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one continuous parameter 7) on the spaces (3a-c) in the coordinate system
corresponding to the subgroup K we have separation of variables:

tholkgla)) = tho(k)the(9(a))-

It turns out that the function tX,(g(a)) for the symmetric space {3c) coincides
with the corresponding function tX;(¢(c)) of the space mQamFm.E.\,mAQ@?
2¢ — 1) x U(1)), and the function tX,(g(a)) for the space (3b) coincides with
the corresponding function tX;(g(a)) of the space SOq(2p, mﬁ\.,m.Qoﬁwﬁ_ 2g-1)
(Vilenkin and Klimyk [1985b]). This reduces harmonic analysis on the spaces
(3b) and (3c) to that on the space (3a) with even p and ¢. In vwﬂSnEwP there
is a correspondence between representations of the discrete square integrable
series on the spaces

Sp(p,q)/Sp(p,qg — 1) x Sp(1) and SO(4p,4q)/SOo(4p,4q — 1),

as well as between representations of the discrete series on the spaces
SU(p,q)/S(U(p,a = 1) xU(1)) and SOo(2p,29)/500(2p,2q — 1)

(Vilenkin and Klimyk [1987]).

The functions t¥,(g(a)) for the space X = SOo(p,q)/SC0(p.q |.: are
expressed in terms of the matrix elements B2, (cosh t) of representations of
the group SU{1,1) ~ SOp(2,1):

thexyo(g{a)) = c(tanh a)' "/ ?(cosh )~ Pra-N/2pe  (cosh 2a),

where k and &’ correspond to the highest weights (k,0,. .. “.8. and (k',0,...,0)
of the representations of the groups SO(p) and SO(g), ¢ is independent on &
and is related to the Plancherel measure on L?(X), and
- -k p-g¢
p+g-—4 _k+kK ptg-4 ‘Hw\|||l|
e=TH T, TS YT T 2

(Vilenkin and Klimyk [1987]). Here 7 is the number characterizing x. Thus,
harmonic analysis on SOg(p, q)/SOu(p,q — 1) is related to that os.nwm group
SU(1,1). This fact seems to admit a generalization onto @mocao.wymam::nm.n
spaces of higher rank, i.e., harmonic analysis on a space G/H of rank 7 is
connected with that on some simple group G’ of real rank r.
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Chapter 1
Representations of Lie Groups Relating
to Special Functions

§1. Decompositions of Groups

L.1. Iwasawa and Cartan Decompositions. We assume that the reader is
familiar with the principal concepts of the theory of Lie groups, Lie algebras
and their representations. As a rule, we consider the classical complex Lie
groups 5L(n,C), SO(n,C), Sp(n,C) and their compact and noncompact real
forms, as well as the groups which are “triple” to some pairs of Cartan dual
real groups; in particular, groups of inhomogeneous linear transformations.

For the construction of representations of such groups and for studying
properties of their matrix elements we shall need certain factorizations of
groups into products of subgroups. We give here these factorizations in a
convenient form. Let G be a connected noncompact real linear semisimple
Lie group and let K be its maximal compact subgroup. We denote by g the
Lie algebra of the group G and by ¢ the Lie subalgebra of g corresponding
to K. An involutive automorphism 6 exists in g for which ¢ is the stationary
subspace. The subspace {X | X = —X} of g is denoted by p. Then g = &+ p.
The decomposition g = € + p is transformed by the exponential map g — G
into the decomposition G = K'P of the group G where P = expp.

The Killing—Cartan form

B(X,Y)=Tr(ad X){ad ¥), X,Y €g,

where (ad X)Z = [X, Z], defines a symmetric bilinear form on g. The Lie
algebra g is semisimple if and only if this form is nondegenerate. We have
B(X,X)<0ontand B(X,X)>0on p. Consequently,

(X,Y) = -B(X,8Y) (1)

is a strictly positive definite scalar product on g.
Let a be a maximal commutative subalgebra in p. The dimension of a is
said to be the real rank of g and of G. The subgroup 4 = exp a is commutative.
The operators ad H, H € a, are skew—Hermitian with respect to the scalar
product (1) and, therefore,

