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ON GENERALIZED CAUCHY RIEMANN EQUATIONS ON MANIFOLDS

Jarolim Bure3,Vladinir Soulek

§:0.Introduction.

The definition of 3 and 3 operators on a Rlemann surface M
4,0 01
use the splitting of the complex-valued 1-forms E E g
and the splitting of the de Rham sequence into

E/z 3
(4
T EMg

(see £8) ) . The aim of the paper is to describe a higher dimensio-
nal generalization of 3 and 3 operators on a suitabtle type of
manifolds such that we would be back ir the classical case for n=g
The paper is only the summary of results,the detailed version of
the paper with full proofs will be submitted for publication else-
where,

A lot of work has been done already on the extension of com-
plex analysis to higher dimensions.There are different ways how to
generalize Cauchy-Riemann equations ([3l@ﬂ|[”ﬂ.[2h]-[26]}, attempts
were also made to extend hypercomplex analysis tc some type of ma-
nifolds (see [15), 19 , (21] ).

To indicate what type of definition we are going to suggest
here let us consider a Riemannian manifold M of the dimension n.
For every representation & of 50(n} there is the aésociated vec -
tor bundle E on M and the Riemannian covariant derivative

v: T{(E) » T(E®A') , A' veing the cotangent bundle. The tensor
product E:OA‘(Bn) can be now decomposed into the direct sum of
irreducible representation spaces

E @ AR ) ¥ Z E;
j=1

and if we denote by "j the projections of E@®@A' on the associated
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vector bundles Ej ,then the operators “j°v are examples of
operators,vhich we are going to consider. The fact,thatsome genera-
lizations of Cauchy-Riemann equations to mn can be described using
different representation spaces of the group S0(n) ,was explained
already in [25] . The conformally invariant differential operators
studied in connection with problems in physics ([6]|U1],D7]'U8] )
are defined just in this way.

Our general definition of the splitting of & vector-valued
de Rham sequence on n-dimensional manifold M will depend on the
choice of the group G in consideration (in our Examples G will
be SO0(n) , CO{n) or their covering groups ),on & choice of a re-
presentation E of G and on a choice of a connection on the as-
sociated vector bundle E . Let us note that while in classical
case (the splitting (1)) the operators 2 and 2 were all of
the same type,their generalization to higher dimensions are usually
quite different in character.

In the first part of the paper we shall state the general de-
finition and in the second part we shall show howv all examples of
generalized Cauchy-Riemeann equations, mentioned above,fit into the

scheme.

§.1. The splitting of the vector-valued de Rham sequence.

Definition 1 :

Denote by K the field R or € . Consider a smooth manifold
M over K ,dimK M =n and denote by A' the corregsponding cotan-
gent space.

Let B be a principal fibre bundle over M with a group G.
Suppose that E is an jrreducible finite-dinensional representa-
tion of G over K and let E Ybe the corresponding associated
vector fibre bundle.Suppose further that there is a homomorphism

p:G -~ G1(n,K) such that the vector bundle,associated to the re-
presentation of G in k® is isomorphic to AT,
Then the tensor products Am(Kn) QK E are also the representation
spaces of G and the corresponding associated vector bundles are
A‘“OK E
Any covariant derivative V on E , v:T(E) » T(A'®  E)

- §+1
K E) P(A @K E )

and the sequence of E-valued differential forms

r(g) £ r(aep) 3 ... (W@ E) (2)

can be extended in the usual way to VJ: roa’ @

K
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can be splitted as

F(E"‘) — r.(En-q,a)
<::: @ i:‘ ;5; - ]

ree) é p .. D P(Ne, £)(3)
®
ree"®) i :‘\: PE™"*) 4
1

Em'J is the decomposition of the ten-

vhere /\m(Kn)OKE = & h
m,J
E E ]

sor product into irreducible representations of G and are

the associated vector bundles to the representations Em’J of G .

Remarks.
1. In many examples we have simply GCGl(n,K) and B 1is the

Principal bundle of the G-structure on M ,80 there is no need for
the homomorphism p . But to cover the important examples of spin
bundles,ve did not restrict the definition only to the case of

G-structures on M .

