bessel functions with integral index.
Using formula (35a) for representations of the group 1SO(n), n > 2, we have
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n-—2

oo -P
¢ = I(p) > i™(m+p) mv Jmp(O)Cn(2), P = ——,

m=0

ie., e"* can be considered as a generating function for Bessel functions with
half-integral index under the expansion in Gegenbauer polynomials.
We derive from formulas (30) and (31) of Chap. 2 that

oo
- _ gad\
nEmQEN.ﬂrSﬁNﬁlT DVQ — M nE+#QG kmavhﬂ k[ _ VN.P.

c
k=0
Setting 0 = —1,c=1,b=0,d =1, a =1 we obtain
ez + 1)* = ) L *(z)F, (42)
k=0

Le, e”* (2 + 1)® is a generating function for hméﬁau, k=0,1,2,iv.

84. Laplace Operators and Differential Equations
for Special Functions

4.1. Laplace Operators. As it was mentioned in Introduction, most impor-
tant differential equations of mathematical physics are invariant with respect
to some transformation groups. Therefore, spaces of eigenfunctions for these
operators corresponding to a fixed eigenvalue A are carrier spaces of represen-
tations of these groups.

Differential operators commuting with transformations of a given Lie group
G are constructed in the following way. We denote by U the universal envelop-
ing algebra for the Lie algebra g of this group. An element Z of the algebra i
1s called wnvariant if for all X € g we have [X, Z] = 0 (i.e. if Z commutes with
all infinitesimal operators of the group G). One can show that all such oper-
ators are polynomials of a finite number of the operators Ay, ..., Ay, which
will be called the Laplace operators of the group G.

If representations are realized by shifts in a homogeneous space X, then
differential operators of the first order correspond to operators X . Therefore,
in this case the Laplace operators are differential operators of higher orders.
In this set of differential operators there is an operator of the second order. It
15 called the Laplace-Beltrama operator. If X' is a homogeneous Riemannian
or pseudo-Riemannian space with a semisimple motion group G and with the
invariant quadratic form g,adz®dz®, then the Laplace Beltrami operator is
of the form

A=) det(gag)|™*Bug*|det(gas)| 205
afd

If 7" is an irreducible representation of the group G and Ay is a Laplace
operator of this group, then for every gy € G we have T(g)A, = AT(g). If
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follows from here and from the Schur lemma that the operator Ay is multiple
to the identity operator in the carrier space of T. Therefore, a set of numbers
(A1,-- ., Ar) corresponds to every irreducible representation T' of the group G
which are eigenvalues of the Laplace operators Ay, ..., A, of this group. For
every matrix element t,,,(g) of a representation T' we have

Atmn(9) = Mitmnly), k=1,.... 7 (43)

Representing the Laplace operators in coordinates of the group G corre-
sponding to the Cartan decomposition G = K AK we reduce equations (43)
to equations for the functions t,,,, (h) {Sect. 1.5).

4.2. The Laplace Operator on SU(2). We realize the group SU(2) by
left-shift operators in L*(SU(2)) and define the Euler angles on SU(2):
9 = g(p,0,¢). Then the infinitesimal operators A;, 4,, Az corresponding
to the one-parameter subgroups

cos (8/2) sin(6/2) cos(8/2) isin(8/2) e’ 0
—sin(8/2) cos(6/2) )’ isin(6/2) cos(8/2) ) 0 emi0/2 )
are of the differential form
a siny d . o
Ay = cos Smm + T % — cot fsin Gg,
d cosy O ad lo}
= —g] — _— % —_— = —.
As sin ﬁmm + sin B g cot 8 cos emﬁ, Aj 0

