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1. INTRODUCTION

The purpose of the paper is to present a reasonably general Cauchy
integral formula in hypercomplex analysis. There is a lot of different
generalizations of Cauchy-Riemann equations for holomorphic
functions and there is a lot of corresponding integral formulas. The
version presented here generalizes many of them.

The generalization goes in two directions. First, Cauchy integral
formula is presented in homological form. Second, the presented version
of the formula treat many different cases in an unified manner.

The homological formulation of the Cauchy integral formula is much
more important in higher dimensions than in complex analysis. Such a
formulation is achieved here by a suitable definition of index of a point
with respect to a cycle. In the real case (cycles in R, + ) the notion of the
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54 J. BURES AND V. SOUCEK

index for n-cycles in [8] and the index (or winding num. ) for general
cycles in &, ,, was defined using Clifford-valued differential forms in
[18]. The notion of the index in the complex case was studied in [3] in
dimension 4. These results are generalized here (in complex case) to any
even dimension (see Section 3).

Integral formula described here generalizes integral formulas in
complex Clifford analysis ([2], [17]) for regular functions in the sense of
Fueter of a complex quaternionic variable ([20]), for solutions of
complex Laplace equation ([4],[17]), for massless fields ofarbitrary spin
([19], [20]). for quaternionic formulation of classical electrodynamics
([10]) and for k-monogenic functions ([s)h.

After the description of the form of considered differential operators
(Section 2), the notion of index is defined and its basic properties are
proved (Section 3).

The Cauchy integral formula for the first order operators 1s described
in Section 4, while the corresponding formula for higher order operators
is proved in Section S.

Finally, the application of theorems of Sections 4,5 on many examples
1s discussed in Section 6.

2. HYPERCOMPLEX DIFFERENTIAL OPERATORS

To fix the notation, let us agree that we shall denote by €, the Clifford
algebra of the Euclidean space R, with negative definite form on it. If

€y, ...,e,1s an orthonormal basis in R, then the algebra %, is generated
bye,,..., e, and we have the usual relations el = —e,, ee; +eje; =0,
i,j=1,...,n, where e, is the identity in %,

We shall consider mainly the complexified Clifford algebra ¢f which
is defined to be the tensor product €% := ¢, ® C and we shall imbed C,
into ¥f in the standard way. Moreover, we shall denote by C.+, the

subspace of %f, generated by €05 -1y €p.
The set
lea=e ... | A=(i,...,0)1 <ip<---<i, <n}

is the basis of %t (as a vector space). The conjugationin C,, , is given by

Q" = (%: Qiei) = Qo€ — i Qe



HYPERCOMPLEX ANALYSIS 55

the norm by
101 =3 0}
o B
The basic differential operators in Clifford analysis (see [2]) are
=0 é G
o 0=2e—— and @&t =e¢;-— — €5~
' %: 00, ' ° 40, Ax‘: [0}

Let us denote further the complex light cone by
CNp = {QEC,,+I o — PJZ = O}-

The ring of holomorphic functions on Q C,.+; with values in a
complex vector space V will be denoted by ¢(Q, V).

Let us agree that allmaps f: Q — V will be automatically supposed to
be holomorphic. Let us denote .#( V1, V2) the space of all (complex) linear
maps from a vector space ¥, to a vector space V,.

For further use we shall pick up the special ¢r-valued differential
formson C, .

DQ =3} (-1)e,d); D*Q=e,d0,+ Y (=1)"te;dQ,
[0} 1
and
Q=dQ, An---AdQ,
where

in=onA"'Ain—x ANdQivy A--- A dQ,

Because of noncommutativity, we have to write sometimes differential
operators on the right-hand side (e.g. f7), hence we would like to state
explicitly that “the differential operators are always acting in both
directions”.

Let us now define two types of differential operators, which will be
studied in the paper.

Definition 1 Let V;, ¥V, be two complex vector spaces, let us consider
a linear mapping ¢: C,,, — Z(V,, V), let Q<= C, ., be a domain.
We shall define an operator .

Zy: (V) — ((Q, V)
by
af

Zo (/) =%:¢(ei)a—Qj, Set@ 1.
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Definition 2 Let V be a complex vector space and le.
¢;: Cpiy2— End(V)

be a linear mapping. Then the operator &,
composition Z, ¢---° 4, .