2, There is a modification of the definition (needed in some exam-
Ples),vhere the manifold M 1is real manifold,but E is a complex
representation space of G . In this case we shall consider the com-
Plexified differntial forms A:: and the splitting of the tensor
productA: Ot E Sometimes it is also possible to consider a com-
Plexification M of M ,to use complex version of the definition
and to restrict the operator to M after. But only the real ver-
sion of the definition has the classical case of complex analysis

as the special subcase (see Ex.2).

3. The operators in the splitted de Rham sequence (3) are usually
quite different in character.But because each Em’j is again an
irreducible representation of G,every operator in (3) can be.cla-
ssified by the highest weight of the representation Em’j and

by the highest weight of the target representation Em*"j

It would be possible to consider these individual operetors‘as ge-
neralizations of Cauchy-Rieman: equations to manifolds,but the
point of view ,presented in the papcr,is that it is more interes-
ting to consider the whole splitted sequence (3). A similar split-
ting was already used for the description of topology of open do-
mains.ﬂgﬂn (see [22] ) and further results can be expected in
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in this direction.
§.3. Examples.

Example 1. Regular spinor fields nL)).

Let us take M = RP’Y , n = p+tq with the canonical quadratic
form with p positive and q negative signs.

Take G = Spin{p,q), B=Mx G, V=a , e:Spin(p,q)-»S0(p,q)

Let E = V be a basic spinor representation of G (ve can take e.g

& minimel left ideal in the Clifford algebra C Q)
The tensor product E Ch A(Bp’q) then sp11ts into two pieces
E .'E . One of them,say E ,is again a basic spinor representati-

on spsce (there are two of them in even and only one in odd dimen-

sions). It is sufficient to consider the splitting of 1-forms:

Ky r'(E)
?’F(ez)

and the equation (ﬂ1od)¢' 0, $: :RFP'L, € is just the generalized

rE) 2> P(EegN)

Cauchy-Riemann equation for regular spinor fields,described 1n[1h]
The equation (w1od) v = 0 is of elliptic type for p=0 or q=0,whil

for other cases it is hyperbolic or ultrahyperbolic system.

Example 2. Complex analysis.
Take G = SO(2) i#t the special case n = 2 of Lxample 1. A mani
fold M (dim

R
pal fibre bundle B can be identified with the complex manifold M

M & 2 ) with G-structure and the corresponding princi-

(with the choosen Hermitian structure on the tangent bundle ). If

we take E = € with the trivial representation of G ,then the ten-

sor product A'(Ra\dh ¢ splits into two irreducible pieces (each

of real dimension 2 ). If we moreover set V = d,then the sequence
(2) from the Def.1 is just the de Rham sequence Ag : A‘ i Ai

and the splitting (3),given by Def.1.,coincide with the standard

splitting (1). The classical Cauchy-Riemann equatioms on complex

manifold are hence recovered.

Example 3. Clifford analysis ( [3] , 5]

A. Let us take M = RO’® , G = Spin(n) , B=Mx G, E=C ,
where Cn is the Clifford algebra for Bo’n (the negative definite
norm). The group G can be imbeddedinto Cn in the standard vay,

so E is the representation space for G. But Cn is not irredu-
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cible space,it can be decomposed into a sum of real spinor repre-
sentations. It is easy to see it in the matrix representation of
Clifford slgebras ( [12], p.148 ). The spinor subspaces are just
columns or half-columns of the corresponding matrices_, The table

of real spinor representations with their dimensions is given in
( Dh2l,p.193 ).

Because all irreducible pieces in a decomposition € = E
...eeV) >
G , we shall apply the Def.l1. to each piece with the same result

(1)@..

are the same (i.e. isomorphic) representation spaces of

as in Example 1 : W
J
v, EY)
@y d @ o A7 e,
PE?) = PV K) T ®
)
> P(E?)
and we shall add them together after
RAM(ESe .. @ EM) = 1 (C)
re, = F(E"’e---eﬁm)\l .
()
Tod P(EZQ"-GEZ )
Then the operator LI d can be identified with the opersator
n
{ 2_¢.3.) ¢ for mappings w:RO'Q—’ C
j=q 174 n
described in [5].

