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THE CLIFFORD DEFORMATION OF THE HERMITE
SEMIGROUP

H. DE BIE, B. YRSTED, P. SOMBERG, AND V. SOUCEK

ABSTRACT. This paper is a continuation of the paper [H. De Bie et al.,
Dunkl operators and a family of realizations of osp(1]2), larXiv:0911.4725],
investigating a natural radial deformation of the Fourier transform in
the setting of Clifford analysis. At the same time, it gives extensions

of many results obtained in [S. Ben Said et al., Laguerre semigroup
and Dunkl operators, arXiv:0907.3749]. We establish the analogues

of Bochner’s formula and the Heisenberg uncertainty relation in the
framework of the (holomorphic) Hermite semigroup, and also give a
detailed analytic treatment of the series expansion of the associated
integral transform.

1. INTRODUCTION

It is well-known that the classical Dirac operator and its Fourier symbol
generate via Clifford multiplication a natural Lie superalgebra osp(1|2)
contained in the Clifford-Weyl algebra. More surprisingly, this carries
over to a natural family of deformations of the Dirac operator, see [7].
Moreover, it is possible to define a Fourier transform naturally associated
to the deformed family.

The novelty of the present article is that we let group theory be the
guiding principle in defining operators and transformations, in the next
step followed by a study of explicit (analytic) properties for naturally aris-
ing eigenfunctions and kernel functions. Thus the main aim is to find the
kernel function for the Fourier transform connected with our deforma-
tion, and also to study its associated holomorphic semigroup regarded as
a particular descendant of the Gelfand-Gindikin program analyzing rep-
resentations of reductive Lie groups, see e.g. [22].

Let us now recall the basic setup and results from [7] and also discuss
further aspects of our construction. The deformation family of Dunkl-
Dirac operators

a

(1.1) D=r"3D, +br 2 'z + cr_%_lgE, a,b,ce R
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together with the radial deformation of the coordinate function

forms a realization of osp(1|2) in the Clifford-Weyl algebra. Here D,, =
>t eT; with T; the Dunkl operators, z = Y ;" | ejz; and E = >0 ) 0,
The e; are generators of the Clifford algebra Cl,,. See also the next section
for more details.

We will show in Proposition [B.4] that this realization builds a Howe
dual pair with G. Here the group G is the double cover (contained in the
Pin group) of the finite reflection group G used in the construction of the
Dunkl operators.

The operator of Fourier transform is then defined by
(1.2) JFp = ei%(%Jr‘léLl—;lC))eﬁ(DL(HC)@g)

)

where L = D? — (1 + ¢)?z? is the generalized Hamiltonian and pu the
Dunkl dimension. The main aim of the present paper is to find an integral

expression for this Fourier transform,

Fo(f)y) = - K(z,y) f(@)h(re)dx

with h(r,)dz the measure associated to D and K (x,y) the integral kernel
to be determined. Note that this ties in with recent work on generalized
Fourier transforms in different contexts, e.g. analysis on minimal repre-
sentations of reductive groups (see [19} 20} 2I]) or integral transforms in
Clifford analysis (see [8] [6]).

The deformation of the classical Hamiltonian for the harmonic oscillator
is visualized in the following figure:

Ay — |z]?
Dunkl deformation
A — |z|?
Clifford deformatio a - deformation

D? + (1+ ¢)?|z|® |27 — [z]®

The Dunkl deformation is by now quite standard and described for exam-
ple in [11]. The a-deformation is the subject of the paper [2] and is a scalar
radial deformation of the harmonic oscillator. Our Clifford deformation is
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also a radial deformation but richer in the sense that Clifford algebra- (or
spinor)-valued functions are involved.

In this paper we will thus find a series representation of the kernel func-
tion for our new Fourier transform Fp, and also study the holomorphic
semigroup with generator L. The main results are Theorem [6.1] on the op-
erator properties of the semigroup, Theorem [7.4] on the Fourier transform
intertwining the Dirac operator and the Clifford multiplication, Proposi-
tion on the Bochner identities, and Proposition on the Heisenberg
uncertainty relation. Finally in Theorem [7.10] we give the analogue of
what is sometimes called the “Master formula” in the context of Dunkl
operators (see e.g. [24, Lemma 4.5 (1)] or [4]).

Let us also remark that an algebraic analog of the Dunkl-Dirac op-
erator D for graded affine Hecke algebras is introduced in [I] with the
motivation to prove a version of Vogan’s Conjecture for Dirac cohomol-
ogy. The formulation is based on a uniform geometric parametrization
of spin representations of Weyl groups. This Dirac operator is an alge-
braic variant of our family deformation of the differential Dirac operator
for special values of the deformation parameters. While in [I] the Dunkl-
Dirac operator is fixed by values of the multiplicity function but varies
with the representation of the graded affine Hecke algebra, the family of
Dunkl-Dirac operators investigated in the present article is independent
of the deformation parameter but acting on a fixed representation.

The paper is organized as follows. In section 2 we repeat basic notions
on Clifford algebras and Dunkl operators needed in the rest of the paper.
In section 3 we construct intertwining operators to reduce our radially
deformed Dirac operator to its simplest form. Subsequently, in section
4 we discuss the representation theoretic content of our deformation and
solve the spectral problem of the associated Hamiltonian. In section 5, we
obtain the reproducing kernels for spaces of spherical monogenics, which
allows us to construct the kernel of the holomorphic semigroup in section
6. Section 7 contains the results on the (deformed) Fourier transform.
Further properties are collected in section 8. Finally, we summarize some
results on special functions used in the paper in section 9 and give a list
of notations.

2. PRELIMINARIES

In this section we collect some basic results on Clifford algebras and
Dunkl operators.

2.1. Clifford algebras. Let V be a vector space of dimension m with a
given negative definite quadratic form and let Cl,;, be the corresponding
Clifford algebra. If {e;} is an orthonormal basis of V, then Cl,, is generated
by e;, i = 1,...,m, with the relations

eie; +eej = 0, 7 75 7,

622 = —1.

