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Chapter 3
Functional Relations for Special Functions
Related to Matrix Elements

81. Addition Theorems

1.1. The General Form. Let G be a semisimple noncompact Lie group (or
the corresponding compact or inhomogeneous Lie group) and let G = KAK
be its Cartan decomposition. If hy,hy € A and k € K, then there exist
elements k, ks € K and h € A such that

hikhy = kihks. (1)
Let T be a representation of the group G. Using the statements of Sect.
1.3, Chap. 2, the relation T(h)T(k)T(h2) = T'(k;)T(h)T(k2) can be written

as

M Nvu.auﬂkﬂvaaﬁwv.ﬁup&QSV = Qrlky vm_._l_ﬁn}v@uﬁ_ﬁnmv. ﬁmv
q.p

It is the general form of the addition theorem for special functions related to
the representation T,
For k = e formula (2) takes the form

D Trvar(ht)Tak,s5(h2) = Tra sy (hha). (2a)
q.k

¥

If the multiplicity indices 1, 7, p are absent in (2) (that is, if the multiplic-
ities of representations do not exceed 1) and r, s correspond to the identity
representation of the subgroup K, then formula (2) turns into the addition
theorem for the spherical functions:

M tog(h1)ddo(k)teo(h2) = too(h), (3)

where dj;(k) is the zonal spherical function of the representation @, of the
subgroup K.

1.2. Addition Theorems for Functions Related to the Groups SU(1, 1) and
SU(2). Elements of the subgroup A of the group SU(1, 1) are of the form

cosh (t/2) sinh (¢/2)
9() = { sinh (t/2) cosh (t/2) )"

and elements of the subgroup K are of the form k(p) = diag (e'#/2,e~1#/2).
We consider the decomposition hikhy = kihkg, hy, ho,h € A, k1, ko, k € K,
and denote parameters of the elements h; and hy by t; and t9 respectively
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and of the element k by . Then the parameter ¢t of the matrix h and the
parameters , 1 of the matrices k;, k; are determined by the formulas

cosht = coshtycoshty + sinh tsinh 5 cos w2, (4)
e sinh ¢ycosh ts 4 coshtysinht, cos s + isinhtgsin P 5
sinht ’ (5)
Ltp+p)sz  cosh (1 /2)cosh (t5/2)e%?/2 4 sinh (t) /2)sinh (ty/2)e"?2/2
€ = 1 h@v
cosh (t/2)

where 0 € p <21, 0 <t <m -2 <9 < 2m.

H:m operators Ty (k), k = diag(e"/?,e=¥/?), are diagonal in the basis

ﬁm|:: Hvu
mdxﬁ.wvml_ﬂm — m125+16m\_3m.

The blocks HM.E%E of the representations T\, of SU(1,1) degenerate into
the usual matrix elements tX (h) which are expressed in terms of Pr,(cosh t)
(Sect. 2.1, Chap. 2). Therefore, formula (2) leads to the addition theorem for
_\,\wm?ﬁn&o:mﬁﬂn?o%a”

[e o]

emimetnblqt (coshe) = > e *erpT . (coshti)Pi,(coshty), (7)

k=—-00

where the parameters are connected by formulas (4)-(6). For m = n = 0 it
turns into the addition theorem for Legendre functions:

oC

Prlcosht) = Y e **2P¥(cosht, )P ¥ (coshis). (8)

k=-00

If 7 is negative integer or half-integer, then we obtain from formula (7) the
addition theorem for the functions P! (cosh t) related to the discrete series
representations of the group SU(1,1):

-0

g imetndipl (cosht) = Y e Pl (coshir)Pl (coshts),  (8)
k==l

where the parameters are connected by relations (4)-(6). Considering the
formula (7) for non-negative integral or half-integral v = | and for |m| < {,
in| < | we receive the addition theorem for the functions P (cos 8) related
to representations of the group SU(2):

!
gritmeronbl ol fene 0y M e~k pt (cos 61)Pl,(cos 8;), (10)
k=-1

where s, i, 8, o, #, and 8, are connected by formulas (4)-(6) in which
sinh ¢, cosh t, sinh ¢;, cosh t;, j = 1,2, are replaced by isin 6, cos 8, isin §,,
cos 8, respectively.
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Due to the statements of Sects. 2.1 and 2.2, Chap. 2, formulas (9) and {10}
actually are addition theorems for Jacobi polynomials.

