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1. Introduction.

The aim of this paper is to describe a simple way of relating in-
tegral formulae for solutions of elliptic and hyperbolic systems of
partial differential equations. Using Leray's residue theory, it is
shown how these integral formulae can be drived one from another.

In general, the corresponding integral formulae for these systems
are quite different in character. To describe them, let us discuss
the simplest examples of Laplace's equation and the wvave equation

briefly.
For a solution u of Laplace's equation in a domain Q2 c Rn,

with 0 € Q , we have the formula

1 1 -] 1

u(0) = (n-2)x ﬁ n-2 g%(C) --a—n(—n_?)u(g)}ds (1)
n-15 lel 13|

where K is a sufficiently small sphere about O , 1/(n-2)'<n_.I

is the appropriate constant and 23/3n is the normal derivative at
the point & on 23K .

On the other hand for the solution of the wave equation with even
dimension n = 2k , there is the following integral formula, due to
M. Riesz ([9]):

Conferenza tenuta il b4.10.198k4 dal secondo Autore.
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Let Mn be Minkowski space with
coordinates x = [xo,...,xn_1]. Let
N = {xemnl (x,x) = o0, xo <0} .

Consider (for simplicity) the sphere

S = Nnixe Mn] Xy = constant} and

parametrize it by n-2 parameters

(A1,...,A ) = A . At every point

n-2

b(2) on S there are exactly two null vectors in N which are ortho-

gonal to Tb(A)S, one being just b(A) and the other being denoted

by ¢(a), and which we shall normalize so that (b,c) = -3 . Then in a

small neighborhood of N , there are new coordinates o,r,A1,... An-2

given by
x = g{b{1) - tec(2)} ,

in which the Minkowski metric has the following form:

2 2 B=2 ,
dx = tdo + ododr + E [+ yikdxidxk ,
1,k=1
where Yik does not depend on ¢ . Writing
v A
F(t,1) =le,)) 3oy = det(y, ),

/y(o,x)

we have the formula

k-2
- F
ue) = ()T [—a = R o T (2)
ERS

S
We can see now that the formulae (1) and (2) are in fact very
different. First in each case we are integrating over spheres of dif-
ferent dimension (the dimension of S is one less than that of 9K ),
Secondly, 3K 1is fixed (and does not vary with the origin 0), while
since S is the intersection of N with the initial datas hyperplane,
8§ varies with the origin O . Thirdly, only value of u and its first
derivatives of order j=0,1,...,k-1 are necessary. Thus these two for-

mulae appear to be very different and do not seem to be related.

However we shall show that this is not the case and that the rela-

tionship between them is just the Leray residue formula

[ w = 2ni jResm (3)
[

Y Y
(see §.2. for details). The dimensions of 8§y, the Leray cobord, and
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that of y differ by just one (as we need) and the appearence of the

higher derivatives in (2) 1is explained by the fact that the differen-
tial form w in the integrand has a higher order pole on the null co-

ne N , so that we need higher derivatives to compute the residue. The
contour of integration changes with 0 1in the hyperbolic case because
the cycle y belongs to N which itself depends on the vertex O of
the cone, while in the elliptic case the cycle only goes around the in-
tersection of the null cone with the Euclidean subspace (the interseé-
tion is just a point) and can be fixed for suitable changes of the ver-

tex.

The same procedure can be applied to more general systems of partial
differential equations (see §.3.) and can be used either to show a con-
nection between already known integral formulae or to deduce new integ-
ral formulae from known ones in the corresponding elliptic case. A si-
milar procedure (in coordinates and without using Leray residues) was
described for the case of the wave equation in even dimensions ([2],
[3]), for the case of massless fields in Minkowski space in dimension L
for any spin ([h],[5]) and for spinor fields in basic spinor represen-
tation in even dimensions ([2]). Leray residue theory gives a simple and
general formuls for such a procedure and it is then sufficient to find
the corresponding coordinate description of Res w vhich makes the in-
tegral formula as simple as possible. No coordinate description of the
ultrahyperbolic case has been published and the genereal integral for-
mula presented here can be applied in this case too but this will not

be treated here.

After the discussion of Leray's residue theory (extended to vector-
valued forms) in §.2., we shall describe in §.3. how to use Leray's re-
sidues to corresponding integral formulae in detail. The special case
of the Laplace and wave equations and the necessary computations in

suitable coordinates is described in §.b.