B. A lot of function theory and transform analysis is already

known for so called monogenic functions ¥ on Rn+1 with values
in Cn (see [3]). They are solutions of generalized Cauchy-Riemann
. n
equations { e 3 J# = 0 ,where e1,..,en are generators of
i=0 i i
Cn and ey = 1.

TLet us take in Definition 1 M = ﬁn+1’G = Spin(n+1),B = M x G,
E = Cn,V =d and o:G =+ SO0(n+1) . Clifford algebra Cn is the
representation space of G ,because Spin(n+1) C C;+$=Cn
+ -
where Cn+1(Cn+1 N+ (see [12] ,p.185)
Then the use of Def.1 in the same way as in Ex.3.A.give us just the

) means the even (odd) part of C

equation for monogenic functions. To see it,let us consider Ex.3.A.
in dimension n+1.

The procedurg of Example 3.A. give us the equation

(2 4 8,09 =0 (1)
i=Q
where 60,..., 6n are generators of Cn+1 and ¢ is & map from M
into Cn+1 . We shall identify Cn with Cn+1 by the correspondence

ei'\v -60'61 , 1= 1,...,n
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The maps ¢ :R — Cn are then special cases of maps from R

n+1 n+1
into Cn+1 and the equation (4) reduces for them {(after multiplica
tion by §. ) to the equation
(£ e a0 (s)

i=0

where .= 60'60-= 1.

Example 4. Fueter’ s regular functions { [26]).

" Fueter and his coworkers studied quaternionic analysis in 30's
and 40’'s . This case is in fact the special case of example 3.B.for
n =3 ., In this case M = szl{ and [E = C3= HeH . So it is suffi
cient to split the value of ¢ =(g,q0 and to consider only a half
of it . The equation (5) then reduces to the classical Fueter equa-

tion.

Example 5. Massless fields on Minkowski space ( [27, 1 ).

Take M = 81'3 {Minkowski space} , G = Lorentz group. There ar
two basic spinor representations V and v/ of G (over ¢) and we
shall denote E‘j 1 = sjveslv‘ ,where s” denotes the n-th symmetric
tensor product of the corresponding vector space. Take B=Mx G,

v =4 , 0 = id . We shall use Remark 2,after the Def.! and we shall
complexify the cotangent space to A‘ . Then

girlg Al gitTiltlg pi=1,141 ¢ gd*1,1-
¢ ¢

® 1,1-1

e E'”

(if j=0 or 1=0,then the corresponding spaces are missing). So we ha
31, led
L e e
resd) L riale B4 fr_:' P(EIHT 1Y)
}} r (Eﬁ'h 1-4)

The four differential operators obtained in such a way are just the

ve the splitting

equations,described by Garding ( [T]). In the case j = O or 1 = O
there are only two pieces in the decomposition. They are usually
called massless field equation and twistor equation for spin j/2
{resp. 1/2) frields ( [27)

Remark.

Massless field. are very often considered on complexified Min-
kowski space €M and restricted after either to (real) Minkowski
space or to Euclidean space. In this case we can use the complex ca
se of the Def.l.and the massless fields described above are restric

tions of this complex case to (real) Minkowski space.
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Example 6. Complexified Clifford analysis ( [20]).

It is the complexified version of the example 3. Take M = Cn N
G = S0(n,¢) ,E = C; (complex Clifford algebra),B = M x G,V= d, p=id
The Clifford algebra Cz is again reducible and it consists of many
copies of basic spinor representations of G. Applying the same pro-
cedure as in Example 3.A,B., we shall obtain by splitting of
1-forms the equations for regular mappings in complex Clifford ana-
lysis ( see [20]).

Remark.