1.3. Addition Theorems for Functions Related to the Groups SOqy(n, 1)
and SO(n + 1). Let g(t) be a hyperbolic rotation in the plane (n,n + 1) by
the angle t and let g;(#) be a usual rotation in the plane (n — 1,n) by the
angle 8. The relation

g(t1)gi{p)g(ta) = g1(¥1)g(t)gr (¥2), (11)

where cosh t = cosh t; cosh ts + sinh t) sinh £ cos ¢, is a special case of for-
mula (1) for the group SOg(n, 1). Therefore, for representations of the nonuni-
tary principal series of the group SOg(n,1), having class 1 with respect to
SO(n), we have

M;» (t1))dbo(91(9)tdolg(t2)) = tia(a(t). (12)

Making use of the expressions of Sect. 2.4, Chap. 2, for matrix elements
and of the equality

5 (9(1)) = (=1)*tgg " g (1))
we obtain the eddition theorem for associated Legendre functions:

ad 2k + 2
2= [(p)[ (o + 1)[(=0 — 2p) MT%%NWMP:E& —k - 2p)

x (sinht,sinh ts) PP, 5 P(cosh )P} (cosh ty) CE(cos )

= sinh \fﬁmwunaog t), (13)

where p = (n — 2)/2 and cosh t = cosh t, cosh ty + sinh ¢, sinh ¢; cos @.
Replacing the hyperbolic rotations in {11) by usual ones, in the same way
with the help of the representations 7" of the group SO(n + 1) we obtain the
addition theorem for Gegenbauer polynomials:
! wa 2 o ]
r mﬁ -1) M Mp+m)(l —m)i(2m + 2p :m.E 8, sin )™
- Il +m + 2p) 1)
x CPH™(cos 61)CPT ™ (cos 82)CE 3 (cos )

I—m ]

= CP(cos 6) cos B, + sin 8 sin 6 cos ).
where p = (n — 1)/2.

1.4. Addition Theorems for Bessel Functions. An application of relation
(1) to special functions, related to representations of the group 150(2) (Sect.
2.3, Chap. 2), leads to the addition theorem for Bessel functions with integral
inder
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o0

e I (r) = M %2 o _i(r1)Ji(ra), (15)

k=-00

where the parameters ¢ and r are determined by the parameters 7y, 79 and
w2 according to the formulas

~ : 71 + Tpe'¥?
(% + r2 + 2riracos ﬁu%\m_ ¥ = plﬂmlii (16)

%
I

Applying formula (1) to representations of the group ISO(n), n < 2, and
using the results of Sects. 2.4 and 2.5, Chap. 2, we obtain another addition
theorern for Bessel functions:

22T (p) M )¥(k + pY(rir2) P Tkap(r1)Jes p(r2) CP(cos ) _—

=r"PJ(r),

where p = (n — 2)/2.

1.5, Addition Theorems for Jacobi Polynomials and Jacobi Functions. With
the help of representations of the group U(n) addition theorems for Jacobi
polynomials are derived which differ from addition theorems (9) and (10).
Every element g € U(n) is representable in the form

= khndpk', hy = gn_1(8), k. k' € U(n — 1), dn(¢) = diag(l,...,1,€"),

where g,,_1(0) is the rotation in the real plane (n—1,n) by the angle 8. Setting
9= gn=1(01)gn-2(¥)dn(¥)gn-1(62) we have the relation

gn—1(61)9n-2(9)dn () gn-1(82) = kgn_1(8)dn (1)K, (17)

where k and k' are elements of U(n — 1) (we do not need the explicit form of
them) and

cos 26 = 2| cos 8) cos 8, + sin @y sin 0, cos pe'|? ~ 1. (17a)