(2.1)
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The algebra Cl,,, has dimension 2™ as a vector space over R. It can be
decomposed as Cl,, = B ,ClF, with CI%, the space of k-vectors defined
by

CIF = span{e;, ... i1 < ... <i}.
The projection on the space of k-vectors is denoted by [.]x.

The operator ~ is the main anti-involution on the Clifford algebra Cl,,
defined by

ab = ba, g =—¢, (i=1,...,m).
Similarly we have the automorphism € given by
e(ab) = e(a)e(b), ele;) =—e;, (1=1,...,m).

In the sequel, we will always consider functions f taking values in Cl,,,
unless explicitly mentioned. Such functions can be decomposed as

(2.2) f(:E) = fo(l‘) + Z elfl(:n) + Z eiejfij(JE) +...+e1... emflm(:E)
i=1 i<j
with fo, fi, fij, -+, f1..m all real-valued functions.
Several important groups can be embedded in the Clifford algebra. Note
that the space of 1-vectors in Cl,, is canonically isomorphic to V = R™,
Hence we can define

Pin(m) = {s182...sp|n € N, s; € Cl}. such that s? = ~1},

i.e., the Pin group is the group of products of unit vectors in Cl,,. This

group is a double cover of the orthogonal group O(m) with covering map

p: Pin(m) — O(m), which we will describe explicitly in the next section.
Similarly we define

Spin(m) = {s152...s2n|n € N,s; € Cl} such that s? = -1},

i.e., the Spin group is the group of even products of unit vectors in Cl,,.
This group is a double cover of SO(m). For more information about
Clifford algebras and analysis, we refer the reader to [9] [16].

2.2. Dunkl operators. Denote by (.,.) the standard Euclidean scalar
product in R™ and by |z| = (z,z)"/? the associated norm. For a €
R™ — {0}, the reflection r, in the hyperplane orthogonal to « is given by

ro(z) =2 — 2%@, xr € R™.

A root system is a finite subset R C R™ of non-zero vectors such that,
for every a € R, the associated reflection r, preserves R. We will assume
that R is reduced, i.e. RNRa = {*a} for all « € R. Each root system can
be written as a disjoint union R = Ry U (—R), where Ry and —R, are
separated by a hyperplane through the origin. The subgroup G C O(m)
generated by the reflections {r,|a € R} is called the finite reflection group
associated with R. We will also assume that R is normalized such that
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(o, ) = 2 for all & € R. For more information on finite reflection groups
we refer the reader to [18].

If we identify a with a 1-vector in Cl,, (and hence o/+/2 with an element
in Pin(m)), we can rewrite the reflection r,, as

1
ro(x) = Jaze

with z = > e;z;. Generalizing this map gives us the covering map p
from Pin(m) to O(m) as

p(s)(x) = e(s)zs™", s€ Pin(m).

In particular, we obtain a double cover of the reflection group G as G =
p~H(G) (see also the discussion in [I]).

A multiplicity function  on the root system R is a G-invariant function
k: R — C,ie. k(o) = k(ha) for all h € G. We will denote k() by Kq.
For the sake of simplicity we will assume that the multiplicity function is
real and satisfies k > 0.

Fixing a positive subsystem R of the root system R and a multiplicity
function x, we introduce the Dunkl operators T; associated to Ry and k
by (see [10, [13])

1) = 0 f0) + Y rae G e o)
acER ’

An important property of the Dunkl operators is that they commute, i.e.
The Dunkl Laplacian is given by A, = Y"", T?2, or more explicitly by

(Vf(z),0) flz)— f(ra(z))
Apf(x) =Af(z) +2 Ko —
> (Smt - )

with A the classical Laplacian and V the gradient operator. We also
define the constant

1
n = §Ali|$|2 =m+2 Z Ray
acER

called the Dunkl-dimension.

It is possible to construct an intertwining operator Vi connecting the
classical derivatives 0,; with the Dunkl operators T} such that T;V,; =
ViOyz; (see e.g. [12]). Note that explicit formulae for V,; are only known
in a few special cases.

The weight function related to the root system R and the multiplicity
function £ is given by wy(2) = [[,ep, |(cr, z)[?%e. For suitably chosen
functions f and g one then has the following property of integration by
parts (see [11])

(2.3) / (Tf)g wnla)ir =~ [ f (Tig) we(a)dr.

Rm
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The starting point in the subsequent analysis relies on the Dunkl-Dirac

operator, given by
m
D,i = Z ez,Tz
i=1

Together with the vector variable z = Y ;" | e;x; this Dunkl-Dirac operator
generates a copy of osp(1]2), see [23] or the subsequent Theorem In
particular, we have

D2 =—-A, and g2:—]g\2:—r2:—2x?.

3. INTERTWINING OPERATORS

Let P and @@ be two operators defined by
1
_ b ANa 21
Pfa) = r'f ((2) ar >
1
Qfx) = r%f ((%)2@‘3‘1)-

These two operators act as generalized Kelvin transformations. Indeed,
one can easily compute their composition:

2\ 3
QP = PQ - <_> .
a
We will show that these operators allow to reduce the Dirac operator D
to a simpler form.
We have the following proposition, where E = Y™, z;0,, denotes the

Euler operator. Recall also from the introduction that z, = rz g,

Proposition 3.1. One has the following intertwining relations

b—1
(g) P Q(Dy+br 2zt erE) P=7r""Dy + Br e 4 yr 212

b+1
a

=
(5) sz—za
with
8 =2b+ 2c

2
=—(1 — 1.
v=_(1+0)

Proof. In [7, Proposition 3|, we already proved that
1

b—

2 a a 2 a
(g) QD) P=r'""2D+br 27z + <— — 1) rm2 R = g,
a
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Similarly we obtain
b—1

(5) T QG P=rtTe

2
and
a b;zl a 2 a
(5) Q (7‘_2@[3) P=br 271z 4+ <—> r 27 12R.
a
This completes the proof of the proposition. O

So we are reduced to the study of the operator
D =D, +br 2z +cr 2zE
where b,c € R, ¢ # —1. Here, the term br~2z can also be removed.
Indeed, we have
r~ (Dy + br 2z + er ?zE) r* = D, + or 2K

when a = —b/(1 + ¢).
As a result of the previous discussion, we see that it is sufficient to
study the function theory for the operator

D =D, + cr %2R,

where we have put a = 2, b = 0. Furthermore, we will restrict ourselves
to the case ¢ > —1 for reasons that will become clear in Proposition
Similarly, we no longer need to consider z, but can restrict ourselves to
z. Now we repeat the basic facts concerning this operator we need in the
sequel. All the results are taken from [7], putting a = 2, b = 0.