The case n = 4 is especially interesting because of the connec
tion to mathematical physics.The complex Clifford algebra can be
decomposed into spinor spaces and we shall be back in the situa-
tion of Example 5.If we split the algebra as Cﬁ’—" c(2) ® €C(2) ,ve
shall be in the case of complexified Fueter equation { [16) d23]).
There is & nice connection between Cauchy integral formula for such

maeppings and various integral formulas in mathematical physics

([23]).

Example 7. Stein & Weiss generalization of C-R equations ([25]).
The paper by Stein and Weiss introduced generalized Cauchy-
-Riemann equations on Rn using Spin(n) representations.It is again
the case where the space M = Rn is real ,but representation spaces
R are complex (see Remark ® after Def.1).
So M = Rn,G = Spin(n), E is any irreducible representation
of G, B=Mx G, V=4 , p:Spin(n)-—5S0(n) .
There is the exceptional irreducible piece in the product
® Qc A; called the Cartan product of E and A; .It is characte-
rized by the fact that its highest weight is the sum of the highest
1

weights of E and A;. Let us denote it by E1,so E QCAc=E1eE2 »

where 82 can now be a reducible representation.Denoting again LI

12 the projection to E1, Ee,ve can write Stein and Weiss equati-
ons as (w2oV) ¢ = 0. They are reducible in general and contain

as special cases Euclidean form of Dirac equation (if E is a basic
spinor representation) and the Hodge operator d + § (if E = Az N

r = 0,...,n).Both these special cases are well studied on manifolds

( [10] ).

Example 8. Conformally invariant differential equations ( [18],[6])
Suppose that M 1is an oriented manifold with a conformal
structure,dim M = n (i.e. G = CO(n)).Let B be the corresponding

principal fiber bundle , p = id.
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Bepresentation spaces of G are classified by a representa-
tion space E of SO(n) together with a conformal weight v . Let us
choose novw a Riemannian metric within the conformal structure and
denote by V the corresponding covariant derivative.

The splitting of the map V: T( E )—’P(AIQ)E ) into irreduci-
ble pieces is now given by the procedure of Def.1. The correspon-
ding operators depend generally on the choice of the Riemannian
connection on M. It was shown in [6}, UG] that for every represen-
tation space E of SO(n) and for every Jj =1,...,1 there is just
one conformal weight w such that the operator ’ ajov is confor-
mally invariant,i.e. it does not depend on the choice of the Rie-
mannian structure within the given conformal class.

Remarks.

1. The standard procedure ( K], 0013, 017]) is to consider the repre-
sentation spaces E over € , to complexify the cotangent space and
to split Alec E.

2. If a spinor representation is used,the group CO(n) has to re-
placed by its covering group and the operators are globally well-

~defined only on a spin manifold M .

Example 9. Generaliz 4 C-R equation on manifolds.

Let us now discuss how two cases of Cauchy-Riemann equations
on special types of manifolds,described in [15), ['1gland[21],fit
into the scheme.

A. Let M be an oriented U-manifolds with a conformal structure
Denote G = CO(L) and G = Spin(n)»R+ (the covering group of ).
Let p:G =~ G be the covering map. Define V as a Riemannien connec-
tion within the conformal structure on M . Suppose further that
the principal fiber bundle B for G-structure on M can e lifted
to a principal fiber bundle B together with the bundle mep G: B8
such that the diagram

pl(e)

=
o o
lmlm
oRETY

commutes for every geG .
The action of Spin(h)= Sp(1) x Sp(1) on haz H can be
described using quaternions as
{a,b) € sp(1) x 8p(1) —>» (a,b)q = agd , ¢ €H.
Every representation of G is characterized by a Spin(l4) represen-
tation and by a conformal weight W+ . We shall consider the repre-

sentation of G on [E = H given by
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. R -1
t:(a,b) € 8pin(4) —> t(a,blg = b 'q , q¢H
and by the conformal weight w = 3/2. Then the splitting

x , M(E)
rEY-Ls PN o f) T @
M)

correspond to E)Gh A’(E) = E1 ® E2,vhere E1 =~ H is again a basic
spinor representation of Spin(h).The operator n1oV is conformally
invariant ,while w§V is not (it needs another conformal weight