9=60+) 6, (2)
-

where gg is the kernel of the operator ad H and g~ correspond to the eigen-
values y(H), H € a. The decomposition (2) is orthogonal. The linear forms
7 are called the restricted roots of the pair (g,a), and the subspaces g, are
called the root spaces.
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If Hq,...,H; is a basis of a and the first non-zero number in the sequence
{7v(H1), ..., v(Hi)} is positive (negative), then the root -y is said to be positive
(negative) with respect to this basis. The dimension of g, is called the mul-
tiplicaty of the root v and is denoted by m(vy). The half-sum of the positive
restricted roots with multiplicities is denoted by p:

b= minn. (2a)

2
¥>0

The sum n = Mﬁ.c g, is a maximal nilpotent subalgebra of g, and N =
expn is a maximal nilpotent subgroup of G. The group G has an Iwasawa
decomposition G = K AN, which means that any element g € G is uniquely
representable in the form g = khn where k € K, h e A, n € N. Moreover,
the mapping (k, h,n) — khn is an analytic diffeomorphism of KxAxN onto
G.

Let M be the centralizer of the subgroup A in K. The subgroup P = M AN
is called a mintmal parabolic subgroup of G. A subgroup P’, which contains
P and is different from G, is called a parabolic subgroup. Parabolic subgroups
P’ are obtained from P = MAN by extension of the compact subgroup M,
that is, P’ = M'AN where M C M’ C K. Every parabolic subgroup P’
has maximal semisimple subgroup which is uniquely determined. Using this
semisimple subgroup we can represent P’ in the form P = H'A'N', where
A’ ¢ A, N' C N and H' is the reductive subgroup for which H'n A" =
H' NN’ = {e}.

The factorization G = K AK of the group G is called the Cartan decornpo-
sitzon of G. We have

khk, = K'R'K,, k. kiK' k€ K, hh €A,
1 1

ifh=~h, k=km, k =m7 'k}, me M. Toobtain a unique decompo-
sition, one has to take the subset A* = expa™ instead of A where a™ is the
set of elements H from a such that v(H) > 0 for all restricted roots -y of the
pair (g, a). The set KA' K is everywhere dense in G.

Let m = 3 _ o8y and N = expn. Then for almost all g € G we have
g = nymhn where n) € N, me M, he A ne N. Therefore, the equality
G = NMAN is valid almost everywhere. It is called the Gauss decomposition.

Let G, be the complexification of G, and let Gy be the compact real form
of the group G.. If A, is the complexification of the subgroup A, then A, =
A, NGy is a commutative subgroup of Gi. We have the decomposition Gy =
KA. K. It is dual to the decomposition G = KAK. If A = expa, then Ay =
expia, i = v—1.

Factorizations of invariant measures dg on G and Gy are associated with
the Cartan decompositions of these groups. If ¢ = khk’ where h € A or
h e Ag, then

dg = p(h) dk dh dk’, (3)
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where dk and dh are the invariant measures on X and on A or A, respectively.
The multiplier (k) is defined by the formula

_ o (y H)
ulh) = Hch m_:r|m| , hecexpH, Hea, (4)
g

for the noncompact group G and by the formula

B . ﬁ‘fmv m{) )
plh) = M.Ho sin=—— , h=expiH, Hea, (5)
v

for ﬁvm compact group Gi. The products in (4) and (5) are over all positive
restricted roots of the pair (g,a) and (v, H) is the value of vy at H.

.H.m. Decompositions of the Group SL(2,R). The subgroups K, A, N, N of
this group consist of the matrices

cosy  sing et 0 10 1t
—siny cosg )’ 0 et )’ t 1/ 0 1)

e . 1 0 -1 0
respectively. We also have M = AAO L A 0 -1 v V The subgroups

m.« p W and N (or N) are said to be elliptic, hyperbolic and parabolic, respec-
tively.
For SL(2,R) we have the following decompositions

SL(2,R) = KAN = KNA = NKA = KAK = NAN. (6)
The order of the subgroups may also be reversed. The decomposition