Theorem 3.2. The operators D and x generate a Lie superalgebra, iso-
morphic to osp(1]2), with the following relations

{z,D} = —2(1+¢) (E+3) [E+3,D]=-D
51) (22, D] = 2(1 + )z [E+§z] =z

[D?,z] = —2(1+¢)D [E + 3, D% = —2D?

[D?,2%] =4(1+¢)? (E+3) [E+ 3, 2%] =222,

wher65—1+’f+c

Note that the square of D is a complicated operator, given by

D? = —A,—(cu)r o, — (62 + 2c) 0% + cr 2 Z x;T;

—cr™? Z eiej(xi Ty — x;T;).

1<J
If k = 0, the formula for D? simplifies a bit as now > 2Ty =10, =E.
Remark 3.3. The operator D = D,. + cr—22E is also considered from a

very different perspective in [3] (in the case k = 0), where the eigenfunc-
tions of this operator are studied.
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Let us now discuss the symmetry of the generators of osp(1]2). First
we define the action of the Pin group on C*°(R™) ® Cl,, for s € Pin(m)
as

p(s): C®°(R™) @ Clp, — C®(R™) @ Clyp,
feb— f(p(s™h)z) @ sb.
We then have
Proposition 3.4. Let s € G and define sgn(s) := sgn(p(s)). Then one
has
p(s)z = sgn(s)z p(s)
p(s) D = sgn(s) D p(s).

Proof. This follows immediately from the definition of p and the G-equivariance
of the Dunkl operators. O

So up to sign, the Dirac operator D is a—equivariant. This is the same
symmetry as obtained for the Dirac operator defined in the Hecke algebra
(see [1], Lemma 3.4).

1— 14puc

There is a measure naturally associated with D given by h(r) =~ T+e .
One has

Proposition 3.5. If ¢ > —1, then for suitable differentiable functions f
and g one has

| DA gz = [ 7 (Dg) oo

Rm
1+pc
with h(r) = 7‘1_17#, provided the integrals exist.

In this proposition, ~ is the main anti-involution on the Clifford algebra
Clp,.

4. REPRESENTATION SPACE FOR THE DEFORMATION FAMILY OF THE
DUNKL-DIRAC OPERATOR

The function space we will work with is £2 .(R™) = L*(R"™, h(r)wy(z)dz)®
Cl,,. This space has the following decomposition

L2 (R™) = L2(RY, 7% dr) © L2(S™ Y, we(€)do(€)) ® Cly,

where on the right-hand side the topological completion of the tensor
product is understood and with do (&) the Lebesgue measure on the sphere
S™=1. The space L*(S™ 1, w,(€)do(€)) ® Clyy, can be further decomposed
into Dunkl harmonics and subsequently into Dunkl monogenics. This

leads to
o0

L2(S™ 1wy (€)d0(€)) © Clon = D) (Mo ® 2Mp)]gn
=0



THE CLIFFORD DEFORMATION OF THE HERMITE SEMIGROUP 9

where M, = ker D, N (Py ® Cl,,) is the space of Dunkl monogenics of
degree ¢, with Py the space of homogeneous polynomials of degree ¢ (see
also [5] for more details on Dunkl monogenics).

Using this decomposition, we have obtained in [7] a basis for £2 .(R™).
This basis is given by the set ¢t ¢, (¢, € N and m = 1,...dimM,),
defined as

2 247 & 102\ Bepr(m) —r?)/2
buem = A0+ PULE T (A,
e
boprem = —22H (14 )P FHIL? (r)arP ™ e

with L2 the Laguerre polynomials and

C
___“y
ﬁZ 1—|—C7
2 -2\ c+2
= l
B 1+c<+ 2 >+1+c

and where M ém) (m=1,...dim M) forms an orthonormal basis of My,
ie.

[ Mg(ml)(g)MZ(mz)(g)wﬁ(g)da(é)] = Omyms-
sm—1 0

The dimension of M, is given by
dimgp M, = dimg Cl,,, dimp 'Pg(Rm_l)
om+m—=2)!
B 2l(m — 2)!
with P, (R™~1) the space of homogeneous polynomials of degree £ in m —1
variables (see [9]).
Using formula (4.10) in [7] and the proof of Theorem 3 in [7], one

obtains the following formulas for the action of D and z on the generalized
Laguerre functions

(4.2) 2Dsem = Prv1m + Ot O)bi1,0m,
—2(1+ )zdtem = br41,6m — Ct, 0)dt—1,0m
with
C(2t,0) = 4(1 + ¢)*t,
C(2t+1,0) = 2(1 + ¢)*(ye + 21).
These formulas determine the action of osp(1]2) on Ei,c(Rm)- Recall also

that the action of G on L2 (R™) is given by p (see section 3).
Subsequently, we can define a creation and annihilation operator in this
setting by

A+:D_(1+C)£7

(4.3) AT=D+(1+c)z



10 H. DE BIE, B. ®RSTED, P. SOMBERG, AND V. SOUCEK

satisfying
AV Gy pm = Gta1,6,ms
A" om = C(t, 0)r—1,0,m-
Now we introduce the following inner product

(4.5) (rg) = [ T2 g hr)uwn(x)dz

RrR™ 0

(4.4)

where h(r) is the measure associated to D (see Proposition B.5]) and f€¢
is the complex conjugate of f. It is easy to check that this inner product
satisfies

(Df,9) = (f,Dg)
The related norm is defined by ||f||> = (f, f).