2. Leray residues for vector-valued forms.

In this paragraph we shall recall briefly basic facts on Leray's
residue theory. For applications it is necessary to extend the theory
to vector-valued differential forms. We shall also prove a lemma which
shows how to calculate the residue in the cases to be considered.

Let M be a complex manifold of complex dimension n . Let S be
a hypersurface in M , described by a function T: M—eC , i.e.

s = 1_1(0). Suppose that the differential dt is nonsingular at every

point of S , so that S is a submanifold of M .
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Let V ©be a complex vector space. Denote by E;(Q) = E‘U})Oc v

the space of smooth V-valued differential forms on £ < M . The

exterior differential d will be extended to E; componentwise.

Defintion 2.1:

®
Let w € EV(M\S). We say that w has a polar singularity of or-

der p on S , if p 1is the smallest positive integer such that

1Py is regular on the whole M .,

Let w€ Eg(M\S) be a closed k-form, which has a polar singula-

rity of order 1 on S . Then there exist (locally) forms o€ E$-1

and vy eEs » both regular on M , such that

dtac
T

w = + v

on M\S, The form ols € Eg"(s) is then uniquely determined by
(see [7]).

Definition 2.2.

The form OIS is called the Leray residue of ® and is denoted

res w .
Theorem 2.3.
Let «J€E$(M\S) be a closed form, which has a polar singularity

on S . Then w 1is equivalent (i.e. equal modulo an exact form on
MNS) to a form uw'e 55 (M~S) which has a polar singularity of or-
der 1 on S . Moreover, all forms res w' corresponding to such
forms w' belong to the same cohomology class in Hk-1(S,V). This
class of cohomology will be denoted by Res w and will be called

the Leray residue of the form w .

Proof.

It is not difficult to reduce the theorem (as well as the asser-
tion leading to the Definition 2.2) to the standard case, proved by
Leray {see [7]). Let ViseeesV, Dbe a basis for V , then

. n
w=§ eui&vi . wiefk(M\S).

1=1
If w has a polar singularity on S , the same is true also for
every component w. . The exterior derivative acts componentwise,

k-1
hence w; are closed and we can construct Res ws < H (s,C).

n
Then Res w = Z Res wiﬁvi .
i=1
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Remarks.

1. The Leray residue of ® is not a uniquely defined form on S ,
the cohomology class Res w can be represented by any form belon-

ging to it.

2. Note that the coefficients of w need not be holomorphic, but
that only the condition that w 1is closed is needed. Note that the

case of dimension 1 {(i.e. dim M = 1, S = {p} ©bveing a point in M)
c

reduces for w = f dz , z€M to the standard case from complex ana-
lysis, because dw = 0 &> 3f/3z = 0. Thus in this case Res w 1is
a complex number and coincides with the standard residue of a function

in complex analysis.
Remark.

To state the Leray residue theorem, we need the notion of Leray
cobord. The detailed definition involves several other notions and
vould be too long to be explained here (it can be found in [8] or,
in the original and detailed version in [7]). We shall describe here
only the geometrical meaning of & 1in the special cease.

Let V be a closed tubular neighbourhood of S and let u:v-a-S
be a retraction, giving to V the structure of fibre bundle with ty-
pical fibre D {(the unit disc in C). Suppose further thet v is a
p-dimensional eycle in S , which is also an imbedded submanifold of
dimension p in S . The chain u'1(y) has then the boundary a(u'1y)
which is the (p+1)-cycle in M NS . It means that every point of Y
is substituted by a circle going around it in M>S5 . This (p+1)-cy-

cle is then denoted by &6y and called the Leray cobord of v .

Theorem 2.4,
Let Yy be a (p-1)-cycle in § and let w € Es(M'\S) be a closed

form, which has at most a polar singularity at S .

Then fm=2-ni fResw-
Sy Y

We shall now show how to calculate Leray residue in a special ca-

se.

Theorem 2.5.
Let Q ©be a domain in Cn’ let  T,v, ,...,W 1be coordinates on &
and denote S = {x| t(x) = 0} . Consider a closed form w on Q - 8

which has at most a pole of the order k on S .
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Then the form w can be expressed in the form

w = 11( [tha-fB]
T

wvhere a , B &re regular on  and (written in coordinates

r,wz,...,wn) contain no term with dt and

Res w = 1 -a_kq_u
ik—‘l;‘! BTk—1 =0 °
Remark.
Bk_1
The notation —— _ means that the coefficients in every
atk-1 =0

term of the form «a are substituted by their (k-1)-th derivatives

with respect to T at =0 .
Proof.