..... o, is defined to be the

Remark It would be possible to consider vector spaces V},..., ¥, in
the Definition 2 as well, but there is no reasonable example motivating
such generalization.

The basic motivation for these two definitions are the following
examples.

Example 1 (Spinor fields) The spaces ¥, and V, will be the basic
spinor representations in this example. These representation spaces are
usually realized as subspaces of 65 (we shall always suppose it). To
describe them in more detail, we shall discuss odd and even dimensional
cases separately.

(a) Consider n = 2k, then any minimal left ideal V' in %° is an
irreducible ¥f-module. Because €¢ is isomorphic with the matrix
algebra C(2%), we can take in this realization any column in C(2*) for ¥,
for example. Now, if (65, ,), denotes the even part of €¢, ,, we have the
inclusion Spin(n + 1) = (¥5,,), and the isomorphism (%%, ,), =~ ¢
and V' is the basic Spin(n + 1) representation (see [9], p. 185). Moreover
itis clear from the definition of ¥ that the subspace ¥ < €t is preserved
under the left multiplication by elements of €°.

(b) Let n = 2k — 1. The algebra %S, , has the natural Z,-gradation
i = (€5, ), @ (6L,,)- (the decomposition into the even and odd
part). Consider any minimal Z,-graded left ideal in 67, , (i.e. we suppose
that V=V, ®@V_, where V., =V~ (€, )., V.-=Vn(E.,)-)
Because Spin(n + 1) = (67, ). itisclear that V, and V_ are Spin(n + 1)-
modules and that the multiplication by the generatorse,, . . ., e, of €<, ,
maps V, into V_ and vice versa. We have V =V, @ V_and V, are the
basic spinor representations of Spin(n + 1).

Nowletusdenote V, = V,,V, =V_forn=2k—-land V=V, =V
for n=2k. In the case n =2k — 1 the map ¢ is defined using the
multiplication by e;€ €, ,,i =0, ..., nfrom the left. In the case n = 2k
we shall define ¢ using the left multiplication by e,,...,e,e 4 and
¢ley) = identity. Then &, is the (complex) Dirac operator.
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Using conjugation and the right multiplication we can define another
three similar versions of the Dirac operator.

Example 2 (Regular functions in Clifford analysis) Suppose that
V, =V, =%¢, then we can define the mapping ¢ by the left multiplica-
tion, i.e. ¢le;)(a)=¢e;-a, i=0,...,n, ae 6. Then the operator &,
coincide with the operator used in complex Clifford analysis ([4], [17]).
There are again three other versions (using conjugation and right
multiplication) of such operator. Note that the corresponding equation
is reducible, i.e. in a suitable coordinates can be split into several
independent pieces, each of which being isomorphic to the equation
described in Example 1.

Example 3 (Massless fields with spin m/2) The dimension n =3 is
the special case, where the connection with mathematical physics is very
strong. For n =3 the space C, can be identified with the complex
Minkowski space CM, the equation from Example 1 coincides (for
n = 3) with the Weyl equation for massless fields of spin 1. In the spinor
notation ([ 14]), the operator from Example 1 can be identified with the
operator V,, ¢, studied in ([1]).

To include the massless field equation for arbitrary spin, we have to
take ¥V, =S"V,, V,=V_ ® S" 'V, (S™ denoting symmetric tensor
product) and to define the map ¢ by

Pe)v, O Ory)=er, ®,0---Ot,, i=0...,n

(see [7]). The corresponding operator looks in spinor language like
V@' F (¢*f has m indices).

Example 4 (Complex Fueter equation) The algebra €5 being
isomorphic with the algebra CH @ CH (CH denoting the space of
complex quaternions), we can consider the space CH imbedded in €5
(e.g. identifying it with the first factor). Then it is possible to take V| =
V, = CH and to define the map ¢ by the left multiplication. The
corresponding equation &, f = 0 is just complexified Fueter equation
studied in ([20], [ 11]). At the same time it is the equation used by Imaeda
in the description of classical electrodynamics by means of complex
quaternions ([ 10]). The equation can be identified then with Maxwell
equations (on complex Minkowski space).
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Example 5 (Complex Laplace equation) Letust: ¥, =V, = %<
and let us define operators D1, @2 by (e;)(a) = e;-a, ¢, (e;)(a) = e’ -a,
ae%t,i=0,... n .