(4.6)

Theorem 4.1. We have

<¢t1741,m1 ) ¢t2 7527m2> = C(tlv €1)5t1t2 541425m1m2

where c(t,?) is a constant depending on t and £.

The functions ¢ ¢, are eigenfunctions of the Hamiltonian of a gener-
alized harmonic oscillator.

Theorem 4.2. The functions ¢y, satisfy the following second-order
PDFE

(D* = (1 +0)*a?) $rm = (1 +¢)* (v + 26) by .-
Proof. This follows immediately from the formula ([4.2)). O

Theorem combined with the definition of AT, A~ in (£3) allows us
to decompose the space L2 .(R™) under the action of osp(1|2). Clearly the
odd elements A* and A~ generate o0sp(1|2) as they are linear combina-
tions of D and z. Moreover, they act between two basis vectors {¢; ¢}
of £2,C(Rm), so it is sufficient to consider vectors in an irreducible rep-
resentation of osp(1]2) inside the functional space. This is achieved as
follows - for fixed ¢ and m each vector ¢q,,, generates the irreducible
representation

AT At At AT AT
(b(],f,m (bl,é,m ¢2,£,m ¢3,Z,m ¢4,£,m to
O O O O U
L L L L L

where )
L= {A", A7} =D — (14

with the action given in Theorem In fact this highest weight repre-
sentation is labeled by ¢ only and we will denote it 7(¢). In conclusion,
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we obtain the decomposition of our functional space £i7c(Rm) into a dis-
crete direct sum of highest weight (infinite dimensional) Harish-Chandra
modules for osp(1]2):
[ee)
Ll (R™) =EPn) @ M.
=0

These results should be compared with Theorem 3.19 and section 3.6
in [2] (where one uses sly instead of osp(1]2)). Also notice that the claim
should be understood as an assertion on the deformation of the Howe dual
pair for osp(1]2) inside the Clifford-Weyl algebra on R™ acting on a fixed
vector space L2 (R™).

In particular, we have the following result. Recall that an operator T is
essentially selfadjoint on a Hilbert space H if T' is a symmetric operator
with a dense domain D(T') C H such that for a complete orthogonal set
{fn}n in H with f,, € D(H), there exist {uy}n solving T f,, = u, f for all
n € N.

Proposition 4.3. Let ¢ > —1 and k > 0. The operator L acting on
.Cic(Rm) is essentially selfadjoint (i.e. symmetric and its closure is a
selfadjoint operator). Moreover, L has no continuous spectrum and its
discrete spectrum is given by

Spec(L) = {2(1 + )l +2(1 + ¢)?t + (1 4+ ¢)(u + ¢)|¢,t € N}.

Using Theorem we can now define the holomorphic semigroup for
the deformed Dirac operator by

7o = (i) aene (D= (1+9%2%),

Here, w takes values in the right half-plane of C. The special boundary
value w = im/2 corresponds to the Fourier transform. In that case, we
will use the notation Fp. The functions ¢; 4 ., are eigenfunctions of F
satisfying

__wlt
(4.7) Fi5(brom) = € “Te” T+ ¢y g m.
Note that in the special case x = 0, ¢ = 0 the operator Fj reduces to the
classical Hermite semigroup (see e.g. [17]).

Remark 4.4. One can also consider more general deformations of the
Dirac operator, by adding suitable odd powers of I' = —xD,, — E to D as
follows

4 g1\ 2!
D= Dn+cr_2§E+chr_1 <F— T) , ¢ €R.
j=0
This does not alter the osp(1|2) relations, as T’ — “T_l anti-commutes with
x and has the correct homogeneity. In particular, T' — “T_l can be seen as
the square root of the Casimir of osp(1]2), see [15], example 2 in section

2.5.
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In the sequel of the paper, we will always assume x = 0 or in other
words, we do not consider the Dunkl deformation. This is to simplify the
notation of the results. Most statements can immediately be generalized
to the Dunkl case by composition with the Dunkl intertwining operator
V., except the results obtained in section Bl

Recall that for k = 0, the Dunkl-Dirac operator D, reduces to the
orthogonal Dirac operator 9y = Y i~ €;0y,.

5. REPRODUCING KERNELS

In this section we determine the reproducing kernels for My and x M.
We start with an auxiliary Lemma, which can be thought of as a Clifford
analogue of the Funk-Hecke transform. We define the wedge product of
two vectors as

TNy = Z ejer(Tjyr — TLYj).
i<k
Lemma 5.1. Put z = rz’ and y = sy’ with 2’,y’ € S™~'. Furthermore,
put A = (m—2)/2 and o,, = 27™/2/T(m/2). Then one has, with M; € M,

A
A "M (2 N _ - Mo(d
Smflck(@,y) o(@)do(z') = omy—— o Me(y),
A
Cr((2,y' )z My(a)do (z') = Oy Ok ey Me(y),
sm-1 +k
k
! / A+1 i / N o !
/Sml(z Ny O (& y')) Me(2)do(z') = Umiz()\_i_k)ék,éMZ(g)y
k+ 2\
/ / A+1 /A / / AN ! /
L@ G (e Ml o) = =g M)

where C}((z',y')) is the k-th Gegenbauer polynomial in the variable (z',y').

Proof. The first integral is trivial: M, is a spherical harmonic of degree
¢ and C({(z,y')) is the reproducing kernel for spherical harmonics of
degree k (see e.g. [I3]). The second integral immediately follows, because
' My(z') € Hogr.

