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ABSTRACT. The paper presents a generalization of the clas-
sical 3 and 3 operators from complex analysis on Riemann
surfaces to vector-valued differential forms on conformal
n-dimensional manifolds. An abstract scheme for such genera-
lization is based on the splitting of the vector-valued

de Rham sequence. The possible generalizations are classi-
fied by couples of irreducible CO(n)-modules and by a choi-
ce of a connection on the associated vector bvundle.

Various generalizations of C-R equations, studied by diffe-
rent authors during last 50 years, are discussed and it is
shown how they fit into the scheme. A special attention is
paid to the most interesting case of dimension 4 and to the
connection of the described systems of equations with equa-
tions in mathematical physics.

1. INTRODUCTION

The classical complex analysis (in the plane and even more

on manifolds) is so rich and beautiful part of mathematics

that there were many attempts to look for a similar theory

in higher dimensions. The generalizations went to many direc-

tions. They usually consist of a system of first order 1li-

near PDE with constant coefficients ( (2] , 14 , [15] , [20], [22],

[34],(37) , [38] ,[39]), sometimes more general elliptic sys~-

tems (with variable coefficients or with nonlinear O-order

terms) are considered ( [13} and references therein), or even

a2 fully nonlinear system of self-dual Yang-Mills field equa-

tions .was suggested as a generalization of C-R equations to

higher dimensions ([23]). Some generalizations to maps defi-

ned on manifolds were also presented ([1],[15],(21],(32])).
Any of these generalizations has its own merit and it

is difficult to decide what a proper generalization of C-R

equations should be. It depends clearly on the point of view,
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202 V. SOUCEK

on the choice what aspect of the classical complex analysis
wvants to be preserved under the generalization.

Not all generalizations, mentioned above, are included
in the scheme presented in the paper. The guiding princip-
les for the generalizations studied here can be stated as
follows.

Firstly,to open possibilities to look for generaliza-
tions of the fascinating field of complex analysis on mani-
folds, the wanted scheme for the generalization should be
necessarily formulated not for functions on domains in R
but for maps defined on an appropriate type of n-dimensi-"
onal manifolds.

Secondly, the classical C-R equations in the complex
Plane are substituted by 3 operator, acting on complex va-
lued differential forms. The holomorphic functions form the
kernel of 3 operator on O-forms and the whole standard
split de Rham sequence

1

l \Rg’ (1)

forms the inseparable picture. It would be highly desirable
to find a generalization of the diagram (1) to higher di-
mensions.

Thirdly, 'a higher dimensional generalization' should
mean that the equations reduce (at least in flat cases)
back to the classical Cauchy~Riemann equations for dimen-
sion n=2.

The general scheme, satisfying the principles stated
above, is described in the paper (following {71 ). Basic idea
is a certain kind of invariance under an appropriate group.
The generalization of the domains of definitions of our maps
is based on the fact that complex l-dimensional manifolds
(Riemann surfaces) coincide with (real) 2-dimensional mani-
folds with conformal structure. In higher dimensions, our
maps will be defined on n~dimensional manifolds with the
structure group G = CO(n) (resp. the universal covering
group G of G ). Target spaces of maps will be irreduci-
ble finite dimensional G-modules over R (note that for n=2
such modules look like Ra = C).

The basic idea of the scheme was inspired by the paper
by Stein and Weiss ( [38] ) on generalized C-R equations and
by the paper on conformally invariant first order operators
by Fegan ( [11] ). The essence of the approach is simple, we
shall describe it now in the flat case.

ot
e
\5‘g°

Let us denote by Cw(V) the space of smooth maps of
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GENERALIZED C-R EQUATIONS ON MANIFOLDS 203
a domain Q<:Rn to the vector space V and let us denote
AY = AJ(RA'). For n=2 we take the de Rhanm sequence

d £7(A1) —2 w742 (2)

=
£ (A°)
and we shall consider its complexification (i.e. maps into

Ag = 7 g RC)' The splitting
A; = A0 @ p0,1 (3)

leads directly to the split de Rham sequence (1), Now,

any (nontrivial) S0(2)-module v looks like R = ¢ and
the tensor product A1®If’ splits {as SO(2)—mod§le) into
two.pieces F1 ® Fo , both isomorphic to Ry. The equations
¢coming from this splitting are equivalent to C-g equations.