SL(2,R) = NAN U NsAN, s= CH m “ (7
is also used in the theory of special functions.
. The group SU(1,1) is often used instead of SL(2,R). These groups are
isomorphic. Elements g € SU(1, 1) are representable in the form

9 = g(p, t, )

e/ 0\ (cosh(t/2) sinh(t/2)) (e¥/? 0 (8)
0 e /2 J \sinh(t/2) cosh(t/2) 0 e/

(the Cartan decomposition). The Cartan dual group to SU(1,1) is SU(2).
The Cartan decomposition for its elements is

g =ule.0,y)

hm_ﬁ\m o‘ oCmﬁm\mvm.:;m\mw m:e\u o Ev
0 e w/? ~sin (#/2) cos(8/2) 0  e'/2



158 A.U, Khimyk, N.Ya.Vilenkin

1.3. Decompositions of the Groups SOq(n,1) and SO(n + 1). For these
groups K = SO(n) and the subgroups A and A, consist of the matrices

I 0 0 F 0 0
gn(t) = 0 cosht sinht |, ga(f)= 0 cos @ sing |,
0 sinht cosht 0 —rmsiné cos@

(10)
where I,,_; is the identity (n—1)x(n—1) matrix. The subgroup M is isomorphic
to SO(n — 1). The subgroup N consists of the matrices

E._\ at —at
n@y=| a 1+4& by}
a Hluuhp 1- .@.%.M
where a = (aj,...,a,-1), a, € R, and (a,a) = Muwwwm a2. One can directly

verify that NV is a commutative group.
Let E, ; be the real pseudo-Euclidean space with the bilinear form

X, ¥] =100 + - 4 TpYn — Tng1¥nia-

The Riemannian symmetric space SOg(n,1)/S0(n) is identified with the up-

per sheet of the hyperboloid H,, = {x € E,, 1| [x,x] = 1}, and K = S0(n) is
the isotropy subgroup at the point xg = (0,...,0,1) € H,,.
Let &, = (0,...,0,1,1) € E,, ;. Then we have
M = {ke SO(n)|k& = &}, MN ={ge SO0p(n,1)|g& = &},

and the space SOg(n, 1)/MN is identified with the upper sheet of the cone
*N € .m..:..: Tn, K_ = 94 X w\h O*
Since [gx, gy] = [x,¥] for g € 50p(n, 1), and

Q.‘phmvmc = AO_ s .D‘mau mnvﬁ
then for k € K and n € N we have
[Xo0, k g7.(t)n €] = [X0,gp(t) &) = €.

Thus, the parameter t of the element g/ (t) € A from the Iwasawa decompo-
sition g = A gn(t)n, g € S0(n, 1), is defined by the formula

t = log [xo, g &) (10a)

1.4. Decompositions of the Groups U (n, 1) and U(n +1). For these groups
we have K = U(n — 1) x U(1). Instead of K it is convenient to use the sub-
group K’ = U(n ~ 1). The one-parameter subgroup of the diagonal matrices
diag (1,...,1,e",1,..., 1), where ¢' is situated on the j-th place, is denoted
by D;. If A and Ay are the subgroups of matrices (10), then the decomposi-
tions
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U(n,1}) = K'Dnp1AK’, U(n+1) = K'D, 1 AcK' (11)

hold. The subgroup of matrices g € U(n + 1) with determinant one is denoted
by SU{n + 1).

1.5. Inhomogeneous Lie Groups. A third group (7, is associated with the
dual compact and noncompact semisimple Lie groups Gy and G, constructed
in the following way. Let g = ¢ + p be the decomposition of the Lie algebra g
of G, as in Sect. 1.1. Since p is the eigenspace of the involutive automorphism
8 corresponding to the eigenvalue —1, then [e,p] C p. Therefore, the corre-
spondence X — ad X defines an action of the subalgebra ¢ in the space p. The
corresponding action of the subgroup K in p is denoted by Ad. The space p
is equipped with the scalar product (1) which is invariant with respect to Ad.
The group G, is the semidirect product G, = K x p of the compact group K
with the vector invariant subgroup p. Its elements are multiplied as

(k. p)(K',p') = (kk',(Ad k)p' + p).
The elements (k,p) € G, are usually represented in the matrix form:

