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ITI CONFERENZA

COMPLEX QUATERNIONIC ANALYSIS, COKNECTION TO MMATH. PHYSICS.
V. Sou¥ek

(II.1) The connection with Atiyah-KEitchin-Singer work on instantons.

The equations, discussed in the first lecture, can be given ano-
ther interesting interpretation. In the recent work by Atiyah, Hit-
chin end Singer ([LAES]) the instanton solutions of selfdual Yang-
-1ills field equation on Eucidean spacetimes are described. During
the description of Penrose's twistor method, applied to the Rieman-
nian case, two important differential operators on conformal mani-
folds are deseribed - the Dirac operator and the twistor oeprator.

If ve restrict ourselves to the simple flat case, i.e. if we take
for the Riemannian manifold ¥ simply R4 and if we identify the

spinor speaces v, TV_ECr with H

b2 62 &4
then the cperators 2, Z can be identified with the Dirac, resp.

d1 d1 -¢2 .
(e.g. as eC2 ~ = Xo-101X1-102X:—103X3=Xo+i1x1+izx2+i3X3).

the twistor operator from [AHS]
To describe the identification in rore details, let us first re-

call the definition of these operators.
Let ej=dxj, j=0,1,2,3 %bve an orthonormal basis of 1-foros on R4

and let L€ ve the corresponding Clifford algebra (the Clifford
algebra is generated by ej vhich are subjected to the relations

ei.ej+ej.ei= —26i.). Its complexification t:c is isomorphiec to the

algebra C(4) of 4xkh complex matrices. The total spin space V TFC,

(on which elements of C (L) are acting) can be split onto two pie-

ces V=V @@V ,V, £V 2 C: in such a way that the generators

€0y,..4e3 form a basis of Hom(V+,V_) and Hom(V_,V+), respectively.
If we consider now a spinor field ¢ on R4 with values in v_ .,

twooperators are defined in [AHﬂ

2
a) Dirac operator: D: ¢ +————> D¢ = E e; 3
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. = = 3
b) twistor operator: D :¢—> D¢ = dad + Ei(ei.D¢)dxi
°
Identifying C2=V+=V_=H suitably, the action of e; on

will become the multiplication by =-1,-i;,-ip,-i3 respectively,
which leads to the identification of D with -43 and D with
a - dq.3 = 2

It trings us to two important conclusions: first, there is an
unexpected strong connection between the basic equations of gquater-
nionic analysis and equations, which appeared in the mathematical
treatment of instantons; second, that there should be a way how
these basic guaternionic equations can be treated in much more ge-
neral setting. There is clearly a lot of unanswvered questions at

the moment.

(I1.2) Why complex guaternions?

Quaternionic analysis could be treated in the natural setting,
described ebove, end developed further and further. Nevertheless,
there are some reasons why the enlargement of the basic setting can

be very useful.

First, &11 'holomorphic' functions in quaternionic analysis are
real-analytic rappings from R4 to R4 . Very common and very use-
ful procecdure is to study such real-analytic mappings through their
complexification and to restrict the attention to the real slice

after.

Second, we have seen that differentiable and reguler functions
of quaternionic variable were solutions of 'twistor' and 'Dirac’ .
equations from [AHﬂ. The nemes of the operators are coming from
mathematical physics even if they are not, properly speaking, the
same operators as the Dirac and the twistor operators on Minkowski
space. They are - as it is usually expressed by physicists - an
analytic continuation of the Dirac and the‘twistor operators from
Minkowski spacetime to Euclidean spacetime. It means simply, that
there are operators acting on mappings, living on complex Minkow-
ski space, such that the restriction of the operators to 'Minkow-
ski' slice coincide with the physical version of the operators,
while the restriction of them to 'Eucidean' slice are just the

Dirac and twistor operators in the sense of [AHS] .
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All this means that, after the complexification, the direct con-
nection of the equations of quaternioniec enalysis to problems of
mathematical physics can be gained. It can be useful in both way.
The methods of quaternionic analysis can be used in mathematical
physics and, on the other hand, some parts of mathematical physies
can offer many ideas and models to quaternionic analysis. The con-
nection between both is handled best via the study of complex qua-
ternionic analysis. The usé of complex Minkowski space in mathe-
matical phyiscs is more and more common (see[Pe1].[PR],[ATT] ). So
the mappings, living on the algebra.or complex quaternions, can be

easily identified with some fields from methematical physics.

It is probably worth to review first shortly some basic notions
from mathematical physics, needed in the sequel, to be able to show

the connection of complex quaternioniec analysis to them later.

(11.3) Spinors.