The other two integrals are a bit more complicated. We show how to
obtain the last one. First rewrite (' A y/)z’ = ¢/ — (2/,y/)a’. The first
term then follows from the first integral. For the second term, we use the
recursive property of Gegenbauer polynomials:

+ 2\
5.1 C M1 __ " o VT EA oL,
The result then follows by collecting everything. O

We can use this lemma to determine the reproducing kernels. This is
the subject of the following proposition.
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Proposition 5.2. For k € N* put
Py’ y) = (@', y)) — @ AY)CEH (@, y)),
Qurlay)) = 52 O ) + (& A Y)O ()

with Py(z',y') = CJ(0) = 1. Then

P!,y ) My(2")do (2") = omdr,eMe(y'),

§m—1

/ P(2',y")a' My(2")do(z") = 0
Smfl -

and
Qr—1(z',y' )M (a')do(z') = 0,
sm—1 -
1 Qr—1(z',y )2’ My(2")do (") = ooty Me(y).
Sm—
Proof. This follows immediately from Lemma 5.1 O

Remark 5.3. Note that, as expected, Py(2',y')+Qr—1(2, y') = 2ECH (', y')),
which is the reproducing kernel for the space of spherical harmonics of de-
gree k.

We will also need the following lemma.

Lemma 5.4. The reproducing kernels satisfy the following properties, for
all k)1 € N:

Proof. This follows immediately using Lemma 7.6 and 7.10 from [§]. O

Remark 5.5. Mind the order of the variables in the previous lemma. The
kernels Py(z',y") and Qi(2',y') are not symmetric.

6. THE SERIES REPRESENTATION OF THE HOLOMORPHIC SEMIGROUP

The aim of the present section is to investigate basic properties of the
holomorphic semigroup defined by

1, p-1 —w D2_(1 2.2
Fy = (aratmn) e (PP 00%2) gy

acting on the space ﬁac(Rm). We start with the following general state-
ment.
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Theorem 6.1. Suppose ¢ > —1. Then

(1) For any t,{ € N and m € 1,...,dim My, the function ¢, is an
eigenfunction of the operator Fi:

wl
—wt _— 5
J D((bt,ﬁ,m) =e “e F9 ¢t,€,m

(2) Fy is a continuous operator on E&C(Rm) for all w with Rw > 0,
i particular

FBHOI < [I£I
for all f € LG (R™).
(3) If Rw > 0, then Fy) is a Hilbert-Schmidt operator on £g7c(Rm).
(4) If Rw = 0, then Fy) is a unitary operator on £3’C(Rm).

Proof. (1) is an immediate consequence of Theorem For (2), let f be
an element in £g7c(Rm) and expand it with respect to the (normalized)

basis {¢¢em} as
f= Z L m®t,em-

t,lm
Then one has, using orthogonality,

_2Rw)e
IFB NI =D lagem[e > e 050
t,l,m
S Z ’at,f,m’2
t,l,m
=[£I

because Rw > 0.
As for (3), we have to show that the Hilbert-Schmidt norm is finite. We
compute

175 17s = D I8 (@)l

)
2(Rw)k
J— Z -2 §Rw te_ (1+c)
t,k,l
_2Rw)k
= Z —2R)t o™ (4o dimp My,
t,k

—o(Rwyt, 2Bk (K +m —2)!,
=2 e Sy

=Y e Ze zéf*ﬁfi’”m—;) om

t

Using the ratio test, we see that these series are convergent for w > 0.
(4) follows immediately, because when Rw = 0 the eigenvalues all have
unit norm. 0
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We have already observed that Fpj is a Hilbert-Schmidt operator for
Rw > 0 and a unitary operator for Rw = 0. The Schwartz kernel theorem
implies that F}) can be expressed by a distribution kernel K (z,y;w), so

FHW = [ Ky f@)hra)d

and K (x,y;w)h(ry) is a tempered distribution on R™ x R™.

6.1. The case fw > 0. Using the reproducing kernels of section [B we
can now make a reasonable Ansatz for the kernel of the full holomorphic
semigroup. We want to write this semigroup as

FoeH)w) =on' | K(z,y;w)f(2)h(rs)de

’ Rm

with K(‘Tava) = KO(xava) + Kl(x,y;w) and

+oo .
_cothw .2 .2 k_ ~ 12
Ky=e 2 (ts )Zaszc J%k_l < > Pk(g',g'),

— sinh w
(6.1) J;O ‘
_cothw (.2 4 ¢ k_ ~ 1z

Here we used the notation .J,(z) = (2/2)7"J,(z) and 72 = |z|?, s* = ly|?.
Now we determine the complex constants {ay} and {8} such that this
integral transform coincides with
7 = o (3+alin) sy (D -9
in the basis ¢y ¢m.
We calculate

1 (m) / cothw _2 £ 'L'S _75/2—'—1
— Koz, y;w dr = ayM e 2 gl
ot [ Koo i)namde = 0 ) (5552

400 ;
_ (cothw+1) o 1rs /2_1 2
X re/2e x| — L)t r4)dr
/0 /21 \ ginhw ) (r")

e~ 2wt 2«/@/2—1

o (cothw + 1)7¢/2

¢2t,€,m7

where we used the identity (see [2], Corollary 4.6)

+oo | Qo 2 2
a+1 a2y, —6r? _ (5 - 1)]5 a B _ B2
2/0 rT o (rB) LS (rf)e ™ dr = “SagatiT L 510 e 1.
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Similarly, we find
0’1%1/ Ko(z,y;w)pat+1,6mdr =0
Rm

Ur_rLl Kl (.’L’, Y; w)¢2t,£,mdx =0
R™

. e—2wt2w/2
Om / Ki(z,y;w)doei1,emdr = e
Rm

(cothw + 1)7e/2+1 P2t41,6,m-
Hence we obtain by comparison with (4.7):

__wt_(cothw + 1)7¢/2
= (1+c)
ar=e 27ve/2—1

= 2% (2sinh w)™7¢/2,

ay

be = 2sinhw’
We summarize our results in the following theorem.

