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Abstract
In this paper Clifford- or spinor-valued differential forms are stud-
ied. It is shown that it is possible to define monogenic differential
forms as solutions of Spin-invariant systems of differential equations
in such a way that such monogenic forms, defined on a domain 2 C R™,
reflect faithfully the topology of  and that the Cauchy theorem holds
for them.

1 Introduction.

Starting with the pioneering papers by G.C.Moisil and R.Fueter ([6, 11])
in 30’s the effort of many people (see e.g.[3, 1, 8, 9, 10, 12, 17]) established
the (Riemannian version of) Dirac operator as the appropriate generaliza-
tion of Cauchy-Riemann equations to higher dimensions and a comprehen-
sive function theory was already develcped for C,,-valued solutions of the
Dirac equation (usually called monogenic functions) ([1]). The next natural
topic - the question what is the best generalization of holomorphic forms
to higher dimensions - has already come through a longer evolution. Such
generalizations can be based on different points of view ({14, 13, 15, 16]).

The generalization presented in the paper is based on three basic re-
quirements, we believe that they are indispensable for a good answer to the
question how to define in the best way the notion of a monogenic differential
form.

The first and the most important one is certainly the condition of Spin(m)
invariance of the scheme. It is the property which make possible to generalize
the monogenic forms to Spin-manifolds.
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The second requirement is topological. In the holomorphic case (n=2)
it is possible to describe the topological information on the domain (such
as, for example, the number of holes in it) using holomorphic forms and the
homology of the sequence

0—C - I(Q0)5I(Q,0%) -0, (1)

where I'(§2, O) denotes holomorphic functions on Q@ C R? and I'(Q2, O*°)
denotes holomorphic 1-forms on §2. So, for example,

Hi(Q,C) = T(Q,0")/ Imd.

It then reduces to the question how many holomorphic functions on §2 have
no primitiveson 2. We want to define the spaces M* of monogenic C,,,-valued
k-forms on §? C R, in such a way that the homology of the sequence

0 — Cm — (2, M®) & T(Q, M) ... & T(Q, M™-1) - 0, (2)

at the k-th place concides with the homology spaces Hi(Q,C,).

Finally, the third condition is coming from the function theory point of
view. The standard function theory for monogenic functions ([1]) uses not
only monogenic functions, but also monogenic (m-1)-forms. They are the
forms w = do f, where f is monogenic and do = Y (—1)"*1e;d2; (where
the hat indicates that i-th coordinate is missing in the product). The Cauchy
theorem and its further consequences are based on the fact that if f and
w = dog are monogenic, then 7 = f A w is closed. The duality theory,
described in [4], is also based on this property. It is certainly desirable to
define monogenic forms in such a way that a similar property holds.

We want to describe now a possibility how to define monogenic forms
in such a way that all requirements, described above, are satisfied. In all
previous discussions of such generalizations only a few of them were Spin(m)
invariant (some examples in [15]), some of them were able to describe homol-
ogy of the domain ([14, 15, 16]). The monogenic forms, defined in [16] were
very close to the answer, they were invariant, they expressed the homology of
the domain in a slightly different version and the Cauchy theorem was valid
not for the wedge product of forms, but for another coupling between forms.
In this sense the paper gives the answer wanted for some time already and
it offers a net solution to the problem.
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This paper is designed just to announce and explain the results, we shall
give no detailed proofs. The detailed (and extended) version of the theory
will be published later. The paper is organised as follows. In the first section
we shall describe the splitting of C,.-valued k-forms into smaller, Spin(m)
invariant, pieces. Then, in the second section, we shall build two comple-
mentary subspaces in the space of all k-forms, using these invariant pieces.
The analogy with the definition of holomorphic forms will suggest how to use
these two parts for the definition of monogenic forms. In the last section we
shall describe the properties of monogenic forms.

2 Clifford- and spinor-valued forms.

Let us first summarize some basic facts on differential forms on domains
in R™ with values in the Clifford algebra C,, (associated to R™ with the
standard negative definite form). They are just maps from Q@ C R™ into
Cm ® (A*R™). Denote such maps by

o
£ (D, En) = ® EX(Q,C,0).