Let us review very shortly some basic facts on spinors (for de-
tails see[Pez],[PR],[Pi] ). The spinors (in the sense used usually
in mathematical physics) are representation spaces of the group
SL(2,C ). The importance of this group in physices follows immedia-
tely from the fact that SL(2,C ) is the universal covering group
for the (proper) Lorentz group. Thereare four different spinor spa-

A At

ces - S §7, 8 . All of them are C 2's and the action of

A’ SA"
matrices from SL{2,C ) on them is described by a matrix multiplica-

tion.

3 A . 8 5
a) The multiplication of wa«S$ by LesSL(2,C ) is the multiplica-
tion of a (column) vector by a matrix. In coordinates, if L=LAB,
A wB

A=0,1; B=0,1 and if w =wA, A=0,1, then (L.m)A =L (the sum-

mation convention is used).

b) The space SA is the dual space to SA with corresponding contra-

gradient representation of SL(2,C ). It is convenient to consider
elerents of 5, &s rov vectors. In coordinates, the multiplication
is given by the multiplication by L_1 from the right.

1]
c) The space sh is again C 2 (as row vectors) with the action of

1 5
SL(2,C ) given by the multiplication of we S by L+ from the

right ( + denoting the Hermitian conjugation). In the coordinate
' At
description is w eSA represented by w » A'=0',1",
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3 3 ! . 3
d) The space S is again the dual of SA with the corresponding

Al
action of sL(2, C).

There are various useful mappings among the spinor spaces, compa-

tibvle with SL(2,C ) action.

ey . : . A Al
e) The Kermitian conjugation gives the map from S to S {and

similarly for duals). In coordinates it is defined by
-0'_ 0 -1 . . .
Wit o, W =W ( ber denoting the complex conjugatiorn),

. - . c o . A
f) A skew-synmnetric form on SA gives the identification of S

with SA’ in suitable coordinates the identification has the stan-
dard form A A

0 — w, = w € vhere Eoo=€”=0, €01=-610=1 .

AB’
i 0 » =-Ww
ie. w=u,, 0

It is necessary to consider not only the described spinor spa-
ces, tut also tensor products of them. The most important of them
. s @
is GA SA'

“tified with complex inkowski space through the map:

. Its importance lies in the fact that it can be iden-

Zo+za, zZ1-122

z, =[zo,z1,zz,z:;]€C Mo zAA,=i . € SAQSA,.
z24+122, Zo- Z3

]
Under this identification 2V =[zo,—z,,-zz,—z3] correspond to zAA,

w2 _2 2 _ 2. o AA!
zyz = zo -z1 -2z -23 is equal to det(zAN) = 3 (zAA,z ).

It follows immediastely that det(zAA,) is preserved under the
action of an element of 8L(2,C ) . This fact means that the cor-

responding linear transformation of z) preserves the Minkowski

norm, hence it is the Lorentz transformation. It can be checked
that the corresponding mappings of 8L{2,C) onto the (proper)

Lorentz group is 2:1 universal covering.

It is easy to show that det Zapr = 0 if and only if there

are spinors W,, Tt such that Zapr T W Ty - Fote that such a

matrix is Hermitian (i.e. belongs to the null cone in real

Zanae

Minkowski space)if and only if w,= EA .
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(II.4) The Weyl equation.

AA'

If we define V i= a/azAA' » We can relate this differential ope-
rator to azj Hbs 3/azj by
L} 1

aar AN L) 2.+ 3,3 - i3

v = . 00 =% Z? Z3 Z4 Z2
vl0' g 3. +i3.  , 3. - 3

) - Z4 Z2 Zo Z3
AA'

The Weyl equation (one form of it) is the equation V¥ ¢ 0,

A

where ¢, ,= QA.(zu) is a spinor field on a subset of complex Mink-

A
kowski space. In elementary particle Physics such an equation is used
to describe neutrino. (The other 3 version of the Weyl equation could

. AY_ ARY A ..
be written as VAA'Q =0, V $,=0, Tpprd =0.) The Weyl equation is

only one of the series of so called massless field equations {the ot-
her outstanding members of the femily are the wave equation, lMaxwell
equation for elmg field and the equation for the linearized gravita-
tion - see KATT) ).
Rermark:
Note that the equivalent form of the Veyl equation is
A
v [A'¢B'}=O »

where [ , ] means the antisymmetrization.

(IT.5) The tvistor equation.

It can be written in the form (this fornm is usualy celled the
dual twistor equation) A
¢ '%n=0 .

vhere ( , ) means the symmetrization.

Hence the VWeyl and the twistor operators are just the projections

onto entisymmetric, resp. symmetric parts of VAA'QB"

(1I1.6) Complex quaternions ir spinor language.

The algebra CH of complex quaternions can be defined as
CH := ¢ GkH + The typical element of CH can be written as
Q = Q0+i1Q1+12Q2+i3Q3; Qo,...,Q3 € C . Let us define further

+ 2

. . . 2 2
U = Qo-14Q4-i2Q2-1aQs , |@|° := q.q" = Qo +Q% +Q§ +Qa .