Let us take a G-module Vv (over R) and let us tensor
the de Rham sequence
d 4
E7(ae) = L L 4 eerym (L)

wvith V (over R). The products AY ®RV can bhe decomposed

inte irreducible pieces (as G-modules), say

J oo g v o= pd J
AV A ®R/ F1@...$ij (s)

It induces the splitting of V-valued de Rham sequence

o, 1 o, ~1
3, C(F1)—.....-_..C'(F? )
e v)—" : : — Em(An®RV) (6)
: & & :
3} 1, \oo n—l/
18 (rF S T (5!
m, m 1)
which is proposed to hbe the proper generalization of (1)

to higher dimensions. Every individual operator in (6) feor
every V is in such a way a generalization of 3 or 3
operator from (1), Note that the structure of the diagram
6) can be much more complicated than that of (1) and
that it depends generally on the choice of V . Moreover,
the operators 3 . and 3 in (1) were quite similar one to
another, while the individual oberators in (%) will be in
82neral quite different in character and as o properties
of their solutions,

The best way to classify the individual ocperators
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204 V.SOUCEK *

in (6) 1is by the highest weights of the corresponding spa- }i

j +
ces Fi and FJ,1 (note that the same operator can appear

in the diagram (6) for different modules V and on diffe-
rent places and that every one can appear in the first co-
lumn of operators).

The aim of this review is to discuss how various gene-
ralizations of C-R egquations, studied by different authors
during last SO years, fit into the general scheme. So the
general definition of the split de Rhan sequence for vecH
tor-valued forms is introduced first {(§.2.) and then various
generalizations of C-R equations and their relations to the
suggested scheme are discussed (§.3. and §.4.).

No attempt was made to make the list of examples, re-
sults and references complete (in faect, it is almost impos-
sible, for example, for spinor fields on space-times). They
were chosen with respect to the knowledge and interests of
the author.

2. VECTOR-VALUED DIFFERENTIAL FORMS

Let us consider the conformal group T = co(n) and its uni-
versal covering group G. Let V be an irreducible, finite
dimensional C-module over R. The fundamental representation
of ¢0(n) on B induces the structure of G-module on

pd = AJ(Rn*) and the tensor product Ad ®WV splits {as

G-module) into irreducible pieces:

ie v = I g ... 0 pd
A R i ’ mi o j=1,...,n-1 (1)

Let M be a (real) oriented n-dimensional manifold
with conformal structure,~i.e. we nave theucorresponding
principal ¢€O{(n)-bundle P. Suppose that P 1lifts to a
principal G-bundle P, | i.e. that we nave a {(fibre vundle)
homomorphism f : P—=FP. We shall denote by V, Ei and Aj

the vector bundles associated to the C-modules V, Fi and
AT(R *).
n

Finally, let us choose a covariant derivative

™~

v o 1"(1/_)—-———‘--I‘(L\_1 ® V) and extend it in the usual way to

] j+1 .
7 : r{Ad @ Y) r(A*T'® ¥),i=1,...,n-t.
v v a
Then the sequence T(¥) e T(A™ ® v) for

V-valued differential forms splits as

100

S i e

e
PR TY

e
o

v Rl
L nelz B
e A S

o




wna e

ATy o e
R
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AR 16 Ll

3, =1 E
////’ ? \\\\\ o ®

. T="r(A"® v) (8)
o :
— .. __\__:r'(F“" )/

“m -1
n

o
my™Nr(r! )
™y

Remarks. 1. In flat spaces the definition simplifies a lot.
It is not necessary to introduce the principle fibre bund-
les P &and P , all bundles being trivial. There is the
distinguished connection V=d on RnxV . The sections in

r(A? @ V) are simply smooth maps in Cm(AJ®RV) and the

diagram (8) coincide with (6).