Adk p

Let a and a¥ be as in Sect. 1.1. From the action of the operators Ad k, k €
K, on H € a* we obtain the orbit Oy in p. The orbits Oy and Oy are
nonoverlapping if H # H'. The set {{Adk) a*|k € K} is everywhere dense in
D

From the equations (Adk)at = ka*k~! and G, = K x p we obtain for G,
the analogue of the Cartan decomposition

Gs = (K,0)(e,a*)(K,0), (12)

where at is the closure of the set at.
Let t be the orthogonal complement of a in p. For G, the analogue of the
Iwasawa decomposition is

Il

G, = (K,0)(e,a){e, t). (12a)

The subgroup
Py = (M,0)(e,a)(e, t) (13)

of G corresponds to the minimal parabolic subgroup P = MAN of G.
IfG = SOqg(n, 1), then G, coincides with the inhomogeneous rotation group
I50(n). It consists of the matrices

H M. where k€ 5O(n), a=(ay,...,an)".
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The group 1580g(n, 1) is defined analogously. It consists of the matrices

Am M, i_e,mzmmocﬁ:_:u»n?::;pi%.

This group is called the (n + 1)-dimensional Poincaré group.

1.6. The Groups S and S;. The group G, is obtained from the groups
G =KPand G = mm\m, P= expia, i = /=1, by “geometric rectification” of
the spaces P and P. Repeating the “rectification” operation in the subgroup
K and in the subsequent subgroups, we obtain groups of triangular or block-
triangular matrices. The group S of the matrices

b
d{, abedeC, c#0, (14)
1

o8

1
g =gla,bc,d)= |0
0

<

is the simplest “rectified” group. It contains the subgroup S, consisting of the
matrices

§ =1 .a H
s=s(w,a,b)=gle 3¢ - —, e —— |,

0<a<?2n, weC, beR.

If w is represented in the form 2re. then the invariant measure ds on S; can

be written as .
ds = ds(2re'?, a,8) = rdrdfdads. (15)

The subgroup of real matrices g(a, b, ¢,d) with ¢ > 0 is denoted by S;. The
matrices

e 0 r
glr,rys)=1 0 e s|, rseR, 71>0,
0 0 1

also form a group. It is denoted by S3. The group of the matrices

e g 7
gliv,r s) = 0 e¥ s|, rnseR, 0<y<2m,
0 0 1

is denoted by S3.
The matrices g(a,b,1,d) from S form the three-dimensional Heisenberg
group H, which is of great importance for physics.
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§2. Construction of Representations

2.1. The Nonunitary Spherical Series of Representations. Let G, K, 4, N,
M, P be as in Sect. 1.1. We choose a one-dimensional representation

A(h) =expuv(H), heexpH,
of the subgroup A = expa. Then the correspondence
p = mhn — 6(mhn) = A(k) (16)

defines a one-dimensional representation of the minimal parabolic subgroup
P = MAN. It induces the representation 7, of the group G which acts in the
space of functions f(g} on G satisfying the condition

flgp) = A"'(R)f(g), p=mhneP. (17)
The operators T,,(go), go € G, act on these functions by the formula
T,(90)f(9) = flg5'9)- (18)

The representations 7, belong to the nonunitary spherical series of represen-
tations of the group G. The representations T, are unitary if v + p is pure
imaginary on a. Recall that p is defined by formula (2a).

If functions f on G satisfy the condition (17), then they are determined
by their values on certain subgroups of G. The Iwasawa decomposition G =
K AN shows that they are determined by their values on K and the relation
f(km) = f(k), m € M, is satisfied. The operators T, (g) are given on fk),
k € K, by the formula :

T.(9)f(k) = A(h™") f(kq), (18a)

where h € A and ky € K are defined by the Iwasawa decomposition g~ 'k =
kqhn of the element g~'k. The scalar product

(Fiofo) = \x Fu(K)Falk) dk

is introduced in the space of the functions f. The relation f(km) = flk),
m € M, means that the functions f actually are functions on the quotient
space K /M. Thus, the representations T, are realized in the space of functions
on K/M.