Recall that w has a pole at most of the order kK on S , so

the form @ = rk-w is regular on S . The form W can be written

~

uniquely in the form @ = dtrAa + B , where « , B are regular
on 2 and contain no terms with dt . So we can always write w

as

1
+ .

-rk {drAa B}

To find Res w , we have to find an equivalent form w' , which

w =

has a pole of the order 1 and then apply Definition 2.2.
We shall first prove two assertions:

i) the form B has zero of the order at least 1 on M,

i.e. there is a form E on Q such that B8 = TB

ii) there is @ form & on >S5 such that

~

w =d4d8§ + w, ; 3a

1/ (k-1)rk-1}.[d1uﬁ + 8'],

where B' is regular on 9 and contains no terms with dt .

We have dw = 0 , w = 1/rk.{d1f~u +8}, hence
dt A B dt Ada dg _

(- —~m-—x *x°°
T T T

(-x)dr A8 - 1dt Ada + 1dB = 0

and multiplying the equation by 4t we obtain dtAd8 = 0,

hence the form d8 contains only terms with dt , i.e.

ag = dTI\%%- (note that B does not contain any term with dt ).
. . g _
Coming back to the equation we obtain (-k)B - trda + <t 3% = o,

hence g =<8 , B =1/k.d %%-- da} .
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dtraa + 18

W = — 23 - - .
e have 7} X
T
Denote 5§ = 1/{(1—k)1k_1)-a , then dé = —%—dIA a + _JEL_WF_T
T (1-x)t"~
- LI
and _ 4, , Qo +(k-1lz? = as + dthar ;_11% ,
(k-1)t (k-1)t
where B' contains no terms with dt (because the term drv A%%

is exactly the part of da containing terms with drt).

Now, applying both assertions (k-1)-times, we end up with the

formula ak-1gq

) dt A a7k-1 + g"
w = a(s’) TN

where the form 8" is regular on Q and contains no terms with dr.

Applying the assertion i) the last time to the quotient at the

right hand side, we see that g = 8" , g’ regular on 2 , hence
the assertion of the lemma follows from the definition of the form

Res w .

3. Flliptic and hvperbolic integral formulae.

We descrihe here in rore detail the connection between integral
formulae for elliptic and hyperbolic (possibly ultrahyperbolic) sys-
tems, or more precisely how to deduce integral formulae in hyperbo-
lie cases from known integral formulae in corresponding elliptic ca-
ses.

We shall discuss here (generalized) massless field equations. In
dimension &4 (and in hyperbolic case, i.e. on Minkowski space) these
equations are just what is called a minimal set of equations by
Garding ([6]). He classified all 'minimal' systems of hyperbolic equa-
tions on Minkowski space such that every component of a solution sa-
tisfied the wave equation. How similar types of equations can be gene-
ralized to higher dimensions and how they can be classified by group
representation theory was described in [h] . The equation themselves
are well defined on Cn’ but by restriction to Euclidean or Minkowski
slice of Cn ve shall obtain either elliptic or hyperbolic systems
of PDF (with constant coefficients). In many cases integral formulae
for corresponding elliptic systems areknown (see [5]). All of thenm
have the common feature that the corresponding vector-valued diffe-

rential forms under the integral sign are well defined on C£~CN°,
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vhere o 18 the complex null cone, i.e. CNo = {z CCnl Z; zg =0}.

In this raragraph we want to show that in these cases we can obtain
almost immediately integral formula for corresponding hyperbolic

(and ultrahyperbolic) systems using Leray's residue.

So suppose that we have a system of linear partial differential

equations with constant (complex) coefficients, i.e.

3 lal

D = & ror i B [a1,...,an],

lal £k
vhere a are jxm matrices, jzm and u : Cn——-'cm is holomor-
hic in .
Y Cn

Suppose that E, € Cn is an Euclidean subspace of Cn . Let

D.u = 0 on Cn (for simplicity) and suppose that we have for u
an integral formula of elliptic type: let I be a (n-1)-cycle in En

then Indz 0.u(0) = & wlu)

vhere w(u) is a (possibly vector valued) (n-1)-form, depending
on u and Indx 0 is the index of 0 with respect to I (see
[5]). In all known formulae ([4]) the form w(u) depends linearly
on u and its derivatives. Suppose further that w«w(u) can be ex-
tended to Cn‘~CN° in such a way that w(u) is closed on Cn\ CNo

In this case the Leray residue of w(u) is an (n-2)-form on

CNO ~ {0}. From the Leray residue formula it follows that for all
(n-2)-cycles y in CNO‘\{O} we can consider the Leray cobord
(wvhich is (n-1)-cycle in Cn‘~CN°) and we obtain

Inddyo.u(o) = .LYw(u) = j;Res wl(u) .