To give a G-module V , it 1s necessary to choose a
Spin(n)-module V and to specify the conformal weight. But
the conformal weight does not influence the splitting (7),
so the scheme (8) depends in the flat cases only on the
choice of the Spin(n)-module V

2. It is possible (and useful) to use the same procedure
also for the case of the group G = Co(p,q). The correspon-
ding operators cannot be, of course, considered as generali-
zations of C-R equations. But, the representations of
Spin(p,q) being the same as those for Spin{(p+q), the corres-
ponding operators are 'analytic continuation'of those for
co(p+q) case. This is especially interesting in dimension &4,
where the operators in CO(L4)} case are analytic continuations
to Euclidean spacetime of operators used in mathematical phy-
sics. It is also possible to relate properties of solutions
of corresponding systems of equations (see e.g. 3.7).

3. Another variation of the described scheme can be often
found, which works with complexifications of all vector
bundles. The only changes needed are to consider complex va-
lued forms and for a G-module V g¢gver C to consider the
splitting of the tensor product Ag ® V. Basically, there

is only a little difference between tgese two versions (for
a more careful discussion see [8)]), but the analogy with

the classical case n=2 1is closer for the version given

here. .

3. EXAMPLES (FLATSPACES)

In all examples, presented in this paragraph, we shall con-
sider only maps on R_ (flatspace), so (with- respect to Re-
mark 1) we shall use "the simpler diagram (6). Note that in
these examples the scheme (8) gives the generalization of
the corresponding equations to conformal manifolds.
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3.1 Regular spinor fields B

Let us consider the case, when the module V 1is one of the
basic spinor modules (over R). We shall include the more ge-
neral case of the group Spin{p,q). The Clifford algebdbra

ﬁp q {corresponding to the quadratic form with p pluses

and q minuses) is very useful for the description of these

modules. For gq>1 we have the inclusion Spin(p,q)c

C~ﬁ+ £ and any minimal left ideal in € is

Psq pra-! p,a-1 :

the basic Spin(p,q)-module (for more details see [20] ) i
The tensor product splits in this case into two pieces :

iR

1
A® VY =F ®F,,

where one summand on the right hand side (say F ) is again
a basic spinor module ( (8] ). So the first column in the dia-
gram (6) locks like

k k

. SR I G
£ (A @Rv)\ &
2, (F,)
Choosing an orthonormal basis e1,...,ep+q in Rp+q and de-
noting a1=...=ap=-ap+1=...=-ap+q=1, we can write the coor-
dinate description of these operators:
. If |1
3, ¢ T )-—-——o-dek®ek(Z_ ajejax.)ﬁ (9)
k J J
af af 1
g 8 f = 2 dxk‘g’{ﬁ - eyl % ajejﬁ.)ﬁ} ’

J

where the multiplication e _e.v means the action of e ej

k) k
on vev ([8]). In the Riemannian case all a. disappear.
The equation d.,f = 0 is (after a simple redefinition
e, —= -e., i=p+1,...,p+q) Jjust the condition for regular

spinor field presented by Lounesto ((20] ) in general
Spin(p,q) case. The case p=o (or q=0) is the most interes-
ting and the most common from all generalization of C-R e-
quations. The operator is usually called Dirac operator.
There are many more results known for the Dirac operator than
for any other considered operator. In the paper {20] the ge-
neralized Cauchy integral formula is proved (in the elliptic
case) for the Dirac operator. We shall discuss it again in
Examples 3.2,3.4,3.7,3.8,4.1,b.2,4.3,4.5, where further re-
sults will be discussed.
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GENERALIZED C-R EQUATIONS ON MANIFOLDS 207
3.2 Clifford analysis

Let us consider the Clifford algebra Cn = Co n with the
. + - X ’
standard grading tn = tn + tn . The Clifford algebra tn

is the (reducible) Spin{(n)-module due to the inclusion
Spin(n)c C; and, say, left multiplication. We can decompose
it into irreducible pieces Cn = V1 ® .. Vk , where all Vj

are bagic Spin(n)-modules. As in 3.1, all tensor products

v, ®_Al decomposes into F. 9 F. , where all F. are
J R Js1 J,2 Js
again basic.spinor modules. Adding all pieces together, we
shall obtalin two operators for maps Y : Hn——~ tn