The Gauss decomposition G = NM AN shows that the functions f from
(17) can be defined by their values on the subgroup N. In this case the oper-
ators 1, (g) take the form

T.(9)f(n) = Ah™ ") f(ng), neN, (19)

where h € A and n, € N are determined by the decomposition g7'n =
ngmhn', me M, n' ¢ N,



162 A.U. Klimyk, N.Ya.Vilenkin

To obtain a more general class of representations of G we have to replace
the representations (16) of the subgroup P by the representations

p = mhn — §(mhn) = w(m)A(h), (20)

where w is a unitary irreducible representation of the subgroup M, and to
induce from them to the representations T, of the so-called nonunitary prin-
cipal series.

The restriction 1.,,] x of the representation T, of the group G onto K is
reducible. The multiplicity of an irreducible representation é of the subgroup
K in T,  is equal to the multiplicity of the representation w of the subgroup
M in &) . We conclude from this assertion that in the set {71} the repre-
sentations 7, and only they, are of class 1 with respect to the subgroup K,
that is, they contain with multiplicity one the identity (trivial) representation

of this subgroup.

2.2. Representations of the Group SL(2,R). The subgroup M of SL(2,R)
consists of two elements +e where e is the unit matrix. Therefore, the repre-
sentations (20) of the parabolic subgroup P = M AN of the group SL{2,R)
are given by two numbers x = (7,¢), 7 € C, £ € {0,1/2} (¢ = 1/2 corre-
sponds to the nontrivial representation of M). Let us realize the representa-
tions Ty = T, ) of the nonunitary principal series of SL(2,R) in the space of
functions on the subgroup N, that is, in the space of functions f(z) of a real
variable. From formula (19), for g = ” w € SL(2,R) we have
az + 7y

Ty(9)f(z) = |Bz + 6|*"sign*(Bz + 6)f I

(20a)

If 7 =ip—1/2, p € R, then the representations T, are unitary with respect
to the scalar product of the Hilbert space L%(R). They constitute the unitary
principal séries (see Vilenkin [1965b], Chap. 6, Sect. 2.7).

The group SL(2,R) also has a discrete series of unitary representations.
The negative discrete series representations 7,7, | = —1,-3/2,-2,-5/2, ..,
act in the Hilbert spaces H; of functions which are analytic in the upper
half-plane C, . The scalar product in H) is

1 [
(FiB2) = gy [, PRy e, ()

where w = r+iy and dw div = —2idz dy. The operators T, (g), g = AM _Mv_
are defined by the formula

aw + -y

T (9)F(w) = (Bw + §*F | 22—

(22)

II. Representations of Lie Groups and Special Functions 163

The positive discrete series representations ﬁ+, [ =1,3/2,2,..., are con-
structed in the same way in the Hilbert space of functions which are analytic
in the lower half-plane.

Since SU(1,1) ~ SL(2,R), the nonunitary principal series representations
of the group SU(1, 1) are given by the same pair of numbers x = (7,¢€) asin the
case of the group SL(2,R). Realizing these representations on the subgroup
K = 50(2), we have

ig n
e Oy _ gy il \THE[F—if e BE b
T (%) = e+l v (g ) (@)
a b
irmammumm a € SU(1,1).

2.3. Representations of the Group SOy(n,1). For the group SOp(n,1) we
have a = {t(Enn+1 + Ent1a)l t € R} where E,; is the matrix with entries
(Eyy)rs = 6irbys. Therefore, the characters of the subgroup A = expa and,
consequently, the representations T, of the spherical nonunitary series of the
group SOq(n, 1) are given by one complex number o. For this reason we denote
them by T7,0 € C.