Then the operator “,,.0, €an be restricted to complex-valued
functions (identifying: C with the subspace of 4F, generated by e,) and
coincide then with the complex Laplace operator on Covy (see [4]). It
means simply that

é n ¢ é n é
A=0"0=(eg— Vo ., € )
¢ (‘"’ 50, " 2¢ a@)(‘"’ ag, T L aQi)

Example 6 (k-monogenic functions) Take ¢ as in Example 2, ie.
“,=0,V, =V, = %¢. Then the Operator &, & s the complexifica-

k-times

tion of the operator, defining (left) k-monogenic functions (see [5]).

Example 7 Al operators, described in previous examples, can be
restricted to real subspaces of C,+, and their values can be (possibly)
restricted to real subspaces of V- Under such restriction we shall obtain
further interesting examples.

(2) The mappings in Example 2 can be restricted to R,., =C,,,and
their values can be considered to be in %, = €°. The corresponding
equation coincides with the equation for regular functions in Clifford
analysis. The comprehensive study of regular functions were published
in ([2]). ,
~ (b) In the case n=3 we can restrict spinor fields, described in
Example 3 to Minkowski subspace M < CM. Then the corresponding
equation is (really physical) Weyl equation (the case of spin %) (see [21]),
other equations are massless field equations on Minkowski space (they
include Maxwell equation for spin 1 and linearized gravitation for spin 2)
(see [1]).

(c) Identifying CH with C.4 (see [20]), we can restrict maps from
Example 4 to the real subspaces H — CH and to take ¥, = H = CM.
Then the operator %, from Example 4 is just the Fueter operator (6.

(d) The restriction of maps from Example 6 to R,+, =C,,, with
values in €, < €, we shall obtain k-monogenic functions from [5].
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3. THE INLcX

We have to restrict ourselves to the case nodd, n = 2k — 1. The standard
kernel, used in hypercomplex analysis looks like
128 |
01>
The integration in the Cauchy formula has to be done with respect to n-
cycle T, which has the empty intersection with CN.

To have a reasonable generalization of the index, we have first to study
the group H,(C,,\CN, Z).

and its singularity setis CN,={Q¢e C,.,!|0}? = 0;.

THEOREM 1 Let n be any positive integer. T hen
Hn(Cn-l'l\CNPs Z) ~7Z

and the sphere S,={P+Q|QeR,,, =C,,\, Y507 =1} is the
generator of this group.

Proof Suppose that P = 0.
Clearly S, = C,,,'\CN,. It is sufficient to prove that the inclusion
1:S,— C,.,\CN, induces the isomorphism

1,: H,(S,, Z) — H,(C,,,\CN,, Z).

Let us define further S,,., ={0 =x+iyeC,.,|Yox?+Y5y7 =1}
and denote

E=S,,,, 0 (C,.;\CNy).
The principal tool for the proof is the fibration
p:E— S,
2o 0F
125 Ol
where 3% Q2| means the absolute value of } 5 Q7 € C.
Denote F, = p~ (1), then

QeEw—
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So we have the chain of inclusions
Sp,cFocEc C.+1'CN,

and it is sufficient to prove that each of these inclusions induces the
1somorphism of the corresponding n-dimensional group of homology.

(1) The set E is the deformational retract of C.i1'CNy(eg using the
projection along rays from the originonto S,,, ,). The standard theorem
in algebraic topology gives us that 1, is the 1somorphism.

(2) The Wang sequence ([13], Lemma 8.4) gives us the exact sequence

T '_’Hn(FO’ Z)_’Hn(Foa Z)—“'Hn(Ea Z)—’Hn—l(Fo’ Z)_-’ )

Theorem 9.1 and Lemma 8.1 from [13] tells us that w = 0, moreover,
Theorem 6.3 ([13]) asserts that H, _ 1(Fo, Z) = 0. 1t follows that
l*: Hn(FO’ Z)_—) Hn(E’ Z)

is the isomorphism.