3

1 ,® ~ o3

tm(v1 ... 0 '=‘t°°(t‘.’n)<t (F1,19..®Fk’1) = ‘C(‘Cn)
th(F1,2@..@Fk,2)

To describe the coordinate form of the operator 31 ,

let us choose an orthonormal basis RN of Cn

Apvlying the results of the section 3.1 to every piece V., i
the equation 81W = 0 for fn—valued maps looks like J

n
Se =0 | (10)
T 9%
This is the equation, studied by Delanghe ([9] ). Note that !
multiplication by e. need not preserve the individual pie- :
ces Vj , but preserves, of course, the whole algebra tn . 4

Multiplying the equation (10) by (-e1) we shall obtain
the equivalent equation

n

ijg—)\% =0 (11)

1 J

vhere f1 = 1 and f. = -e1ej , J=2,...,n are generators ;
+ . . . ;
of the algebra tn = tn e Restricting our attention to !
- ]
maps ¥ : Rn —_— tn—1 = f; , wve shall get the equation for .

monogenic functions in Clifford analysis.

The study of solutions of the equation (11) 1is well
advanced. A remarkable amount of results is known already
for monogenic functions (see [2)), they will be described
in more details in the lecture by Prof, Delanghe. Hlote that
even if the system of equations studied in Clifford analysis
is reducible (it consists of several copies of the equation
for regular spinor maps), there are definitive advantages in
notation (use of Clifford numbers) and concepts, which makes
this setting of the problem valuable.
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208 V. SOUCEK
3.3 Fueter's regular functions

Fueter and his coworkers started to study quaternionic ana-
lysis 50 years ago. Their regular functions are special ca-
ses of monogenic functions in Clifford analysis for the ca-
se n=3, where maps f : R, = H——= ¢,  =H®H are consi-
dered. To obtain Fueter's " equation fo} regular functions,
it is sufficient to split the value f = (f ,fﬁ) and consi-
der only, say, f£,. A nice and modern account “of basic re-
sults in quaternionic analysis can be found in [39] .

3.4 Generalized C-R equations of Stein and Weiss

In this case we shall use the complexified form of the pro-
cedure, described in Remark 3 (section 2). For any Spin(n)—1
-module V (over C) we shall split the tensor product V®,A,
into two pieces. There is the exceptional irreducible piece
in the product, called Cartan (or Jung) product of V and

1 . . . . .
/\C . It is characterized by the fact that 1ts highest weight
. . . 1
is the sum of the highest weights of V and Ac. Let us de-

. 1 .
note it by F, , so V ®CAC = F, ® F,, where F, 1is (not
necessarily irreducible) Spin{n)-module. Denoting w, the
projection to F2, we can write the equations of Stéin and
Weiss as
(ﬂzod) Y = 0 .

It was proved in [38] that solutions of such equations
are (componentwise) harmonic functions and that the modulus
of the maps to the power p 1is subharmonic function for
p = (n-2)/(n=1) . The most interesting special cases are:

i) VvV is the basic spinor module (see 3.1), the case n=3
was studied by !oisil and Theodoresco ([22))

ii) v = AZ , then the tensor product Az‘gcA; splits into 3
pieces (see (38] ): the Cartan product T, , F, = AZ+1 ,

and F3 = AZ-] ; the equations defined using the projections

Fe,resp. F are just the operators d , resp. § , the equa-

3

tion coming from the projection onto F2 & F3 being the

Hodge operator d + 6 . Both these cases are vell studied
on manifolds.

3.5 Massless fields

“ore complete di:cussion can be given for dimension n=k

At the same time it is the most interesting case because of
its close connection to mathematical physics. All bundles
and tensor products considered in this section will be

104



—

GENERALIZED C-R EQUATIONS ON MANIFOLDS 209

complex. There is the isomorphism Spin(}) = Sp(1)xsp(1).
The two basic spinor modules V+ and V_ can be realized
e.g. by left multiplication by one of the factors on V = H,
All irreducible Spin(4)-modules can be realized as submodu-
les of tensor products of the two basic mnodules V*+ gnd v-
and can be classified by a couple of nonnegative integers
(j,k): . .