<<:Esm down relation (17) for operators of the irreducible representation
T™™ of the group U(n) and using the formulas of Sect. 2.8, Chap. 2, we
derive the following addition theorem for Jacobi polynomials (Shapiro (1968],
Vilenkin and Shapiro [1967]):

k
P20 (cos 26) = M MP:I?,E 8 sin 62)* " (cos 8; cos 65)5!

k=0 1=0
PO cos 26,) PEHEHA ) o 2y

m-— T

X

5 ﬁ@L.T:?Om 2¢)(cos ﬁv ~teos (k - )y,

where p is a non-negative integer,
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k+p+!l fm+p+k)/m+p+i\ "
Byl &= p+k A m—1 VA m-—k
=
xﬁqz+ﬁv pt+k ek - 1)
m k

and () = nl/kl(n— k), e(k 1) = 1fork =land e(k-1) =2 for k # .
Differentiating both parts of relation (18) in cos ¥ and taking into account
the formula

1
%mﬁmn.m;p.v = mﬁﬁ + A+ n+ 1)plottB+l) gy

we obtain

T

k
Nmu,a:ncm 20} = MH Munzt (sin 6 sin 83)%(cos 8; cos )%~

k=0 =0
% (cos ﬁvwl_‘uﬂﬁ_w‘ﬂ»i_i.«l:ﬁnom wmlﬁhw.mwt.i»u:?om 205)
x .3::1_? batk=eng 20)C_ (cos ), (19)

where
cakt = (g + k= U(p+k+1)
(Pra+n+k){p+k-1Dlg—1Ng+n)(n—k) (192)
p+tg+n)p+n+D g+ k) g+n-1)

X

(Koornwinder [1972], [1973]).

Since both sides of formula (19) are rational functions in p and ¢, then p, ¢
may be replaced by a € C and g € C respectively. We simultaneously replace
the factorials in (19a) by the corresponding I'-functions.

In the same way with the help of the representations T%? of the group
U(n — 1,1) the addition theorem for Jacobi functions is derived. It is of the
form

oo i
mwa.u:m_c%:rno&:m + rsinht;sinhtoe¥|> — 1) = MU MumisL
m=0 [=0

. 1B+m-1
x (sinhtsinh t5)™!(cosht, coshta)™ Hmwﬂ+33+ A4m =1 osh 2t,)

x RUHMHLEAM=D (osh 9t ) PLOTATHAT D902 _ 1NCP _ (cos ¥), (20)

p—m

where

4 (a+m+0)B+m—-lNa+F+p+m+ 1) a+m)0(F+1)

C Brla+B4+u+D)B+m-l+1D)IB+m+ 1) (p+a+l)

Fla+D)I'B+p+ )M+ )M a+p+l+1)
Np-m+ 1) a+m+1+1)

X
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1.6. Addition Theorems for Laguerre Polynomials. We define in the group
5 of triangular matrices from Sect. 1.6, Chap. 1, the one-parameter subgroups

1 t 0 100 1 0 0
g+(t) =10 1 0], g (t)={0 1 t]|, et)=|0 & 0],
0 0 1 0 0 1 0 0 1
1 0 ¢t 1t t?/2 1 -t —t?/2
Z(t)=10 1 0),@t)=[0 1 0 |,gt)=(0 1 0
0 0 1 00 1 0 0 1

Fort > 0 and s > 0 the relation

1(t)e(r)g1(s) = e(r1)g1(r)e(r — 71)z(b)

is fulfilled, where b = tssinh 7, 7% = ¢ + 2tscosh 7 + 5%, " = (t + se™)/r.
Writing down this relation for the matrices of the representation T, of the
group S (Sect. 2.6, Chap. 2) we have

[}

i i LT e

m=0 HMHV
3Py e exp{otse” + ﬂmvﬂm?izﬁ + mmaukrohM{ﬁ\QﬂmY

where |t/s| < 1.
From equality

91()e(7)ga(s) = e(m1)ga(r)e(r — 11)2(b),

where b = tscosh 7, 7% = ¥ —t? — 2tssinh 7, €™ = (t + se”)/r, we obtain the
addition theorem
oo
M Him\mvlSmﬂihﬂﬁlkﬁ\QmthWu\3ﬁa.m.mV
m=0 ﬁmwv