(3) Theset S, is the deformational retract of F o- The deformation can
be described explicitly:

Take t € (0,1), denote a = V2o xi, B= /3% 3% Then

F0={Q=x+iyecn+l

inyiz O,a"' -BZ > O,az +BZ = 1}
0
Let us define the map 6,: F, — F,,, te{0,1) by

0.(Q) = [sxo + ity, ..., sx, + ity,]

T
s=s(t) = \/Lii

x

where

Itis easy to verify that 6, is the needed deformation. Hence 1, 1s again the
isomorphism. .

Let us discuss again only the case n = 2k — 1.

We shall give a definition of the index of a point P with respect to a n-
dimensional cycle I in a similar way as it is done in complex analysis.

Definition 3 Let T be a n-dimensional cycleinC,, \CN,, PeC,, ,.
Then we shall define the index of P with respect to I" by
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_1{@-pr
IndrP—w—"J.rWDQ

where w, is the area of the unit sphere in R, ,.

Example Take S, = C,, ,\CN,. Then Indg 0 = 1. This fact can be
either verified by the direct computation in spherical coordinates, or
deduced from the Cauchy integral formula for regular function in
Clifford analysis ([2], take f = 1).

THEOREM 2 Let I be a n-dimensional cycleinC, . \\CN,. Let us denote
Q= Cn-!-]\UPel'CNP- Then

(1) Indr Pe Z for all PeQ.
(2) The function Ind; P (T Jfixed) is locally constant on Q.

Proof The sphere S, is the generator of H,(C,, \CN,, Z). Hence
there exists a positive integer m such that ™ ~ m - S,. The form under the
integral sign is closed (for details see next paragraph), hence Ind; P =
Ind,.s P=m.

The function Ind; P is continuous and integer-valued, hence locally
constant.

Remark  The information gained by Theorems 1 and 2 can be used
also in another way. Suppose that it can be computed that Ind; 0 = |,
then I' ~ S, in C,, \CN,. This fact car be used, for example, for the
simpler proof of the fact that the two contours of integration, considered
in [4, §3], are homological one to another.

4. CAUCHY INTEGRAL FORMULA FOR ,,

The equation described in Definition 1 can be written without any
further assumption, but in order to have a Cauchy type integral formula
for corresponding solutions, some further conditions have to be imposed
on the map ¢. Let us try to find a reasonable set of such assumptions.
Let us write (to have a model) the Cauchy integral formula from
complex Clifford analysis:
If f: C, 4+, — % satisfies the equation df = 0, then

w,

_1( ©@-p
f(P)= J;‘ 10 — P1n+1 DQf(Q)
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First problem to be solved on the way to a generali._.ion of the
formula for &, can be immediately seen. Substituting ¢(e;) instead of e,
into DQ, the result of the action of ¢(e;) on f(Q) e V, belongs to V. But
there is no chance now to do the same for (Q — P), because ¢(e;) are not
defined on V,. Moreover, the result of such action has to bein V|, because

it is the only chance how to recover—after the integration being done—
the value f(P)eV,.

This suggests the following possibility.

Let us suppose that there exists a linear mapping @: Covy—
#(Vy, V), hence together we have a map ¢: V, @ V,— V, @ V,
given by

95([”1’ vy]) = [4;(”2), ¢(v,)].

The standard proof of the formula (1) is based on the following facts:

(1) The form I(Q%% DQf(Q) is closed.

: - P)”
(2) The integral I-éQTI")“ DQ has to be invertible.
Se -

Let us try to ensure the similar conditions for @, too.

First, a few words have to be added about the notation. Let ¢ be the
map from C,, , into £(V}, V,). The symbol ¢ (Q*/|0|"**) will be used
for the expression, where e, were substituted by ¢(e;). The result is clearly
the mapping from Vj into ¥,, depending on Q. And by ¢(DQ) we shall
denote the #(V,, V,)-valued differential form, which will be obtained
when e; are substituted by ¢(e;). Hence if SfisamapfromC,,, to V,,
¢:Cosi > LV, V3), 6:C,oy — L(Vy, V,), then the expression like

((Q—P)" .
¢(W)¢(DQV Q)

has a good sense and the result is a V,-valued differential form.
Now, the short computation gives us the result:

o @—P)" \ .
d [45 (W>¢(DQU © )J

2 _ 2 _ _
= {'Q' ,,Q(,'Jf; ”Q°]¢(eo)¢(eo)(f)
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B i [IQI2 — n+ 1)Q?
1 lo|"*?