The Laplace-Beltrami operator is of the form A = 42 + A% + A2, We have

mm m H mw mm @w
bl:@lmmr+oowm%+mwbwm A@|ﬁwlmn0m mi@ﬁ®@+%v TTC

4.3. The Laplace Operator on SU(1, 1). We realize the group SU(1,1) by
left-shift operators in L%(SU(1,1)) and parametrize SU(1,1) by the angles
¥, t, ¥ corresponding to the decomposition SU(1,1) = KAK (formula (8),
Chap. 1). If By, Bs, By are the infinitesimal operators corresponding to the
one-parameter subgroups

cosh (8/2) sinh (6/2) cosh (8/2)  isinh(6/2) et g
sinh (6/2) cosh(6/2) /' \ —isinh(6/2) cosh(6/2) '\ 0 %2>

then A = —B? — B2 + B2 is the Laplace-Beltrami operator on SU(1,1) and
we have

Hm m H mm mm mm
B 5 g B = s e e e Y
sinh ¢ ot s At sinh®t Amﬁh cosh Mmﬁmﬁ " mehv (49)
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4.4. The Laplace Operator for I150(2). We realize the group /SO(2) by
left-shift operators in the two-dimensional real space R%. Then the infinites-
imal operators 4,, Ay corresponding to shifts along the coordinate axes z,
and z, respectively are of differential form

g a
Al =—5—, As=—-——.
! @HH 2 %Hw
The operator A = A} + A3 commutes with shifts from the group 180(2) and,
therefore, it is the Laplace operator. In this case it coincides with the classical
Leplace operator

ik g?
A= — +—.
az3 N o2

For the spherical system of coordinates it takes the form

Asmm o g (46)

4.5. Differential Equations for Special Functions. Matrix elements of the
irreducible representations T} of the group SU(2) in the basis {¢~*"} are of
the form

tran(9(0,0,9)) = e Metmv) pl - (co5 g).

They satisfy the differential equation (43) which in our case is
Aty (9) = —I(L+ Dth, (g).

Taking into account the explicit form (44) of the operator A; = A we obtain
the differential equation for the functions P, (z):

d? d m?+n?-2mnz]
dz? dx 1-—x2? Prnn()
= ~I(l + )P4 (z).
Using formula (19a) of Chap. 2 we replace the functions P! _(x) by the ex-

pressions for them in terms of Jacobi polynomials and obtain the differential
equation for these polynomials:

TTHJ : iulniﬁimiva_%
I

dz?
+nn+a+ 3+ :VNMP.S (z) = 0.

The matrix elements tX,, (g) of the representations T}, of the group SU(1, 1)
satisfy the differential equation

AtXa(9) = 7(7 + 1)t} (9).
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Using formula (45) for A and formula (16) of Chap. 2 for tX . (g) we derive
the differential equation for the functions P7,, (z):
d? d m?+n?-2mny

dz? dx 2 -1 mn(Z)

In the same way the Laplace operator (46) for the group I50(2) leads to
the differential equation for Bessel functions

& 1d n?

Using representations of the group S or 54 we derive the differential equation
for Laguerre polynomials

2
HW+AQIH+5W+: Li(z) = 0.
Chapter 4

Representations of Lie Groups in “Continuous”
Bases and Special Functions

§1. Representations of Lie Groups in “Continuous” Bases

1.1. Introductory Remarks. Up to now we considered matrix elements of
group representations in orthonormal bases of carrier spaces. They allow us
to study the functions J,(z), 2 F1(a, 8;v; ), 1 F1 (05 v; ) with integral or half-
integral values of the parameters «, 3,~, ». To obtain properties of these func-
tions for arbitrary values of the parameters we have to go over to bases indexed
by continuous parameters (which are analogous to the basis {¢'*7} of the space
L?(R)). Such bases appear when a carrier space of a representation is real-
ized in such way that operators corresponding to an appropriate noncompact
one-parameter subgroup are operators of multiplication by a function.

In this case, instead of matrix elements, we have kernels of operators act-
ing in spaces of functions. Generally speaking, these kernels are generalized
functions. We are interested in the cases when they are expressed in terms of
special functions.

Unfortunately, we can not so freely use kernels as matrix elements of rep-
resentations since we have to be concerned about convergence of integrals.
For this reason we shall consider separate groups (as a rule, groups with sim-
ple structure) instead of classes of groups. In this case, the group-theoretical