= (-1)¥t*s~ % exp(otse” + Ta)rile=®( 4 x| L LR Ly

The equality
g1(t)e(T)g1(—s) = (1)g- (r)z(b),
where r = (t2 — s2) /5, b = (t* — s2)/2, leads to the formula

= morm— . n—m Q._r,ﬁ\ VIE in? n
DL ot L o) = T e ¢ e,

where k > n. If k& < n, then the sum in this formula is equal to zero.
For s >t > 0 and e” = t/s we have the equality

91(t)e()g1(—s) = &(1)g4 (—1)2(b),
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‘

where r = (s — t%)/s, b = (s — t?)/2. We obtain from here that

[o o]
MU ﬁ\:wxquz.wlwﬂhm..iwAIQNJH\NIEAIQMJ

m=0

nm n—k -
\mﬁﬁ = “3. e

g
where . > k. If n < k, then this sum is equal to zero.

1.7. The Addition Theorem for Hermite Polynomials. In the group 53 the
equality
9(0,71,81)9(0, 72, 82) = 9(0,7) + 51,72 + 82)

is fulfilled. We set s, = 2/2r1, 82 = w\/272, T = COS°t, 19 = mSwﬁ and write
it down for matrices of the representations T,. Taking into account formulas
of Sect. 2.7, Chap. 2, we receive the addition theorem for Hermite polynomials:

..-u
:. \
maﬂmmr:JrEnOmSH M AW m_::nOm::mﬁmv.m:lZSv, hmwu
k=0
where () = nl/kl(n — k).
1.8. Recurrence Relations. Some of the recurrence relations for special func-
tions are infinitesimal forms of addition theorems.

Ezample 1. The formula (10) for ¢, = 0 takes the form

M ! k(cos 61) P (cos 03) = PL_(cos (6 + 63)).
k=-1{

We differentiate this equality in &, and put 83 = 0. Since 16 .E::?Om S_muo =
0form#n=1and

d
db

1
.T«SJL«PAnOm 8) HM/\QI“.‘&Q+B+HY
g=0

— Pi_\ u(cos 8) = |W,\Q+£: —n+1),

0=0
then replacing cos 6, by x we obtain the recurrence relation

£ Phnle) = 2 [VIT 0T 7t DPL s (a)

Vil -n)(l+n+1)P . (2)

(24)
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Erample 2. Setting @3 = 7/2 in formula (10) we have
i

e M pl (cos 8) = S iTKP (cos 6,)PL (cos 8y),  (25)
k=-—-1
where i B siti o - idist @
cos # = cos 8, cos &, elv = bl HmE. 4 e z
sin &
ptervy/z _ V2008 (61 + 62)/2) + icos (61~ 6,)/2)
2cos (6/2)

Differentiating both sides of relation (25) in 8, and setting 8, = 0, applying
transformations and replacing cos 8; by T we obtain

mwhz: Hlﬁz\mn_vj. m|3.+u.vwm:= _AHV

+ V=)l +n+ )P, ()] (26)

Other recurrence relations can be derived with the help of Clebsch-Gordan
coefficients of group representations (Vilenkin [1965b), Sect. 8, Chap. 3).

L.9. Recurrence Relations and Differential Equations for Special Functions.
To derive the second order differential equations which are satisfied by special
functions, one chooses recurrence relations such that their successive action
on special function leads to a multiplication of it by a number. Recurrence
relations raising and lowering one of the indices of a special function are used
for this derivation.

Ezample 3. The recurrence formulas (24) and (26) are equivalent to the
relations

& :HIS
/..._.F Hw&fm + ’.|\H|Iﬂ &UmSSAHV = |/\: - 2:__ +n+t+ HVLUS:.:A v,

HIH‘NM\ nr —m

dz /1 - z2

They lead to the relation

d - _
,\HIHuwliﬁu@FE ,\HIHM ,.:\MIIHN B i)
= |2\3Q+:+:~UM§AHV.