Q
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It is no more true that {@l2 = 0 only for Q = 0., There are
Q el . . =1 . . 9
2ero divisors in CH. The inverse Q exists in and only if \Q\2¢ 0
and then @ '= o'/ 1al? .

As & complex vector space CH can be identified with Ca. We
shall restrict our attention here to holomorphic meppings from CH
to CH (as mappings from Cq4 to Cs ). Nothing is lost in such a way,
because the solutions of the eguations of (real) quaternionic &na-
lysis are real-analytic and after the complexification they are go-

ing to be holomorphic.

To get & connection with mathematical physics, we have to repre-
csent the algebra CH by 2x2 complex matrices. The basic identifica-
tion can te written as follows:

Qo-1Q3,-Q2-1Q4

Q=Qo+i1Q1+izQz+isQ3€CH“—"QAA.= éSAGSA, ——
QR2-1Q+, Qo+iQs

— oz, = (Co,-iG1,-1Q2,-iQa] €CM

Under this identification we have:

A 1
Q* corresponds to Q A and to 2! 3

2 oy AAY u
1| corresponds to det(QAA,) = E(QAA,Q ) and to zz -

To trenslate differential operators let us note first that

BQ°:= 3/3GQo = Bzo, 3Q1:= 3/9q4 = —i321, etc.

Hence . .
9, +i3
ghAA' 3 Q" %’ Q2" Qs
= +19 =
2a2*1%q,7 207 %
By substituting the corresponding 2x2 matrices instead of i4,ia2,ias

in the definition of 3 we obtain

i 3, +id
5 2| P20 %ea e,
s i
30,*190, 1700 1%,
'
Hence 3 —> VAA' s 3* e VAA .

(I1.7) Complexified Fueter equation.

‘Let F be m map from CH to CH . The complexified Fueter's
equation looks like 3*? ) e e ) e O
Qo Q1 Q2 Qs
where an are the derivatives of the holomorphic mapping F .
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The function F : CH — CH corresponds under the identifica-

tion F = Fo+i4F1+i2F2+i3F3 > ¢ Q e 2z to the mapping

AA'? RB!

. +
QAA'= °AA1(ZBB') . The Fueter equation 3 F = 0 corresponds then

t
AA ®

namely that the complexified Fueter equation can be split into two
and the

to the equation V BA' = 0 . The important thing can be seen now,

pieces. We can consider the spinor fields QOA' and ¢

1A
complexified Fueter equation doesn't mix them together. It is easy

to see in the spinor language that it is a simple consequence of the
properties of multiplication of matrices. Hence the complexified Fue-
ter equation consists of two indeperident copies of Weyl egquation.

(To have purely quaternionic formulation of one copy of Weyl equation,
it is sufficient to consider values of the mapping F in an ideal

in CH.)

(11.8) The differentiability condition.

Its complexification can be written as
F = -i F = -i2d, F = -i33_ F
aQo 173Q1r 2°Q2 e Qa

In the proof of the theorem I.2 the relations (1) - (3) were descri-

bed. The functions g=fo+i3f3 and h=f_.+i;f4 correspond now tc Fo+isFs

and to F,+i3F,, while 3/3Z to 3Q0+i33Q and similarly
3
-1 3 3, -1 . an is39 .
3/97 —> BQO 133Q3 , /91 v—s 02 133Q1 3/an —— 3Q2+13 Qs
The relations (1) - (3) gives us now the relations among derivatives

of individual components Fu. These relations don't change, if (-i)
is substituted instead of is and in such a way the relations (1) - (3)

are equivalent to

(39,13, ) (Fo+iFa)=(3y +id, )(Fa-iF1)=04 V(8. .,=V. 8 . ,=0 (1)
(3,413, (FomiFa)=(3y =iy )(Fa-iFi)=0 ¢ 9, 0 =¥, 8 ,=0  (2')
V11 %0:*7101%11 = 001001147011 %001 =0 (32)

Hence all these equations together are just the detailed description

of the (dual) twistor equation VA(A'QB') = ¢ for the spinor field

®p1:=%5:
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So again, like for the Fueter equation, the condition of differen-
tiability for a quaternionic function can be separated after the com-
plexification into two independent sets of equations, each one of
vhich car be identified with the twistor equation (considered on com-

plex Minkowski spece).

(II.9) The complex Lanlace egquation.

As was noted in (I.%), we have 33+ =1/16A on the space of real

quaternions. After the complexification, the operator

2T = 1/1¢ (%3%
o €

1

) is the complex Laplacian (componentwise). On the

Minkowski slice we obtain the wave operator. In the spinor language

N . AA!
it looks like VAA’V 5
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