147

Universita di Bologna
Istituto di Geometria
Dipartimento di Matematica

SEMINARI DI GEOMETRIA 1982 -1983

I CONFERENZA

HOLOMORPHEICITY IN QUATERNIONIC ANALYSIS.
V.  Soufek

The basic problem of quaternionic analysis from the very beg-
gining was what is the proper generalization of the notion of ho-
lomorphicity. In the complex analysis there is & lot of equivalent
conditions for holomorphicity. The question is which one can be
suitably generalized to quaternions. We shall discuss first the
two most natural definitions - the existence of quaternionic deri-

vative and the power series definition.

(1.0) Notation.

'

The field of quaternions will be denoted by H . A typical ele-
ment of H can be written as Q@ = xo+igx4+izxz+iszxas . The quater-
nionic units enjoy the usual properties 142=i2=i32=-1; i4i2i3 = -1.

(Note that all other usual properties of quaternionic units follows

from these relations.) The conjugation in H is given by
+ _ 3 . s
qQ = Xo-l1x1—1§¥$-laxs
and the norm lal = (qq )2 can be used to express the inverse ele-

ment for every gqe€f, q # O, namely q_"1 = q+/lq|2 .

(1.1) Differentieble functions.

Definition:
A funetion f : # —=# is called (left) differentiable at gq ,
1f the limit ar _ 2im h—1(f(q+h)—f(q))
42 o

exists.

Remark.

It is the most natural definition et the first sight, but,as
will be shown, it leads to very restricted class of functions
(2 subclass of linear ones). This fact has been rediscovered many
times and abandoned after, just because there seems to be not very
much of interesting things to be said about. But it is worth to
study it more closely to get an unexpected connection with other

parts of mathematics, resp. of mathematical physics.
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(I.2) Theoremn:
ar .
Ir aq exists, then f(q) = a + qb (a,b « #).

Proof:

Let £ = fo+iqf4+izfa+iafa. As in the complex case, %é exists
if and only if the limitsalong all four axes are equal one to another
and equal to %§ . Using the notation 3j=3/3xj, the condition looks
like 80f=-i131f=—izazf=-igagf=%§ . To simplify further considerati-
ons we shall use 'complex' variables

T = xo+iaxa, n = xa2+i3x1s
and we shall define two functions g = fo+iafa, h = fo+isf4 and
consider them as the functions of variables ZsN,%,N. Then:

(3041333 )(fo+iafa)=0
1) aof=—i333f<'=\> <> —g—% = g% = 0 (1)
(3o0+ia3d33)i2(f2+isfq)=0

12(082-1334)(fo+iafa)=0
2)1191f=i232f<=$ P éﬁ -

(2)

S

(32+41334)i2iz(f2+isfq)=0 én
30(fo+i3f3)+izazi2(f2+i3f1)=O dog-92h=0
3) dof=-i232f (= >
Boiz(“2+iafq)+i232(fo+ial4)=0 3oh+32g=0

which can be written also as 3g _ 3h _ 0, 3 + 2L - 0o (3)

—_— = —r =

g n T, on

But now the relations (1),(2) tell us that g=g(z,n), h=k(Z,n)
a

end using a procedure like é—% 5 ( gﬁ) = 0, etc., we obtain im-
g 3T on

mediately that g and h have to be linear in their variables.

It is now easy to check the possibilities for coefficients arnd to

see that the only possibility left is f(q) = a+qb (a,b € #).

(I.3) Power series.
Quaternions don't commute, hence the reasonable generalization

of the ternm anzn from the complex case is the term

aogaqq...qan+1 » &; € .

But the definition of holomorphicity using sums of such terms leads
to & quite general class of functions (the same as the sum of mono-
mials, generated by xo,...X3 with quaternionic coefficients, i.e.
to real-analytic mappings). It can be seen immediately from the fol-

lowing formulas:
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x0=1(g-i1q-i1-i2q-i2-i3q-i3)
x1=—3i1(q-i1q'i1+i2q»iz+i3q-ig) (%)
x2=-2iz2(q+i1q-i1-i2q-iz2+iaq-ia)
xa=-2is(q+isa-i4+i2q i2-iaq-i3)

Hence to investigate such functions would be the same as to
study real-analytic mappings from Ry to R4. Nevertheless, for-

mulas (4) will be useful later.

(1.4%) Fueter equation.

The most interesting notion of quaternionic holomorphicity came
from the attempt to generalize Cauchy-Riemann equation. The analo-
gy is clear - the operator 1(3/9x+i3/3y) from complex ansalysis is
replaced here by the operator 1(30+i131+i292+41393). The Fueter's
school developed Cauchy integral formulas and Laurent series expan-
sion for solutions of the equation. The modern account of basic re-
sults together with further new results can be found in [Su] . A lot
of further function theory was developed in more general setting
(functions on R vith values in the Clifford algebra) in[BDS],{L]o

Definition:
We shall say that the function f£: Q—H is (left) reguler
in < H if

8+f = 3(Bo+i131+i232+i333)(fo+i1f1+izfz+isfs) =0

is satisfied in 2 . The function f is antiregular in Q,if 3f=0.
Remarks:

1. The operators 3/3z and 9/3z seems to have a nice quaternionie

counterpart in 3 , 3+(vhere 9:=3(80-1194-1292-13323) ).