Thus if we take vy € CNoﬂ Mn’ where Mn is Minkowski subspace
of Cn’ we obtain the integral formula for solutions of the corres-

ponding hyperbolic system, while if we take y inside the inter-
section of CNO with another ultrahyperbolic slice of Cn s, we
would obtain the integral formula for solutions of the correspon-
ding ultrahyperbolic system.

On this abstract level it is quite general and simple. But to gain
the full advantage of the integral formula, it has to be used in the
coordinate description. As a rule, the form Res w(u) will be quite
complicated and only by using a suitable coordinates (e.g. tailored

for the cycle of integration under the consideration) can we obtain
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a simple formula. This fact is illustrated in the next paragraph for
the wave equation. Another example could be the integral formula for
peneralized massless fields in even dimensions (see [2],(3]), but
they will not be treated here. A good coordinate description of the
residue in ultrahyperbolic case is still to be found and many other

systems of equations (see [h],[s]) are still to be investigated.

4. The case of the Laplace and wave equation.

In this paragraph we would like to show how the above abstract
procedure can be applied in coordinates to deduce the integral for-
mula for solutions of the wave equation, due to M. Riesz ([9]).
First we shall describe the hypercomplex form of integral formula
for solutions of Laplace equation and its relations to standard in-
tegral formula for harmonie functions in potential theory (see also
in {3)]). The complexification of the form o(u) under the integral
sign will be then written in suitable coordinates and will lead to

the coordinate description of Res uxw(u) .

Finally, it will be shown that if coordinates are chosen suitably
with respect to a chain of integration, the form Res w{u) will re-
duce to the expression, used in the integral formula of M, Riesz
(193).

Let us begin with the hypercomplex form of the integral formulsas
for harmonic functions (see [2],[3]).

Consider the standard basis P ERRERL for Cn’ n = 2k#+1

n
(x being nonnegative integer). The corresponding (complex) Clifford

algebra Cﬁ has the grading (as the vector space)

¢ _ c c
e = (e ... ® (L),
where (tﬁ)o £ ¢ with the basis ey = 1 and (C;)1 B C, with the

basis L PEERR L N We shall consider holomorphic functions on

_ o c . .
Cn+1 = (Cn)o G’(tn)1 and we shall define (for a Clifford number

n 2 &2 +
Q = z: eiQi) the squared norm “Q“ =3 Q" = QQ , where
0 0

n
+
@ = Qp8 - ZQiei

We shall use two differential operaotrs

n n
2 =ZO e;3/3a, at = ey?/3Q, - Z1 e 3/, ,



102

n
noting that 4% = 3%5 = 33" = 5 2%/2q.2 .
0 1

The complex null cone CNP = {Q!!Cn ”Q-P"2 = 0} will play a

al
privileged role in what follows. Using the special Clifford-valued

n-forms

DQ=ZHZ(-1)i af pet = e af n(1)i ()
= €99 Q"’oQo‘g‘ e; a9

where dai = dQga...AdQ;_,AdQ, LA

of a point with respect to n-dimensional cycle we can state the fol-

...AdQn and the notion of the index

lowing hypercomplex form of the integral formula for solutions of

(complex) Laplace equation (see [5]).

Definition bL.1.

Let I bYe an n-dimensional cycle in Cn+1\ CNP , P EC

n+1

Then the index of P with respect to I is defined by

(9-P) +

Ind_ P = 1/« e — | o] .
n -’ "Q_p"2k+2

Remark.

It was proved in [5] that Hn((' CNP,Z) T Z and that Ind. P

~
n+1t I

is alwvays an integer. Moreover, the sphere S (P) in the Euclidean

slice of C is the generator of Hn(Cn N CNP, 2), so

n+1 +

F o~ Ind, P.SD(P) .

Theorem 4.2 (see [5] ).

Consider a domain 2 c Cn+1 such that the whole segment Q1Q2

belongs to 2 vwhenever Q1,Q2 € Q and UQ1-Q2“2 = 0.