We shall consider spinor-valued forms as well. It is well-known that in
even dimensions there are two basic irreducible (complex) spinor representa-
tions 5%, 57, while in odd dimensions there is just one spinor space 5. We
shall denote either of these spinor representations in any dimension simply
by 5. The space of spinor-valued forms will be denoted by £(Q,8). To
consider spinor-valued forms is not very different from considering Cyn-valued
forms, because C, can be decomposed (as the Spin(m)-representation) into
a sum of spinor spaces. We shall write most of formulas for forms with C,,-
coefficients, to translate everything into spinor-valued case, it is sufficient to
multiply everything from the right (resp. left) by a suitable constant spinor.

The simplest exa.mples are O-forms (i.e. functions) and special (m-1)-
forms of the type w = do.f, where f € £° and do = Sm(=1)Hedz,.
To describe the special form do in an invariant way we shall use the the
contraction tjw of a form w = = Yaj=k wadz 4 € EF and }Ke Crm-valued vector
field t = 31" t;0:;,t; € C, given by

th = Zt]'FA(a:J.JdIA).

7A
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Similarly we define

Fl_t = ZFAt,-(—l)"‘l(('),demA).

Using such notation, we find that
do = 0| dz,dz = dz, A ... Adz,,,

where § = 3 7" €,0;, is the Dirac operator.

There are a lot of nice, invariant differential operators of the first order
between the spaces £¥ and £*+!. The most important one is, of course,
the de Rham operator d (acting componentwise). The coefficients wy of the
form w = 37|42k wadz 4 being C,,-valued functions, we can define the Dirac
operator dw (acting on coeflicients of the form) by

Ow = Z (Owa)dz 4.
|A|l=k

The invariant description of Ow was given in [16]:

Lemma 2.1 For any w € £ we have

8w = 8] (dw) + d(8)w)]

Using the operator 0 we get two other useful operators between £% and
Ek+1,
Diw = dz A Ow, Dyw = 9(dz A w). (3)

There is a possibility to classify all Spin(m)-invariant 1-order differential
operators between the spaces of forms (see [5, 2]). To explain how to do that
it is better to consider spinor-valued forms (i.e. to decompose the C,,-valued
form into its spinor-valued components). So if S is the spinor space, it can

be proved that (for k < m/2) the product S ® A* R,, decomposes, as the

Spin(m)-representation, into k irreducible parts C.
k 0
S®/‘\§"‘:V""(B...G}V"’k. (4)
C
and L ‘
S® /\ Em — Vm—k,/l@”.@vm—k,k' (5)
C
4
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If we shall denote (for a fixed k =1,...,m — 1) by 7;,the projection of
S5 ® A¥ R™ onto V57 and by £53(Q, S) the set of all maps from Q to vk,
then all Spin(m)-invariant first order operators from £%(1, S) to £4+1(Q, 5)
are just linear combinations of the restrictions of ;0d onto irreducible pieces
ERI(Q, ).

We now want to describe the splitting of £5(2, S) into £¥7(Q, S) using a
simple Clifford notation. There are two maps w + dz A w and w — d|w ,
which could well be inverses of one another. They are not (for a general form),
but we shall describe now suitable subspaces, on which the composition of
them is the multiple of the identity. The main role in that will be played by

the following useful identity.

Lemma 2.2 For any w € £¥(Q,C,n) we have

[0)(dz Aw) = d A (B)w) = —(n — 2k) ]

The consequences are quite important. Let us denote
£k = {w = (dz)*f|f € N C)Lk=0,...,m.

Then the maps

w — drAw (6)
w — Ow (7)
are 1-1 maps between £¥9 and £¥+10 k£ = 0,...,m — 1 and for all w € £k
we have
de A(Olw) = (k-m-1)kw

Ol(de Aw) = (k—m)k+1)w.

So the spaces £F° are distinguished subspaces in £¥. For 1-forms we can find
an invariant complementary subspace, defined by

EWV={we&|d|w=0}.
It is easy to show that £! = £10 ¢ £11,

The space £1'' can now be transported using the multiplications by dz
to higher order forms and we shall find again the important fact that the
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contraction by & will be (modulo a scalar multiple) inverse to the wedge
product with dz.
Denote forall k=1,...,m—1

Ebl = {w = (dz)F P A W' | € E11).

Then the maps
w — dAw
w —  Ow

are 1-1 maps between £5! and £ k =1,...,m — 2 and we have for all
w e ERI

dz A (Ofw)
0](dz A w)

The described procedure suggests how to extend the system to get the
full splitting of £ for any k. Denote for all j < k,7 < m — k

(-m+k)(k—-1)w
(-m+k+ 1Dkw

il

Ek’j._n: {w=(dz)k T Auw'|w' € &7, 8]’ = 0}.