[6] ). Hence for every such a manifold M we have associated two
vector bundles E and E1 over M and the differential operator
ﬁ1ov from M(E) to F(E1) . This is just the more detailed descri-
ption of one conformally invariant operator -Dirac operator- dis-
cussed in Example 8. Now in the case that the conformal structure
is integrable,we can find a coordinate covering such that the
transition functions are of the type y = (l@lxﬂ))(cx*d)«1 s X,Ys8,b,
c,d € H (see [131 ). In this case there is a way how to define

the bundle E and the equation(n eV ) y = O directly by patching

together flat pieces. It was done1in (*5] . In local quaternionic
coordinates the equation reduces to Fueter equation.
Remark.

An extension of Markl's construction to complex Clifford
case was described in[’?] . A further study is needed to see what
general structure corresponds to this case.

B. Let M be a Riemannian manifold (dim M = n ). with an exterior
structure ,given by the Weingarten map. Take G = SO(n), B the cor-
responding principal fibre bundle , E = Cn (then E is usually cal-
led the Clifford bundle). A special connection V was defined on E
using the Riemannian connection and the Weingarten map in [21] .
The splitting E Oﬂ A' = E’Q E2
we shall get the operator wvoV ' T(B) ~> F(Ej) ,2which was presen-
ted in [21) as the generalization of the spherical Cauchy-Riemann

operator r (r31) .

being the same as in Ex.3.A.,

Example 10 . Quaternoonic-valued differential forms on H { [24] ).
Teke M = R = H , G = Spin(4),B = M x G, V:= d,
Y:Spin(h) —>» SO0(4). We can identify [E = #H with the spinor re-
presentation by
t:(a,b) € Sp(1) x Sp(1) = Spin(h) +—» 1(a,b) x = a.x, x¢ H.
Let us denote this representation by V and the other spinor repre-

sentation space by v' . We shall denote (as in Ex.5)
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Ej’l = SjV @, s'v/ . Note that E = £ *°. The spaces Ej’l are
complex vector spaces,but they are real spin modules for j+l even
and quaternionic ones for j+l1 odd (see [19]). So

8o for j+1 even there is a real subspace Ej’%: Ej’l,vhich
is the irreducible {over R ) representation space of SO(L4). Note
that EJ’ QIRt:lEJ’l (see [1] or [12] ).We have the following
isomorphisms of representation spaces

A'(my) rE;’; Ci.e. MNE)xE)

A (Rh) =~ rE" " + r& ; ( the godge decomposition)
(R),) = A1(Rh) s AR, = A“(ah) =~ R

It then leads to the splittings
1,0 1.

]

0,1 .1, . 0,1 . 2,1

E @RI\_IE e E ’dlmBE ’ =Bd1mRE = 12,
g0 @R Mg ’OGE(rE % 02)x [ 3.9 g% g2

il
dim‘RE3’0 =8, ainge’® = u aimg' " = 12

E1‘0®RA3:E0’1®E1
The splitting (3) in the Def.1. has then the form
reest)
L RENT N ED NG
ree*®) p(E40\/<: rNee*®) (s)

™ e - ~ oy 7
N rcesey 7

It can be compared with the splitting of H-valued forms described
in [2k] using quaternionic coordinates. The splitting of 1-forms
and 3-forms coincide while 2-forms were splitted in [24] only into

‘ e £3°9) (this splitting correspond just to

two pieces Q (€
the splitting into selfdual and antiselfdual forms). So the point
of view presented here gives the refinement of the splitting in[gh].
Moreover ,the same splitting can be considered (after a choice of

a connection on E ) on any spin L-manifold.

Remarks.

1. Note that all operetors in (6) are massless field operators de-
scribed by Garding [7] ,considered , of course,on Euclidean space-
~time

2. The splitting of Clifford-valued forms on R described in [22]

n+t
does not fit into the scheme,so it cannot be extended to manifolds

using described methods.
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