Theorem 6.2. Let Rw > 0 and ¢ > —1. Put

_cothw

K(z,y;w) = e 20 (A(z,w) + z AyB(z,w))

with
+o00 ) .
kE+2\ & ~ iz Qp_1 k ke ~ iz R
A = AT kopees
=) k=0 (O‘k 2 J%k_l <sinhw> " Isimhw X~ Jsz ' <Sinhw>> Celw)
+00 ) ‘
LI g 1z a1 kte |~ iz N
B = - Le 1J 1+c J — C
=) k:1< e 3 (sinhw) T osinhe” -t <Sinhw>> oy (w)
for z = |z||y|, w = (x,y)/2, -1 = 0 and

ap = 26%6(2 sinh w) /2,

Then these series are convergent and the integral transform defined on
L3 (R™) by

FoelH)y) = on' | K(z,y;w)f(@)h(rz)de

Rm

1, p—1 —w 2 2,2
L. . stst—) —/—=(D*—(14+c)°z
coincides with the operator Fp) = ew<2 2(1+“)>e2<1+0)2( (+e%?)

basis ¢t ¢.m.-

on the

Proof. We have already shown that the integral transform coincides with
1 p—1 —w D2_ 1 2,.2 .

FB = ew<2+2(1+0>)e2(1+c)2( (1e)%2?) on the basis ¢;¢. So we only have

to show that the series are convergent. We do this for the term

+oo

5 _ .
2(2 sinh w)—%ﬂ%z Tte J%’C—l <L> C’,i‘(w)
k=0

+oo k .
k42X z ~ 1z
. —5/2 1+c = A
(2sinhw) kz—o 2\ (28inhw) J%k_l (Sinhw> Cic(w),
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the other ones are treated in a similar fashion. We obtain

—+o0 k .
kE+ 2\ z THe ~+ % A
Z 2\ (2sinhw) JVTIC_I <sinhw> Cic(w)

B Ja_i |~ roe 1 _
< — ‘Ssinhw‘ k+ 2\ ‘ k2)\ 1
=9 ¢ kz—o( +23) 2sinhw I'(vk/2)
using formula (@.3) and (@.4]). As the term I'(vy,/2) is dominant, the series
clearly converges. O

6.2. The case Rw = 0. In this case, we have the following theorem.

Theorem 6.3. Let ¢ > —1. Then for w = in with n & 77, we put

-cotn

K(z,y;in) = 770+ (A(z,w) + 2 A yB(z, w))

with
—+00
k+2)\ b o~ z ap_q k ktc ~ z A
A _ T J —z2T%¢ Jqp,_ C
o kz()(a’“ s () e () GO0
+oo & z o k+ z
B :E PN e N Rl e T et
(z,w) k_1< X2 - <sinn>+2isinnz Tt sinn -1 ()

for z = |zllyl, w=(z,y)/z, a-1 =0 and
ap = 26?(2isinn)_%/2.

These series are convergent and the unitary integral transform defined in
distributional sense on L§ (R™) by
ForlHy) = o5 A K(z,y;in) f(@)h(ry)dx
. . 1 p—1 —in 2 2.2
coincides with the operator .7-"’[7,7 = em(2+2(1+c>)e2<1+0)2 (D*-(+02?) on the
basis Q¢ ¢.m.-

Proof. This follows by taking the limit w — ¢7n in Theorem O

7. THE SERIES REPRESENTATION OF THE FOURIER TRANSFORM

The Fourier transform is the very special case of the holomorphic semi-
group, evaluated at w = im/2. In this case, the kernel K (z,y) = K (z,y;in/2)
is given by the following theorem.

Theorem 7.1. Put K(z,y) = A(z,w) +z A yB(z,w) with

+o0o
- k4 2\ k
A(z,w) = Zz_¥ <ozk i J%_l(z) - iak—lﬁJ”kal (Z)> Cir(w),

B(z,w) = Z 273 (—akJ%k_l(z) - Z'Oék—lJ”kal(Z» Gt (w)
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_ _imk
and z = |z|ly|, w = (z,y)/2, -1 = 0 and o, = e 20+, These series
are convergent and the integral transform defined in distributional sense
on L3 (R™) by

FoelH)y) =0y A K(z,y)f(x)h(ry)dx

(1 -1 —im 2 _(14c¢)22

coincides with the operator Fp = e'? <2+2€1+C>>e4(1+0>2 (D-(+0?2?)
basis ¢ ¢.m.-

on the

Proof. Using the well-known identity (see [26] exercise 21, p. 371])
+o00 .
/0 rtL I, (rs) L;‘(rz)e_rz/2dr = (—1)130‘L?‘(32)e_32/2
we can prove in the same way as leading to Theorem that the integral

transform F . coincides with

Fpy = &3 (i) gaiine (PP=(1+07a?)

on the basis ¢; . The theorem also follows as a special case of Theorem
[6.2] taking the limit w — im/2. O

Remark 7.2. One can also define an analogue of the Schwartz space of
rapidly decreasing functions in this context. Let L = D? — (14 ¢)%2? and
denote by D(L) the domain of L in E&C(Rm). Then the Schwartz space is
defined by

Soo(R™) = (| D(LF)
k=0

and one can check that the Fourier transform Fo. is an isomorphism of
this space.

Remark 7.3. In the limit case ¢ = 0, we can check that the kernel reduces
to

X kA4 A
K(z,y) = Z T(—i)kz_)‘JkJr)\(z)C’,i‘(w).
k=0
This is a well-known expansion of the classical Fourier kernel (see [28],

Section 11.5]): K(z,y) = e"1@¥)/ (r(m/2)2’"7*2).

We can now summarize the main properties of the deformed Fourier
transform in the following theorem.

Theorem 7.4. The operator Fo . defines a unitary operator on /Jac(]Rm)
and satisfies the following intertwining relations on a dense subset:

FocoD=1i(1+c)xoFoy,
7

]'—O,COEZ 1——|—cDO]:0’C’

fO’COE:_(E—i_(S)O‘FO,C'



THE CLIFFORD DEFORMATION OF THE HERMITE SEMIGROUP 19

Moreover, Fo . is of finite order if and only if 1 + c is rational.