Then the maps
w — drAw
w = Ow

are 1-1 maps between £€%7 and £+ k =j,...,m — 7 — 1 and we have for
all w e &k

dz A (0|w)
d](dz A w)

(—m+k+7-1)k-7)w
(-m+k+j)k—7+1)w

i

So we have got the splitting of Cp,-valued forms in the form (k < n/2):
5";‘-8)"06)...@(‘:"’}‘

gm-—k — 5m—k,0 D... gm—k,k.

The splitting can be described by a triangle-shaped diagrams. We will
show them explicitely in a few lower dimensions, the arrows will indicate
maps dz A. and 8|. . Their composition is a multiple of the identity and the
factor is shown on the top of the arrow.
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dim = 3:

£ =2, g0 D4, g20 23, o3

g1 -1 £21

dim = 4:
£0 4, £1.0 -8, £2.0 PRl £30 —4, £
@D @b &
Por b SN £21 Pl £31
3]
£2.2
dim = 5:
£0 5, g0 (B, g20 20, e300 ZBL pa0 S5, s
&® &P @ SH)
g 3, £2.1 -4 g3 =8, g4
@D @

£2.2 -1 £3.2

The spaces in horizontal rows are of the same size, they have the same
dimension as £° -modules. The number of pieces increases by 1 up to the
middle and then decreases by 1. There is the longest column in the middle
for even dimensions, while for odd dimensions there are two columns of equal
length there. It can be shown using representation theory of Spin(m) that
the described decomposition is just the one given by the invariant pieces in

(4) and (5).

3 Monogenic differential forms.
The definition of monogenic forms will be based on the splitting of the space
EF of Cu-valued k-forms on § into two parts:
EF =¥ @ g+, (8)
To motivate this definition, let us recall the definition of holomorphic
forms in plane. First, there is the splitting of 1-forms
£l = £1.0 g go

7
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and .3 -operator of a function f is just the composition of the de Rham
operator d and the projection onto (0,1)-part of df . We have the
diagram

3 0,1
EO/ £ \ e
S 51,03/'
and holomorphic functions and holomorphic 1-forms are the kernels of the

maps 9.
If the splitting (8) is chosen, we get a similar diagram

" 17 24 .., (m—l)”
&0 O X & @ @
\ gl’ P 52' .. g(m—l)' /

gm

where the operators d” are defined as the composition of d with the projection
onto £¥. Monogenic forms can be defined now as the kernel of the operators
d”. So the question is now, if it is possible to choose the splitting (8) in such
a way that the monogenic forms will have the described properties.

The requirement of invariance says us that we have to choose for the
primed and double primed parts sums of invariant pieces, described in the
Section 1. One such possibility was described already in [15]. It was shown
there that if we take £%" — E*C then the homology of the monogenic forms
describes correctly homology groups of the domain. The only disadvantage
of such a choice is the fact that a suitable analogue of the Cauchy theorem
1s not available. To have such an analogue, it is necessary to make £ much
bigger. But choosing them bigger, there is a danger that homology will not
reproduce the topology of the domain anymore.

There is a solution for the problem. We shall choose the splitting (8)
in the following way (it is necessary to discuss even and odd dimensions
separately, there are some differences between them).



The case m = 21+1.
Let us define for 1 < k <[

E¥ = @ EI K = @ gkke (9)
0<i<k 0< <k
j even 7 odd
and
Elm—ky . _ o) Em—kk—j , Elm—k)" . a5t Em-kk-j (10)
0<j<k 0<ji<k
j odd j even

Let us illustrate the definition by the example of dimension m = 9. All
spaces involved are finite dimensional £° - modules, we shall substitute
in the diagram the dimension of the space £%7 instead of the space
itself. The pieces, belonging to £¥', will be indicated by boxes. In the
top row the dimension of the full spaces £% will be written.

dim=9:
1 9 36 84 126 126 84 36 9 1

v 1) 1 O 1 [ 1 ll 1
m ey m ey
27 27 27
(48] 48 [48] 48
[42] 42

Note that the dimensions of £¥ (for m = 9) are just binomial numbers

( : )in one dimension less. In general we have

dim&* = ( m-1 )

k

The case m = 2].