2. There is, of course, & possibility to investigate.-right regular
functions, satisfying f.9=0, resp. r.3+=0 instead. The proper-
ties of such functions would be the mirror image of those of left
regular functions.

3. Let us note that aa*f = 3+3f = 1/16 Af (vhere A denotes the Lap-
lace operator), hence if f is regular, then f is harmonic (i.e.

every component is).

(1.5) H-valued forms.

Before studying properties of regular functions nore closely, we
would like to follow the analogy with the complex case a little bit

further. It is the standard procedure in the complex case to identify
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complex functions with O-forms and to consider the de Rhenm operator

a : eg —'e; (where E: is the space of (complex-valued) k-forms). The

operator 4 splits then into two pieces d = 3 + 3 » Wwhere

O B3 —EL’° . 3 = ES3—wg2’' ana EX T El@ES.

Let us try now to find the enalogy of such splitting in the quater-
nionic case. First thing to do is to consider {{-valued forms on H .
Such forms are considered currently in quaternionic anelysis (see [Su)),
even in mathematical physics (see [A] ). They can be defined as the
tensor product £:= E*QR # . The exterior product can be defined by
the usual formule ( [Su], P-203) =and the exterior derivative acts
on them componentwise. The Stokes theorem holds in the usual form for
such forms. (Note only tha*t the exterior multiplication - because of
noncommutativity of coefficients - need not have usual properties,
but all multiplicative properties of them are gquite naturally coming
from multiplicative properties of quaternionic coefficients ané those
of reel differentizl forms and need not be discussed in more details.)

The most natural H-valued 1-forms are
dq = dxo+iqdxq+ i2dxz2+ iadxs , dqf = dxo-114dx1~ i2dx2- izdxa

But the straightforward generalization of the operators 3 , 3 ,
o
i.e. the operators f +——> (3f) dq { f —— (23'f) dq+ doesn't work

tecause there is clearly no hope that these two operators would cive

the decomposition of the de Rhenm operator d . The spaces
{f.dqe Eﬁ}, {g.dq € £1f have both the dimension 1 (as the right
ti-vector spaces) and cannot give together the whole spece E&

(which has the dimension L),

Even more, to have the decomposition of 5& into subspaces, we
have first look for a suitable basis of £} as the i{-vector space.
And there is no natural candidate for it, it seems to be difficult
to conmplete dg ,'dq+ to a basis for 6& .

To solve the problem we can use the properties, described in (L).
Let us define 1-forms dql=-iqdqi, , dq?=-i,dqiz , dg3=-~izdqia

Then the relations (4) tells us that they form together with dgq

the basis for é& 5
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The idea to use this basis and to decompose £f into four one-
dimensional spaces is against the basic spirit of quaternions. Fixed
quaternionic units i4,i2,ia eare chosen only to have a suitable co-
ordinate description, but basic notions of quaternionic analysis hes
to be independent of the choice of units. To keep the splitting in-
dependent of the choice of quaternionic units, we have to consider

operetors Df = dqdf

3r

dg131f + dq333f + dq3d3f ,

where 31f = -148fiq, 92f = -ia3fiz, 33f = -133fis and to split Eﬁ as
E!} = Ef{'n) ) g;{,(a)
1 = [ 1,03) = 0
vhere EHAV {gdq ‘g € éH} and ¢ i 3 {h,dq1+hqu’+h3dq3\hietHf
-
(I.6) Lerma: We have d =9+ D
Proof:

-
'.'b + b = dqa—i1dqai1—iquaiz—igdqaig = kRe(dqa) = d,

where Re meens the reel part of the corresponding quaternionic expres-

sion.
Remark:

The difference between holomorphic ( 5f=0) and antiholomorphic (3£=0)
functions in the complex case is only a question of the choice of an
orientation in Rz. But in quaternionic analysis it seems to be inevi-

table that the solutions of the corresponding equations D=0 and

-
2 £=0 are quite different in character. How the solutions look like?

(1.7)

(i) The solutions of 2 r=0.

It is clear that Bf=0 if and only if f 1is the antiregular func-

tion (in Fueter's sense).

i
(ii) The solutions of 2 f=0.

Theorem:

-
The function f is differentiable if and only if D £=0.

Moreover, then Ar = dq(%%) 5
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Proof:

The function f 1is differentiable

4 , . .
d_é = 3of = -i408,f = -1,32f = -ij333f <=
ar . . .
> aq = af & B0f-9f=-1404f-07=-12327-3f=-1393-3f=0 <w=d
<‘=>%§=af & af - dqdf = 0 .
q
-
But df - dqar = dr .

(I.7) Remark.

We have seen that in order to gain the full analogy with the com-
Plex case, we have to consider both differentieble and regular fun-
ctions as the corresponding generalization of holomorphic and anti-
holomorpnic functions of a complex variable. Note that the question

of an orientetion can enter in a different way into the picture.

If we define dq+J= -ijdq+ij and B+J= -ijBTij, we have a similar
decomposition + >+
ad= 2D + 2,
- 1 1 a a 2 3
where 3t = dq 3 ana B r = dat et eaqta T iaqte 13

So we can see that in complex analysis the analogues of <

-
and 1ﬁ+ coincide, vhich is the reason why it was difficoult to

find a proper quaternionic analogues for them.

(1.87 Rerark.

The splitting of H-valued 1-forms, described in (I.7), can

be developed further and a splitting of 2-forms and 3-forms can

be described to complete the whole picture (see [501]).
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