+ 3220 Gleplen) + len)den] ()

]5(e.~)¢7<e.~) (f)

- Z — ("‘&n??'g" [Pledle;) + ble;)ble)] (f).

Hence the reasonable sufficient condition for (1) being satisfied can be
written as:

() ¢le)dle) = —Pleo)ple,) forall i=1,....n
(i) Ple))ples) = Ples)dle;) forall i=1,...,n
(iii) le)Ple;) + Ple;)ple;) = 0.

Now, the integral |- (Q — P)*/|Q — P|"*' DQ can be computed
componentwise and the integral of the components at ¢, ¢, and ¢, ¢,
have to vanish (because the index is an integer).

The same computation shows that, under the assumptions (i}1ii), we
have

_ —P) N\ _ o
Jr ¢(IéQTHT)+_I)¢(DQ) = Indr P-¢(eo)d(e,)

hence we have to suppose that $(e0)d;(eo) 1s the isomorphism. For
simplicity we shall suppose that

(iv) @leo)dle,) is the identity.

Only elements of the order 0 and 2 of the algebra 6 were involved in
the discussion, hence the subspaces ¥}, V, are invariant subspaces with
respect to them and we can consider a weaker condition, namely that the
relations (i), . . ., (iv) are satisfied only on V1, for example. This will be just
the case in the example of massless fields of higher spin.

Before stating the Cauchy integral formula, there is one more thing to
be discussed. In complex analysis it is sufficient to suppose in the Cauchy
integral formula in homological form that the domain Q is arbitrary and
that the contour of integration I' is homologically trivial. The same is
true for the Cauchy integral formula in (real) Clifford analysis. The
reason for it is that the contour I (being homologically trivial in Q) is
homological (in Q\{ P}) to a small sphere S, around P and it is sufficient
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to let the radius of the sphere go to zero. The situation is qui: ifferent
after the complexification. It follows from fact that, if the contour I is
homologically trivial in Q — C.+y. it is no more true that T is
homelogical (in Q\CN #) to a small sphere around P, (To have an idea
why let us consider O consisting of two layers, one containing P and
another containing I', then I' is homologically trivial, but is clearly not
homological to a small sphere around P. The example can be made a
little bit complicated to have QO connected.)

Hence a restriction on Q has to be imposed. The idea is that once T is
(during the deformation to a point) near the cone CNp (which prevents a
further deformation in Q' CNp). we must have the possibility to follow

rays on CN, towards the point P. There is a simple condition which
allows to do it.

Definition 4 We shall say that a domain Q < C. . is nullconvex, if

forall P,QeQ, |P — Ol* = 0, the whole segment @ belongs to Q.
We are now able to state the Cauchy integral formula:

THEOREM 3 Ler ¢: Cos1 — 2V, V) be a linear map, for which there
is a linear map d;:C,,H — Ly, V) satisfying (MHiv) on V,. Let
Q< C,., be a null-convex domain. Let T be q n-dimensional cycle in
Q\CN,, which is homologically trivial in ©. Then

f(P)IndrP=xi f 5(%:?}‘?“>¢(DQU(Q), it Z,f =0(1)
n JI

Proof Take P = 0. Let S, be a sphere around 0in R,.; = C,,, with
a sufficiently small radius. We know already that the form under the
integral sign is closed. Hence the proof can be divided into two parts:

(a) There exists an integer k such that T ~ k- S, in Q\CN,.
(b) The theorem holds for I = S,.