Since for SOy(n, 1) we have K = SO(n) and M = SO(n — 1), the repre-
sentations T are realized in the space L?(S™!) of functions f on the sphere
§n=1 = §0(n)/SO(n—1) of R®. These functions f can be considered as func-
tions of the spherical coordinates 1,¥2,...,%¥n-1 0D S7-1, Using assertions
of Sect.1.3 we find that for the element g/, (t) € A the operator T,(g;,(t)) is of
the form

T (gL () fl1s- -« Pn=
(9n () fle@1,- - pn1) (23
— (cosh 1 — 08— Sinh £)7 f($1, -, Prm2s Py 1)

where .
oS pn—1 cosh t —sinh ¢

4 —
OSPn-1= Coeht — cosp,_1sinh t’
For the elements k € SO(n) we have T,(k)f(€) = f(k™'€), £ € ™71,
The nonunitary principal series representations T, of the group SOg(n, 1)
are given by a complex number o and by an irreducible unitary representation
w of the subgroup M = SO(n —1). -

2.4. Finite-Dimensional Representations. A description of finite-dimensi-
onal irreducible representations of compact groups can be found in the paper
by Kirillov [1988]. For the theory of special functions it is useful to obtain
themn from the representations T, of the nonunitary principal series of the
corresponding noncompact groups. This can be done in the following way.

Let G and G be dual noncompact and compact real semisimple Lie groups,
that is, groups with the same complexification G.. The groups G and G
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have the same finite-dimensional representations which are restrictions to G
and Gj of complex-analytic finite~dimensional representations of the group
G. (Zhelobenko [1970]). Since G = KAK and G, = KALK, A = expa,
Ag = expia, then finite-dimensional representations for G are obtained from
those for G with the help of analytic continuation A — A (in terms of
parameters) of matrix functions T'(g) of finite-dimensional representations T’
of the group G..

Every finite-dimensional irreducible representation T of the group G is
contained as a subrepresentation of some representation T, of the nonunitary
principal series of this group. Moreover, T is of class 1 with respect to K if
and only if 7,4 has this property.

Let H be the subspace of the carrier Hilbert space L of the representation
7., in which the subrepresentation T is realized. Then after analytic contin-
uation A — Ay we obtain the representation 1" of Gy, realized in the space H.
As a rule, this representation of Gy is not unitary with respect to the inner
product of the space L. To unitarize it we have to equip H with a new scalar
product.

2.5. Representations of the Group SU(2). Let the representation (23) of
the group SU(1,1) be such that 7 + ¢ and 7 — € are integers and 7 > 0. The
formula (23) shows that in this case the subspace, spanned by the functions
e n=—1r4+ec+47j,7=0,1,...,27, is invariant, that is, a finite-dimensional
representation of the group SU(1,1) is realized in it. Let us multiply these
functions by e!"~¢) replace e™® by x and r by { (I =0,1/2,1,3/2,...), and
then go over from the representation of SU(1,1) to the corresponding repre-
sentation of the dual group SU(2). As a result, we obtain the representation
T} of the group SU(2), realized in the space H of polynomials of degree less
than or equal to 2! in one variable. It is given by the formula

L) = B+ a)*f (5t). u= (% 2)esve. o

Evaluating the scalar product in H,, for which the operators (24) are uni-
tary (see Vilenkin [1965b], Chap. 3), we find that the functions

lz) = S
Yilr) = EDIETR k=—l,-l+1,...,1 (25)

constitute an orthonormal basis of the space H;. It is called the canonical
basus.

2.6. Representations of the Group 5O(n +1). With the help of more com-
plicated procedures, finite-dimensional representations 7¢, { = 0,1,2,..., of
the group §O(7n + 1) can be constructed by making use of the representations
T of SOy(n,1). The representations 7" of SO(n + 1) act in the spaces §™ of
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homogeneous harmonic polynomials in z,, ..., z, of power < (. Such polyno-
mials are uniquely defined by their values on the sphere 571, As a result, we
obtain from §™ the space D™ of functions f(g,...,¢n_1) on S™ ! where
©1,.--,Pa-1 are spherical coordinates. The operators T'(k), k € SO(n), are
given by the formula T!(k)f(€) = f(k€) and the operators T!(g.(8)) by the
formula

N..;Q:HQ:‘W?BT...,ﬁ:]; nmmw
= (cosf —ising,_1sin ) flgy, . .., @n 0,90 1),

where )
COS iy, _1cosf —isind

’
cosyl | = - —
7 cos8 — icosip,_; sinf

2.7. Representations of Inhomogeneous Groups. With every representation
1, of the group G from Sect. 2.1 we associate a representation @, of the
corresponding inhomogeneous group G,. It acts in the same space of functions
on K, and is defined by the formula