Proof. Every f in ﬁac(Rm) can be expanded in terms of the orthogonal
basis ¢ ¢ m, satisfying

<¢t1,€1,m1 ) ¢t2 ,52,m2> = 5t1t2 65152577117712 <¢t1 L1,m1s ¢t1 L1,my >7

see section 3. Note that the normalization can be computed explicitly (see
[7], Theorem 6). As the eigenvalues of F . are given by (see (4.7))

(—i)te "ai4a
which clearly live on the unit circle, we conclude that

<f7 g> = <f0,c(f)7f0,c(g)>

and that Fq . is a unitary operator.

The intertwining relations are an immediate consequence of formula
@2)) combined with the fact that ¢, is an eigenbasis of Fy.. The
formula for E follows from the anti-commutator (see Theorem [3.2])

{D,2} =-2(1+¢) <E+ g) :

The statement on the finite order of the Fourier transform is an im-
mediate consequence of the explicit expression for the eigenvalues of the
transform. O

Now we collect some properties of the kernel K (x,y).
Proposition 7.5. One has, with z,y € R™
K(\z,y) = K(z,\y), A>0
K(y,z) = K(z,y),
1
K(0,y) = Wa
K (Sxs,sys,) =35K(x,y)s, s € Spin(m).
where * is the anti-involution on the Clifford algebra Cl,,.
Proof. The first property is trivial. The second follows because
ZAY=—zNY=yAz

The third property follows from Theorem [7.Il Finally, the 4th equation
follows because z and w are spin-invariant and

(szs) A (Sys) =5 (z A y) s.
(]

We can also obtain Bochner identities for the deformed Fourier trans-
form. They are given in the following proposition.
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Proposition 7.6. Let M, € My be a spherical monogenic of degree £. Let
f(x) = f(r) be a radial function. Then the Fourier transform of f(r)M,
and f(r)xMy can be computed as follows:

i “+00 B
Foelf(r)Me) = ¢ T My(y) / P ()e Ty (hG)r,
- Jo

+oo 5-2

imh
Fo(f(r)aMy) = —ie_2(1+6>g/Mg(g/)/ r“lf(r)z_ 2 J~
0

(2)h(r)r™tdr

w2

with y = sy', y' € S™=1 and z = rs. h(r) is the measure associated with
D.

Proof. This follows immediately from Theorem [[.1] combined with Propo-
sition O

Remark 7.7. As a special case of this proposition, we reobtain the eigen-
functions of the Fourier transform by putting f(r) = L%_l(ﬂ)rﬁ‘fe_’"zﬂ,
resp. f(r) = Lt%z (r2)rPre="*/2 (see equation 7).

Now we prove the following lemma.

Lemma 7.8. For dll f € E&C(Rm) one has
lz f(@)I1” + ||z (Foef) (@)|* = 8| f ()]

The equality holds if and only if f is a multiple of e /2,

Proof. Using formula ([4.6]) and the unitarity of Fy ., one can compute that
1
|z f ()| + ||z (Foef) (@)]]* = m< (D? - (1+0)°2°) f, f)-
Now use the fact that the smallest eigenvalue of
o
(14 ¢)?
is given by 9§, see Theorem This proves the inequality.

The equality holds when f is a multiple of an eigenfunction correspond-
ing to the smallest eigenvalue, i.e. when f is a multiple of e~ /2, O

D2 _ (1 + C)2£2)

This lemma allows us to obtain the Heisenberg inequality for the de-
formed Fourier transform

Proposition 7.9. For all f € ﬁac(}Rm), the deformed Fourier transform
satisfies

)
llz f(2)|].[lz (Fo,cf) (@)[| = §||f(<17)||2-
The equality holds if and only if f is of the form f(x) = de~r /e,

Proof. Using Lemmal[7.8 we can continue in the same way as in the proof
of Theorem 5.28 in [2]. O
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Now we can obtain the Master formula for the kernel of the Fourier
transform. We use the formula (see [14], p. 50])
(7.1)

+oo . ) )
| et e i = 32
0

a2+b2 ab

442 IV(Q—’Y2)7 Rv > —1,%’}’2 >0

where I,,(z) = e7"2"J, (iz).
We then obtain

Theorem 7.10 (Master formula). Let s > 0. Then one has

_ \£\2+\§\2 1—cosh w
2 sinh w

K(y,x; ig)K(z, Y; —ig)e_srih(ry)dy = ame_%aK(z, Tyw)e
Rm

with 2s = sinh w.

Proof. First observe that K(y,z;i5) = K(y,r) and that K(z,y; —i5) is
the complex conjugate of K(z,y;i%).

We rewrite the kernel K obtained in Theorem [Z1] in terms of the re-
producing kernels P and Qg, i.e. as K(z,y) = Ko(x,y) + Ki(x,y) with

6—2

—+00
Ko= o (lzlly) ™ 7 Ty (lzlly) Pele’ ).
k=0

(7.2)
S -2 o
K=Y B (lellyl) ™ T (lellyh @il y)-
k=0
itk
where o, = e 20%9 and B, = —iay.

When passing to spherical co-ordinates, the integral simplifies, using
Lemma 5.4 to

“+00

“+oo

S—

om > (zllz) ™ B, 2) / re=" oy (rl]) Ty (r]2])dr
k=0 0

> 5—2 +oo 2
tom 3 (alle)™ % Qua) [ e oy rlal) T (el
=0 0 2 2
The radial integral can be computed explicitly using (7). Comparing
with formula (6.1]) and Theorem [6.2]leads to the statement of the theorem.
O

Remark 7.11. For the Dunkl transform (see e.g. [25, 27]) and for the
Clifford-Fourier transform (see [8]) one can compute even a more general
integral of the form

s s
R K(y7 € ZE)K(Z7 Y; _ZE)f(Ty)h(ry)dy
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with f(ry) an arbitrary radial function of suitable decay. This is done by

using the addition formula for the Bessel function

w M (u) = 220(A) D (k + A (|z]1z) M ea(rlz) Jesa (rl2)) CR (2, 2))
k=0

withu = r\/|z|? + |22 — 2(x, z) instead of formula (71]). Here, we cannot

do that, as the orders of the Bessel functions do not match the order of
the Gegenbauer polynomials.