To prove the first point, we can denote 4 = C";,\N,,, B =€ then
ANB=Q\CN,and 4 U B is star-shaped (because Q is null<onvex),
hence homologically trivial. Mayer-Vietoris sequence ([12])tells us that

ty:H,(A 0 B, Z) > H,(4,Z) ® H,(B, Z)

is the isomorphism. But there exists aninteger ksuchthat " ~ k- S,in A4

and I''~ 0 in B. Hence I'~k'S,in An B.
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To prove the secona pbint, we can substitute f(0)instead of f(Q)(fora
radius of the sphere approaching zero), hence using (iv) we have

-1 + ~' .
Xn gb(K)QI"+l $(DQ)f(0) = dleo)d(e,)f(0) Inds 0= f(0).  x,=w,

5 THE CAUCHY INTEGRAL FORMULA FOR Dy o

Let us now formulate and prove the Cauchy integral formula for
solutions of higher order differential operators, defined in Definition 2.
Suppose hence that V is a complex vector space and let ¢;: C
£V, V),j=1,...,mbe linear maps.

To find an mtegral formula for solution of &,
introduce the differential form

0 =[¢1(9)% - Zn-116(DQ)f(Q)
- [¢l(g)gl e g/m—Z](bm—l(DQ)[g‘/mf(Q)]
+---1 ¢,(9)9,(DO)[Z, - - - %, f(Q)]

where 4, =%, i=1,...,m.
To imitate again the standard procedure for the proof of a formula, we
have first to find a condition for w to be closed. But

do =[¢(9)%, - 21/ +[6:(9)2, - - Z | )[ZnS]
—1010)%, - Zu o [ %S £ 6192, - L f]
=[0.(9)2,--- 2,11 + 6,92, - - Znf]
hence we need only to suppose that
M (9% - Z2py=2,---2,f =0.

Second, the formula has to be true for constants, hence we have to
suppose

n+1

s.. / = 0 we shall

(2 J [¢:(9)%, --- .Gfm_-l:](ﬁm(DQ) = 1.

Finally, to be sure that under .the limiting procedure all unwanted
terms will approach zero, we shall suppose that
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) @) [64(9)%, --- %, JIQI"* ' -0 for |0~ ., QeR,,,.
lim {[¢,@)Z, " Z,._, ]IOI"* 1} &, exists.
RN
(b) Forallj=1,...,n — 2 the function [:(9)7, - ;)10
approach zero together with its first derivatives, when [0l — 0
Q € IRn+ 1-

There are more possibilities how to find a mapping g satisfying all
these conditions. Let us show only two examples.

b

Example 1 Let V=%, Let¢, =...= ¢, is given by the inclusion
Chsy 6. Then &, =...= 4, =0, $,,(DQ) = DQ and we can find
g:C, ., — € such that

1 Q°
Q . e s g _ _——
A T
we can take, for example
_ 1 05!
N 7P T

The standard results from hypercomplex analysis ([ 5]) gives us that such
a function ¢ satisfies the conditions (1), (2), the condition (3) being
trivially satisfied in this case.

Example 2 Let ¢,(e;) = e/, ¢,(e;) = e, (acting on V = €* on the
left), then &, = &%, &, = ¢, Z,, 5, = 0" ¢ = A is the Laplace operator
and we can take

11
TR
Then
1 Q07
ot = —
T

and the conditions (1)}<3) are again satisfied.

THEOREM 4  Let V be a vector space and @15 ..., ¢, linear maps from
Co+ 1 to L(V, V) satisfying (1)(3). Suppose thatQ < C,, , isanull-convex
domain and f amap from Q to V, satisfying the equation %, ., [ =0.
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Take P € Q and a n-dimensional cycle T inQ\CN,, which is homologically
trivial in Q. Then

« f(P)'Ind; P = J W
‘where '
® = [$,(9)(Q ~ P, - - Z_,1$,(DQ)f(Q)
—[¢:1(@)Q ~ P2, -+ D3], (DQ)
x [Dpf(@)] + - % $:1(8)(Q —~ P)§,(DQ)Z, - - 4, (0)].

Proof As in the proof of Theorem 3, it is sufficient to prove the
theorem for P=0and forI" = S,.

If p is the radius of the sphere S,, then the right-hand side can be
written as

71|, 100, Zu- 10" 16,00)7(0) + -
101" '61(9)¢, (DO L - -+ Zm f(0)]

= EITT JK [[¢1(9), - 2=, IO ]2, £(Q) + - --
t oI w2, - 2, 11Q))

where K, is the ball of the radius p around 0. The assumption (3) tells us
that the only term surviving the limit p — 0* will be the term

71 | (8002, 2 Jor )10

But the limit of this term will be (because of (2) and (3)) equal to f(0).