There are two possibilities for the definition of monogenic forms in even
dimensions. The scheme is the same, but there are now two possible
cases in the middle dimension, corresponding to the selfdual and anti-
selfdual forms.
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1. The first possibility is to define £ by (9) for £ < ! and by (10)
for k > L.

2. The second possibility is to define £ by (9) for k < I and by (10)
for k > L.

Note that the dimensions of the both spaces £ and & are the same

and that they equal to ( T ) Note also that both possibilities differ
only in the middle dimension, the spaces £ and & are exchanged.

We shall show the both possibilities explicitely in the dimension m = 8.

1 8 28 5 70 86 28 8 1

e 2]

[ S U N FU O FU IR SR FU
7] 7 [7) 7= 1 [7) 7
[20] 20 [20] [20] 20
28] 28 28
1 8 28 5 70 56 28 8 1
(] v [0 v 1 [1] 1 [1]1
[ 7 D @ o7 [ 7
[20] 20 20 [20] 20
[28] [28] 2
14

Everything is prepared now for the definition of monogenic forms.

Definition 1 Let us consider the splitting
gk — (c/'k’ @ gk”

(if m = 21, we shall choose one of the two possibilities, described above). We
shall denote
Mk = {w c EF ld"w = 0.}

and we shall call such forms (left) monogenic forms.
10
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As indicated in the definition, there is another, 'right’ version of the
definition. It means that the maps (6) and (7) are substituted by the right

versions:
w — wAdz

w - w|d

and the pieces £57 are defined by
¥ = {w =W A(dz)¥ T |w' € E,w'[0 = 0}.

The definition above can be used then in the same form, the resulting
spaces will be denoted by M*, and such forms will be called right monogenic

k-forms.
The next section will be devoted to the description of the basic properties

of the monogenic forms.

4 Properties of the monogenic differential
forms.

Monogenic forms were defined using invariant pieces £ and invariant
differential operators d”. The notion of monogenicity is hence Spin(m)-
invariant. We shall state now a theorem showing that monogenic forms on a
domain £ C R™ can be used for the description of the topology of f2.

Theorem 1 Let us consider monogenic forms M¥*, given by the splitting
gk — 5kl ®£ku

(if m = 21, we shall choose one of the two posibilities described above). Let
us take any k=1,...,m—1.

Then d maps T(Q, M*) into T(Q, M**1) and if we denote it by dy, we
have

Hk(Q,Cm) >~ Ker dk+1/1m dk.

A similar theorem holds, of course, also for right monogenic forms. The
proof of the theorem is based on the study of operators D; and D, intro-
duced in Section 2. For a given k let us denote by d*7 the operators mj0d

11
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restricted to £ (where 7; is the projection onto £¥*17). Then the both
operators D; and D, can be expressed as linear combinations of d*7 and it
is possible, using Lemma 1 and Lemma 2, to compute the coefficients ex-
plicitely. Using surjectivity of the Dirac operator, it is then possible to prove
that the operator d” maps £* onto £¥". The theorem then follows from the
results proved in {15].

A second important property of monogenic forms is the Cauchy theorem.
In the standard version of it (see [1]) there is the product of a function and a
(m-1)-form. Here we shall consider two forms in complementary dimensions
and their wedge product, the theorem being that if both are monogenic (in
a sense specified below), their product is closed. We shall formulate the
theorem separately for even and odd dimensions, because the formulation is
more complicated in the even case.

Theorem 2 Letm = 2l+ 1 and k=1,...,m—2. Ifw e M* and 1 €
M™=k=1, then
dlwAT)=0.

To formulate the theorem in even dimensions m = 2[ , we have to recall
the notation, used in the Section 3, where £ were defined. There were two

cases. Let us denote by £¥ the spaces defined in the first case and by E’U
ones defined in the second case (it means that £ are defined by (9) and £

by (10) . We shall use similar notation M* and M* for monogenic forms in
the corresponding cases. The subscripts 7 and [ will indicate again, if we use
the left or right multiplication in the definitions.

Theorem 3 Let m = 2l and k = 1,...,m - 2. Ifw e Mk and 7 €
M™=k=1,then
dlwAT)=0.

The same is true also w € M*, and 7 € M™*-1,,

The theorems above are the starting point for further development, just
as in the classical case (see [1]). It opens the way to the Cauchy-Pompeju
theorem, explicit indicatrices, the description of the winding numbers using
monogenic forms as well as to the duality theory and general residue theory.
However these questions will be treated in another paper.

12
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