Remark 7.12. Theorem[7.10 is the starting point for the study of a gen-
eralized heat equation, see e.g. [24, Lemma 4.5 (1)] in the context of Dunkl
operators.

8. FURTHER RESULTS FOR THE KERNEL

In this section we will always be working in the non-Dunkl case, i.e. we
put the multiplicity function x = 0.

Theorem [ZTlimplies that the kernel of our deformed Fourier transform
is a function of the type

K(z,y) = f(z,w) + z Nyg(z,w)

with f, g scalar functions of the variables z = |z||y| and w = (z,y)/z. On
the other hand, this kernel needs to satisfy the system of PDEs

DyK(.’L', y) = _Z(l + C)K(‘rv y)g,
(K(2,y)Dg) = —i(1 + c)yK(z,y),

as can be deduced from Theorem [7.4l In order to rewrite this system in
terms of the variables z,w, we first observe that

agf(% w) = 7‘_2£Z8zf(z7 w) + (Z_lg - 7‘_2£w) 8wf(z7 ’lU),
Ef(z7w) = z@zf(z,w),
Oz (g/\g) = (1 -m)y.

Using these identities, one obtains that the kernel is determined by the
following 2 PDEs:

(8.1)
1
(m — 1+c)g+(1+c)zazg+;8wf+i(1+c)f—z'(1+c)zwg =0,
(14 0)20:f —wd f — czwg — (1+ €)2*wdeg + 2(w” — 1)0ug +i(1+ )29 = 0.

Remark 8.1. Note that, contrary to the case of the classical Fourier
transform and the Dunkl transform, where the kernel is uniquely deter-
mined by the system of PDEs

z},mK($7y) :Zy]K($7y)7 ]:1,,771,

this is not the case for the kernel of the radially deformed Fourier trans-
form. In fact, one can observe that there exist several different types of
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solutions of (81)). This is discussed in detail in [6] for a similar system of
PDEFs in the context of the so-called Clifford-Fourier transform (see [§]).

Now we show that it is sufficient to solve this system in dimension m = 2
and m = 3. Recall that the kernel K(x,y) is given in Theorem [T.Il To
know this kernel, it is hence sufficient to know the series

+00 too

A=Y ok + )y (W), Dy =Y ek Su ()CRw)
k=0 k=0 ’

By = Zak” VO (w), E\ = Zakm 2)OntH(w),
+oo +oo

Cx =) on1(k+ M) Jus (2)CR(w), Fa=)  ax-1Ju (2)CpH (w),
k=0 k=1

because then one has

1 1 -
K= ﬁz__ (Ax —iC) + 52 =2 (By +iDy) — 2 Tz Ay (Bx +iF)).
Using the well-known property of the Gegenbauer polynomials 2)\C,i‘f11 (w) =

dwCi(w), we observe the following recursion relations

o] o 1
A)\-i-l = 622(1+C) ﬁawA)\, D)\_|_1 =e€ '2(1+¢) —)\&UDA,
o]
Byy1 = €20+ —9,B E\ a B
A1 =€ o) A 2)\ A
P S |
Cypq =e 20+ —9, C Fy = —0uD..
Af1 =€ o JwOxs \ 2)\510 A

We conclude that it suffices to know Ay, By, C) and Dy for A =0,1/2 or
m = 2,3. At this point, the problem of finding explicit expressions for
these functions for special values of the deformation parameter c¢ is still
open.

9. APPENDIX

9.1. Properties of Laguerre and Gegenbauer polynomials. The
generalized Laguerre polynomials L,(Ca) for k € N are defined as

k
@ P(k+a+1) '
(9.1) Ly () = ;j!(k—j)!r(ﬂaﬂ)(_t)y

and satisfy the orthogonality relation (when a > —1)

/ 1L\ (1) L) (£) exp(—t)dt = Sy Lk+a+l) +]; +b
0 .
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The Gegenbauer polynomials C,ga) (t) are a special case of the Jacobi
polynomials. For k € N and « > —1/2 they are defined as

[k/2] .
PR S

J=0

(2)F%

and satisfy the orthogonality relation

7217297 (k + 2a)
Kl(k + a)(T(a))?

1
/ Ol (1) () (1 — 2)0 Sdt = 5y
-1
One can prove that there exists a constant B(«) such that

(9.3) sup

—-1<t<1 | &

lc,g") (t)‘ < B(a)k* !, VkeN,

see [2, Lemma 4.9].
The Bessel function J,(z) is defined using the following Taylor series

B s (—1)* 2\ 2k+v
WO =Y ity a)

For z € C and v > —1/2 one has the inequality (see e.g. [20])

(9.4)

9.2. List of notations. List of notations used in this paper:

dimension of R™,

multiplicity function on root system,
Dunkl-dimension,

deformation parameter of D,

semigroup parameter, with fw > 0,
ordinary Dirac operator,

Dunkl Dirac operator,

radially deformed Dirac operator,
exponential form of the holomorphic semigroup,
integral form of the holomorphic semigroup,
exponential form of the Fourier transform,
integral form of the Fourier transform.

OD&E T 73

N
£ U geoe
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We also have the following definitions:

w=m-+2 Z Kas

QER+
m— 2
A= ——
2 )
Om = 272 )T (m/2),
-1
s=1+2""
1+e¢
C
=— ¢, ¢eN
pe 1+c’
2 p—2\  c+2
— ¢ (eN
e 1+c<+ 2 >+1+c’ ©

Notations for variables:
Let z and y be vector variables in R™. Then we denote

z = |z|yl,
w=(z,y)/z.

When using spherical co-ordinates, we use z = ra’ with 2’ € S, hereby
implicitly identifying a vector in the Clifford algebra with a vector in R™.
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