’ ydok o siv @ sky_ |

where g9 denotes symmetrized tensor product,
It can be shown ([11},([17),18] ) that

Vj+1,k+1 @ vj+1,k-1 1,k+1 2 k=1

visk @ 4! e vIT @ vi]
C'e

(if j=0 or k=0, then there are only two pieces in the decom-

position).

The four (resp. two) differential operators obtained in
such a way are 'analytic continuation' of operators for
massless fields, described by Gdrding ([12]). Many of these
equations are used often in mathematical physics, sometimes
they are considered on complexified Minkowski space. The
most important cases, when j=0 (or k=0) leads to the equa-
tions, which are usually called massless field equations
and twistor (or Killing) equations. The description of the-
Se operators on manifolds is given in 4.2. A lot of results
are known for them (see e.g. [17],[2b] ,[27] ,[28]).

3.6 Quaternionic valued differential forms on Ry

Here we shall describe the whole split de Rham sequence
(6) in the special case n=bL and V=1V (see 3.5). Only real
modules will be considered here.

The spaces VJ’k » considered as modules over R, are ir-
reducible only for Jj+k odd. For J+k even there is a real

subspace rydoke ydok such that rvJd:* @RC = ydok (seef18])

The exterior powers AY have the following description in
the classification:

A= ey a2 o py200 g 0,2 3 Al

which then leads to the splittings

0 0,1 1,2

1
e Vv ? 0 2

2 _ 3,0 o vl

1 1 1,0 1
% > = ’ = >
7 ®RA v » V @RA @ Vv
(the splitting for 3-forms being the same as for 1-forms).

The diagram (6) hence has the form
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fakvl’2)\\‘\~
® 0,1, —% v 0,1
80,,(V1,O)/tw(v2 1)\\tw(v1’o)\<\\: C(Vz 1) \‘COO(V-I’O)
(v )<:'c°°( 3,0, _— C0vEr )
v -

It can be compared with the splitting of quaternionic valued
forms, described in (34] using quaternionic coordinates. The
similar splitting can be written for other spinor modules,
too.

3.7 Integral formulae and Leray residue

If the equations coming from the diagram (6) are reasonab-
le generalizations of C=R equations, it should be possible
to write a generalized Cauchy integral formula for their 50—
lutions. It is possible to do it in many cases (e.g. if an-
other first order operator can be found such that the compo~
sition of both gives the Laplace operator, see [6]). Genera-
lized Cauchy integral formulae were discussed in many papers
(e.g. (2],[5],[6],09],[10],[13],[18],[15], [20] » (351, [37)).
All these integral formulae are of elliptic type, i.e. the
value at the point P is expressed using values on a sphe-
re around P

It was mentioned already that the equations coming from
the diagram (6) have both elliptic and hyperbolic versions.
The integral formulae for hyperbolic equations have quite
different character, but even if these two types of integral
formulae are very different indeed, there is very simple and
nice principle how to deduce one from another using the Leray
residue ([19] ,[29]). Leray's extension of the classical
residue thecrem can be described as follows.

Let X be a complex manifold of a (complex) dimension
n , let S be a submanifold of X of codimension 1 . For
every (p-1)-cycle Yy in S we shall denote by &y the
Leray cobord of Yy . It is, roughly speaking, the boundary
of a tubular neighborhood around Y » so &y is a p-cycle
in X-s.
Theorem (Leray):

Let T be a smooth, closed p-form on X\S, then there
is a (p-1)-form Res t closed on S » such that

f T = 2ni j Res T

Sy Y
holds for every (p-1)-cycle y in S .
The theorem holds for vector valued forms, too, and can be
used in the study of integral formulae in the following way.

Suppose that the map £ : R — V satisfies equations

for which Cauchy integral formul® holds. So suppose that
there 1s a (n-1)-form wps depending on P  such that
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GENERALIZED C-R EQUATIONS ON MANIFOLDS 211
£f(p) = w
L (12)
n=-1
where the point P 1lies inside Sn—1c Rn.