Qulg)f(k) = exp(-wv(h)) f(ky), (27)
where h € a and k, € K are determined from the decomposition
g (k,0) = (kg, 0)(est) (e, ), t e

(see formula (12a)). The representations @, of the group G, corresponding
to the representations T, of G, are analogously constructed.
Let Gy = ISO(2) be the group consisting of the matrices

cosy —sing a
glwia,b) = | smng  cose b |, abeR, 0<¢<2m
0 0 1

It corresponds to the simple Lie group G = S04(2,1) ~ SU(1,1). The repre-
sentations Qg, 0 € C, of IS0(2) act on the space L?{0,27) and are given by
the formula

Qolg)f(¥) = T f(yy — ), g = g(yia,b), (28)
where ¢ = 7cosa and b = rsina.
Let G5 = IS50(n) be the group of the matrices
k a 3 t
,C:nuuwv - 0o 1/ Wm‘woﬁﬁv“ a = ﬁﬁ.f:.__pzv, a; eR.

It corresponds to the simple group G = SOp(n,1). The representations (),
o € C, of the group 150(n) act in the space L?(S™1). If g, = gle,r), where
e is the identity element of SO(n) and r = (0,...,0,7), then
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Qolge)fl1,0 o nm1) = €771 flpr, o n), (29)
The operators Q. (k), k € SO(n), act in L2{S"~!) as left shifts by k=1

2.8. Representations of the Group of Transformations of the Straight Line.

Let G = IR, be the group of the transformations = — g(a,b)z = az + b,
a >0, —oe < b < oo, of the straight line. It is the semidirect product of the
group R, of positive numbers with the group of shifts of the straight line.
Let D be the space of infinitely differentiable finite functions on the half line
0 < z < oo, vanishing in some neighborhood of the point r = 0. We fix the
number A and construct the operators

Ra(g(a,b))p(z) = e plaz), ¢ =g(a,b) € IRy,

in ©. The correspondence g — R, (g) gives a representation of the group IR, .

There is another realization of the representations R which is more con- _
venient in the theory of special functions. To construct it we go over from the
functions p(x) to the functions

E\Evn\ w(z)z¥ tdz. (30)
0
Then
Ry(g)F(w) n\ ncus?&%l_%upé\ e/ ()~ dr.  (31)
¢ 0

If b = 0, then we obtain
Ry(g)F(w) = e F(w). (32)

Consequently, the operators R, (g), corresponding to the one-parameter sub- :
group {g(a,0)}, are diagonal for this realization.

2.9. Representations of the Group I.50(1, 1). Elements of the group /50(1, :
1) are of the form

cosh ¢ sinhyp ay
g =g(p;a,b) = | sinh g coshy as
0 0 1

We fix a complex number R and for every element g € ISO(1,1) construct
the operator

Mdmﬁr@vﬁﬁwv - mmwﬂiﬁH cosh @+agsinh QVQA% _ ﬁv
in the space of infinitely differentiable finite functions on the hyperbola

cosh®*@ — sinh?@ = 1. The correspondence g — Tr(g) is a representation
of the group 150(1,1).
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Let us pass from the functions ¢(8) to their Fourier transforms

F()\) = \ P(8)e*dp. (33)
Since the functions @(8) are finite, then
o(8) = P\i_aﬁ Ye #0q (34)
TN A #

The operators T'r(g) are transfered by the Fourier transform into the operators
Qr(g). For the elements g = 9{¢;0,0) we have

Qr(9)F(A) = e#2F()). (35)

Consequently, if the representations T are realized on the functions F (A),
then the operators corresponding to elements of the one-parameter subgroup
{g(:0,0)} are diagonal.