Removing the parantheses, after simplification we obtain the differential equa-
tion for the functions P! (z):

Pra(@) = VI +0)([ = n+ 1)Pp, o (2).

d? d m?+n?-2mnz]
U= g o | Fl®)

=-l(l+ )P (z).
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Differential equations for special functions are also derived with the help
of Laplace operators (Sect. 4.5 below).

1.10. Orthogonality Relations. Matrix elements of irreducible representa-
tions of a compact group satisfy the orthogonality relation

\ %, (0)15 (9)dg = (dimTy) ™ 6y b (27)
(&

We assume that matrix elements are taken with respect to an orthogonal basis
{en} which agrees with a decomposition of restrictions of representations of
the group G onto the subgroup K. We represent g as g = khk', k. k' € K,
h € Ay, decompose the matrix elements tX .(g) into a sum of products of
matrix elements for k, h, k', and integrate with respect to k& and &’. Due
to the orthogonality of matrix elements of representations of the subgroup
K and due to decomposition (3), Chap. 1, of the measure dg, we derive the
orthogonality relation for the matrix elements ¢X (k) from Sect. 1.5, Chap.
2

o ——— dim @, )(dim Q,,
Ma:srmuv\ nM_EQ:FﬁSQ&ES&b e Qm:nvuﬁm_.. vuxe. (28)
P Ay X
In particular, for functions tX,(g) we have
: T dim )
(Bt (h)u(h)dh = = by
[, ol - oz, (29)

For the group SU(2) relation (28) takes the form
1 27

— thn (0)th,.(8) sin 8d8 = (dimT})~ 16y,
2r fy

Taking into account the connection of the matrix elements t_(8) with Jacobi
polynomials we find that, for fixed a and 3, the system of polynomials

1/2

o-(arprny/z [+ a+ B)l(a+f+2n+1) PleB(z), n=012. .

(n+a)l(n+ )

is orthonormal on the interval |-1,1] with respect to the weight function {1-
z)*(1 + z)P.

Writing down relation (29) for matrix elements of the representations T* of
the group SO(n) we derive the orthogonality relation for Gegenbauer polyno-
mials. The orthogonality relation for Laguerre polynomials is connected with
representations of the group Sj.
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§2. Product Formulas

2.1. The General Formulation. We use in formula (2) the subblocks

Torom(g) instead of the blocks Tr; 4, (g), write it for matrix elements, mul-

tiply its both sides by the matrix element m_mu.e s(k), and integrate over the

subgroup K. Due to the orthogonality relation for matrix elements, we obtain
the relation

tras()lass () = VIR Y [ teaaW) (1)
w,y

x mmm_&?v&w?&?mvaw. (30)

(Recall that &, &y and ks are functions of the element k of the subgroup K.)
If @r and Q, are the identity (unit) representations of X, then formula
(30) turns into the product formula for associated spherical functions

noaﬁ?;nncﬁbuv = J_..Q_g@n\\m«nccﬁbvhmc:ﬂv&b hwwv

2.2. Product Formulas for Functions Related to the Groups SU(1,1) and
SU(2). Using in (30) the expressions for matrix elements of the representa-
tions T} of the group SU(1,1) from Sect. 2.1, Chap. 2, we obtain the product
formula for the functions BT, (cosh t):

1 27 ‘
T w(cosht))PI (coshiy) = - \ g'lker—me=nUlmr (0osh t)dis.
0

It leads to the product formula for Legendre functions and for associated Leg-
endre functions

Pr{coshty)P,(coshty)
H 2%

= = i
PE(cosht; )P *(cosh t2)
1 2r

“mn_

(cosht)coshty + sinh¢;sinh t) cos @3 )dig,

elfvaqy (coshticoshty + sinhtysinh tq cos wa)dya.

Representations of the discrete series of the group SU (1,1) and the rep-
resentations T; of the group SU(2) lead to the product formulas for Jacobi
polynomauals

1 2w

P! c(cosht) )P (cosh ty) = cos (kg = my — nY) P! (cosht)dps,

2 Jy
1 27

Pl (cos 8)) Pl (cos By) = —
Mﬁ‘ 0

cos (kga ~ myp — nyp) P (cos 6)dps.