Suppose further that the form w. is the restriction of
a closed form on Cn\ ¥ , where N "is the complex null cone

in Cn with the vertcx in P .

Then, defining tne index of the point P with respect
to (n-1)-dimensional cycle rc Cn\ N properly, the formuls

Ind. P.£(P) =’£ wp (13)

holds for every cycle fc CH\N ([6)).
But then the Leray residue. theorem tells us that

(14)

Ind, P.f(P) = 2nij Res w,
Y

Sy

for every (n—2)-cycle y in N . Taking the cycle v espe-
clally inside the intersection of N with the Minkowski
slice through P gives then the corresponding integral for-
mula for solutions of the hyperbolic system. In C we have
both possibilities (either to express f(P) wusing™ fecC i
or using Yy <N). n

Using the procedure it is possible e.g. to deduce
Riesz's integral formula for solutions of the wave equation
(;30]) from the standard integral formula for harmonic func—
tions ([10]) or to deduce integral formulae, due to Penrose
for spin n/2 massless fields on Minkowski space ([261,[27])
from the Cauchy integral formulae in hypercomplex analysis
({36]). A new integral formula for the Dirac operator on
Minkowski space M was deduces by Buref from the standard
Cauchy integral foPmula in Clifford analysis ([s5]).

3.8 Vector valued forms and cohomology

To illustrate the usefulness of the diagram (6) 1let us
consider the following well known fact from the classical
complex analysis. The number of holes in a domain Qe C
can be found using only properties of holomorphic functions
on 2 . Holomorphic functions without primitives can.exist
on 2 and the dimension of the vector space
H(n) / Sn(a)

dz
is equal to the numher of holes in Q .

Let us express it in more modern language.
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Let us consider a part,nf the diagram (1)

w 0 3 o 1
0 c € (a,r”) e” (2,129
: o_ 3 1
and 1ts subcomplex 0 C M M N
where ¥° = {re€%a,00)] Tr=0}, u' = {re€a,0"10)| Fr=0} .
1
Then H (2,c) = 1! 7 3(u®).
All this can be generalized to =R using the diagram

(6). To give an example, let V be th2 basic spinor module
(over R). Then we shall consider the spaces ’

Ed = a0l ® V)
of V-valued differential forms on 2 < Rn. It may be proved
by induction that ome of irreducible pieces in the decomposi-
tion of A‘j ®RV » which we denote ty Fj, %s isomorphic to a

basic Spin(n)-module. Let us denote by Fg the complementary

invariant subspace, then we have the splitting EJ = E? 5] Eg,
where Eg = tf(n, F?) s Eé = tw(Q,Fé). So we shall obtain

the diagramn

1 n-1

3 B — —+ E
p 1
AN G S
2 1 2
Let us denote HJ = Ker Bj’ then the homology of the seguen-
ce
0 Vo 102yl 2 P gaet

: "
coincide with HY(Q, V) for j=o,...,n-1 (see [31],[33]).

L. EXANMPLES (MANIFOLDS)
4.1 Dirac operator

It is the only case where important and deep global results
are already known. The Dirac operator plays, for example,
the important role in the Atiyah-Singer index theorem ([25]).
To describe the Dirac operator using the general proce-
dure of the section 2 (for complex bundles, see Remark 3),
three choices have to bz made - a Spin(n)-module V, the
conformal weight w and a connection Y . We shall consider
only the case of even dimension, n=2m.
Let us take w = {(n-1)/2. Consider a minimal left idecal
V in the complex Clifford algebra ¢ with generators
@y Let us choose a Riemannian metric in the given
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GENERALIZED C-R EQUATIONS ON MANIFOLDS 213

conformal class. It will induce the connection V¥V on the
Spin bundle V .

1 . . . .
The tensor product Ac‘®CV agaln splits 1into two ple-

05 F1 being the basic spinor module. The space F
is often identified with V using the map, given in coor-
dinates by

ces F1,F :

1 1
1 -
vev — - n{dek®ek.v}é BT

Then the projection of A;<&CV onto F1 =V is given by
(compare with (9) )
m 2dx.®v., —— T e..v., € V .
J J : J J
Under such identification the Dirac operator looks like
r(v) r(a) ®.v) . (V)

and its symbol is given by Clifford multiplication.