6. EXAMPLES

Example 1 Let V}, V, be the basic spinor representation spaces and
let us suppose again that they are imbedded in 6°. Define ¢ by the left
multiplication. Then the Theorem 3 reduces to

1 [ @-P)

f(P)'IndrP=€ FWDW(Q)' )
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The form of the formula is the same as in complex CI  rd analysis
([17]). The integral formula, .described in ([17)), can be obtained by
taking V = 4 and defining ¢ by the same method. The only change is
that the values of J are now in %<, The formula in complex Clifford

analysis can be decomposed into pieces, each one being just the
formula (2).

Example 2 Take n=3, V, =$"V,, ¥, = V. ® ™'V, and con.
sider the mapping ¢ given by

d)(ei)(v] @ SO0 @ l"'m) = e;v, ® v, G . @ Upi»

i=1,...,n
Let us define

SE)w® 1,0 Or)=ew@1,0---Ou,.
Then ¢ can be defined as in Section 3 and it is easy to verify that the
conditions (i}iv) of Section 3 are satisfied on ¥, (note that they are not
satisfied on V,). Hence Theorem 3 gives us the integral formula for
solution of Z, f. This formula Is just the formula described (in the spinor
language) in [19]. '
The special case m = 1 coincides with Example 1.

Example 3 Taking V, = V, = CH and the map ¢ as in Example 5,
Section 2, then the Cauchy integral formula gives us the integral formula
for solution of (complexified) Fueter equation (see [20]).

The complex quaternions were used by Imaeda (under the name
biquaternions) for the description of classical electrodynamics ([10]).
The residue theorem described there can be obtained by taking the
multiplication from the right in the definition of ¥ = CH.

Example 4 Take V =€°, b1(e)(v) = e, ¢,(e;)(v) = v, the
operator &, ,. is the (complex) Laplace operator.'If we take the

mapping g as in Example 2 of Section 5, then Theorem 4 gives us the
integral formula from [4). -

Example 5 Let us take again V = 4€ and define ¢, =--.=¢,bythe
left multiplication. Then Theorem 4 gives us (the complexification of ) the
formula for left k-monogenic functions (see [5]). The function g can be
taken as in Example 1 of Section 5.

Example 6  After the restriction to the Euclideanslice R,, ; = C,,,
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we shall obtain various integral formulas from Clifford analysis as
special slices. In such real versions of Theorem 3 or 4 we need not
suppose that Q 1s null-convex (i.e. every Q < R, , , is null-convex), from
the homological point of view the situation is much more simple because
of the fact that H (R, — {P}, Z) ~ Z is almost trivial. But even so, the
homological formulation of Cauchy integral formulas improve the
standard versions and make the theorem more versatile.

(a) Example 3, restricted to R,,,, gives us the integral formula
described in [2] for regular functions in Clifford analysis.

(b) Forn=3,V=H = CH < € given by the left multiplication, the
real form of Theorem 3 gives us the Cauchy integral formula for regular
function on R, =~ H (in the sense of Fueter) described in [6].

(c) The real form of Example S is just the integral formula from [5].

Another type of integral formula is available after the restriction to
another, hyperbolic real subspaces of C, , ;. But the situation is much
more complicated because to do a simple restriction is not possible. The
character of singularities is quite different, the character of the corre-
sponding integral formula differs a lot from “elliptic” ones and to do a
restriction means, in fact, that a suitably deformed contour of integration
(avoiding still singularities in C,, . ,) looks like a Cartesian product of a
(n — 1)-dimensional cycle with §, and after the integration over S, being
done, the corresponding “hyperbolic” integral formula will be obtained.
The examples of such a procedure can be found in [19], where this
procedure is used to derive the integral formulas for massless fields in
[15] from that of Example 2 and in [4], where the integral formulas of
Riesz for solutions of wave equation [16] are derived from that of
Example 4. Moreover, a new integral formula for spinor fields in higher
dimensions is derived in [4], using this procedure.
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