2.10. Representations of the Groups S and S.. Let D be the space of
infinitely differentiable finite functions on the real line. For every pair y =
(0,w) of complex numbers there is a representation T of the group S; on the
space D given by the formula

Tx(9)f(z) = e’ 9+ f(cx 4 q). (36)

Let us go over to the other realization of this representation. To construct
it we associate with every function f € D the pair Fy(A), F_(A) where

Fc;u\ szﬁv%m\ flz)zi'dz; y=+4,-; ReA>0.
4] -0

(37
Then )
1 ptico .
@ =5 [ Bl tdn y=simz, p>0. @9
(3 T
One can directly verify that for the matrices
1 0 0 1 0 ¢t
er)=[0 e 0], 2z2)={0 1 0
0 0 1 0 0 1
we have
Tle(T)FQA) = e~ NTRQ), Ty (2(6))F(A) = e°*F(N), (39)

where F(A) = (F,(A), F_(\)). Consequently, the operators corresponding to
the one-parameter subgroups £(7) and z(t) are diagonal for this realization.

Some of representations of the group S can be obtained by analytic con-
tinuation from the representations T, of the group ;. These representations
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of S are given by the formula (36) and act on the space T of entire analytic
functions of exponential growth.

The representations T,, a € C, of the group S; act in the space D, of
functions, given on {0, co), and are defined by the formula

T,(g)f(z) = e 45D f(eT ), (40)

where g = g(7.,7,5). If @ # 0, then the representation T, is irreducible. For
pure imaginary o the representation 7, is unitary with respect to the scalar

product
&H

T

C,T%LH\ filz)falz) —

If we put
F(A)

‘\8 fl) e de,
0

then the representation 7}, is transformed into the equivalent representation
Q. For g = g(7,0,0) the operator T(g) is transformed into the operator

Qu(9)F(X) = e F(A) (41)

and for g = g(0,7,5), 7 # 0, Re ar > 0, into the operator

a+1cQ
Qal9)F(A) = \ Ko(A -7, s)F(u)ds, ReA>Rey,  (42)

a-10
where -
Kaolhir,s) = QH \ gr-lemalrz®+s2)gn  Re ) > 0. (43)
2m Jy
The equality
Ta(g)f(z) = e U= T f(e¥2), (2] =1, (44)

defines the representation of the group Sj in the space L2(0,2x), which is
irreducible for e # 0.

The group Sy is a subgroup of S. Therefore, the representations 75, x =
(¢, w), of the group S in the space T give the representations of S4. To obtain
unitary representations of S5 we introduce on the space of entire analytic
functions f(z) on C the scalar product

(f1,f2) = \b

As a result, we receive the Hilbert space ), in which the representations T{, ),
p >0, m e Z, are unitary, where Z is the set of integers (Miller [1968a]).

(z) exp(~|2)dz dy. (45)
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Chapter 2
Matrix Elements of Representations
and Special Functions

§1. Matrix Elements of Group Representations

1.1. Properties of Matrix Elements. Let T* be a representation of a group
G in a Hilbert space H. The scalar-valued function t(g) = (T%(9)y, x) corre-
sponds to the pair of vectors x and y from H. It is called the matriz element of
the representation T7¢. If {e,} is an orthonormal basis of ‘K, then the matrix
element t, (g) is denoted by 5} (g).

The formula T%(g192) = T*(g1)T*(g2) implies the equality

to(9192) = Mr» (91)t%,(g2)- (1)

Let g(u) be a one-parameter subgroup. Setting t5} (g(u)) = t3(u) we obtain
from (1) that

5 (u + v Mﬁ (W)t (v). (2)
Differentiating this relation in v and putting © = 0 we have
Bt = Lt ®
where b7 = Ms. (to(u))l,_o- We analogously derive that
%ﬁ Mv (4)
Thus, the functions t&(u), 1 < ¢ < dim T, with fixed j are solutions of ﬂvm

system of differential equations Bv satisfying the initial condition t{} (0) =
Similarly, the functions ¢&(u), 1 < j < dim T, with fixed 7 are mo_:ﬁ_o:m Om
the system (4) with the :::m_ condition £ (0) = &,;.

Matrix elements of unitary representations satisfy the relation

Yt (a)t5 () = 6., (5)
k

We deduce from this that [t (g)| < 1.

If e, is a basis element of ﬁ:m carrier space of the unitary representation T°*
of G, then the matrix element t&(g) is a positive definite function; that is, for
every finite set of elements g;,...,¢, from G and for every choice of complex
numbers c1, ..., ¢, the relation