Solutions of the Dirac equation are called harmonic spi-
nors by Fitchin ( {16]). The module V splits into two ir-
reducible cpinor modules V* and VY~, which leads to opera-
tors D*, DT and to spaces of positive (negative) harmonic
spinors. The special value chosen for w is quite impor-
tant, because in this case the Dirac operator does not de-
pend on the choice of the Riemannian connection {(see 4.2).
It was proved in [16] that the dimension of the space of
harmonic spinors is conformally invariant, but that it can-
not be expressed in terms of copological invariants of the
manifold.

In the case of conformally flat manifolds it is possib-
le to give a nice coordinate description of the spinor bund-
le and of the Dirac operator. It was shown by Ahlfors ([0])
that conformal maps In higher dimensions can be expressed
compactly using Clifford numbers in a very close analogy
with the complex case. This notation can be used to give a
simple formula for transition functions of the spinor bundle.
The condition that solutions transform into solutions under
conformal transformations (with a weight) picks out again
the conformal weight w = (n-1)/2 as the only possibility
(for details see [4],[21]).

L.2 Conformally invariant operators

Let us consider again complex bundles. Let us take any ir-
reducible Spin(n)-mecdule V and any conformal weight R

Let us consider further any irreducible piece W in N:®CV.

A naturel possibility for the choice of ¥V 1is to con-
sider a Riemannian metric inside the given conformal struc-
ture and to take the associated connection ¥ on V . It
will give us the corresponding operator 3 in the first
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214 V.SOUCEK

column of the diagram (8). The operators 3 depend general-
ly on the choice of the Riemannian metric, but there is an
exceptional, unique case, when all operators 3 for all pos-
sible Riemannian metrics in the given conformal class coinci-
de. It was proved by Fegan ({11 ) {(and by algebraic methods
by Hitehin ({17] )) that for every choice of V , W there is
exactly one conformal weight w such that the operator 3

is conformally invariant (in the sense described above).

) Another very interesting subject is discussed in the
paper by Hitchin ( [17] ). The twistor theory, created by R.
Penrose, is nowadays very rich and extended theory. The theo-
ry is firmly rooted in physics (namely in general relativity)
and its evolution has led to a lot of deep and important
mathematical results for nonlinear equations. It was a part
of the Penrose's twistor programme to study massless fields
using the correspondence between Minkowski and twistor spa-
ces. This transformation is studied in [1ﬂ for massless
fields (i.e. V = vJ»2 in 3.5) and for the Laplace equation
on self-dual L-dimensional manifolds.

4.3 Generalized spherical C-R operator

Let M be n-dimensional Riemannian manifold with an exte-
rior structure, given by the Weingarten map. Take the Clif-
ford algebra €, for the G-module V . A special connection
was defined on the associated vector bundle using the Rie-
mannian connection and the Weingarten map in ([32] . The cor-
responding piece in the decomposition was used there as the
generalization of the spherical C-R operator.

L.4 Kidhler equation

Let us take the space AT for the G-module V . Then {see
the section 3.4) the tensor product AT® _A' splits

R
. . ~ ,r+1 ~ ,r=1 _
into 3 pieces F1,F2,F3 and FE = A . F3 = A . The cor
responding operators 32 and 83 are just d and § .
Now, if we take V = A" = A%®...@A" , then we can ap-

ply the procedure piece by piece and we shall end with the
operators d and & on A" . The values of these operators

are, strictly speaking, in A*(&RA1, but we can identify

. * . .
then with A . We can even consider their sum d + 6 , but
then the result differs in both cases. The operator d + §

with values in A splits (locally) in a quite different
way and it coincides {after the usual identification of A¥
with gn) with the basic operator in Clifford analysis (so

it splits into the sum of the Lirac operators for spinor va-
lued fields).
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The operator d+6 in the second sense is usually called the Dirac
operator and its physical interpretation was studied in f11.
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