Let u be a complex function satisfying the equation Au = 0

on Q . Take P &€ Q and n-dimensional cycle I in Q‘\CNP , which

is homologically trivial in @ .

Then
_ Q-P + 1 + }
u(P).Ind, P = 1/x I{W.DQ u(Q) + —2k'“Q_P"2k.DQ.a u(Q)f ,
I
where «_ is the area of the unit sphere in Rn+1'

To compare the integral formula in Theorem b.2 with the standard
integral formula for harmonic functions we shall prove first the fol-

lowing lemma.
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Lemma L4.3.

Denote g = 1/[2k ||Q"2k] and

+ i a u 1 jou .4
6 = O e.e. &(-1)Q.dQ. + (-1)92% 44,1 .
i,3=0Q J 1 J 1“Q“2k+2 2k Jlqll 2k 3 P
1#)
Then s
- _ 14+) + "~
¢ =4 {%;%( 1) ejei ungij} ,
wvhere dQlj = onh...Ain_1Ain+1A...thj-1thj+1A...AdQn .
Proof. n
We have ¢ = 2 e.e.+ {(-1)1*‘I %5- uda. + (-I)Jggu da.} .
i,j=0 91 Q i Q; J
iesj

. + + . s . .
It is easy to check that ejei = -eiej s 1,j=0,...,n313%&), SO

6= 5 e t{-niti2e uaf +(-1)2& uaQ, +(- )ig2 ag; +(-) 120 43,
3% 3Q; 3q; 3aQ 3q;

]
[+
—~ %
Ms
—_
'
-
[
+
A
o
[
®
"
=
™
[+ N
O
"
S

<
Corollary L.lL.

Q 1
The form w(u) = 1/Kn{'iaﬁai:§DQ+u(Q) + EEiEHEiDQa+u(Q)}
is equal to , 2;(-1)1Qida. z:(-1)1 dai
w'lu) = 1/'("{ liQll 2% +2 2k|lQ|l~?k }

modulo an exact form.

Remark.

The hypercomplex form of the differential form w(u) in Theorem 5.2
is useful for deducing the integral formulae in an unified manner for
several cases (including Laplace's equation) in hypercomplex anaslysis
(see [ﬂ ). The Corollary 5.4 shows that w(u) can be replaced in The-
orem 5.2 by w'(u), which is the number-valued differential form (no

terms with ei,i=1,...,n are contained in it). Using the connection

of surface integrals of the first and the second types, it is well

known that the term 3f/3ndS corresponds to the form

g(—ﬂ

n
for any f (e.g. also for f = 3 Qi2 ) , hence the integral formu-
o]

i af

1a (1) in the introduction is a consequence of Theorem 5.2.
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Now, to compute the form Res w{u) explicitly, we have to choose
suitable coordinates. Let us consider new coordinates

(0,1,X1,..,A 1) given by the map

n-

Z = o(% + %) ; 2,9, ECn+1;o,r e« C A=(A1,...,An_1) € Cn-1’
wvhere © = ?(A1,...,An_1), T = ?(A1,. "Xn—1) are holomorphic and
such that (¢,5) = (3,8) = 0 ana (%,) = -3 for all A .

n
The scalar product (%,¢) is given by S bic. .
0

It means that b describes a section of CN° , while T descri-
bes a transversal direction at the corresponding point of CNo .

We shall suppose that the parametrization gives us (for suitable ran-

ge of parametrs) new coordinates on an open subset < Cn+1. Then
we have
Lemma 4.5.
_ = = 3(T+17) 3(B+1¢)
Let us denote FO(T,A) = det { b,c, rprmnE R e

= = 3{B+1¢) 3(D+1¢)
Fo(r,x) = det [au,c, PR yw

= = = 3(b+1%) 3(T+1¢) a(b+1?T) 3(b+17)
F (T,A) = det[&u,b,c,T,..., 3Aj_1 s aAj-’-] g ey aAn_1 Iy

J = 1,...,n=-1 .

Then we shall obtain

"~
x ) ak-1F
Res w(u) = 1/2"k+1{%;k(u.Fo) T=0dk+o/2——a‘rk_1o

Proof.

First we shall express the form ' in the new coordinates.
, dlj = dA1A...AdX.-1AdX. A...Adr 1

Writing dX = dx,»...adx _, j j+1 n-
and noting that (%,Z) = 021 and = 2nk* 1 /x)
ve obtain
n 5 R
(-1 'q a8 po(EeeE))
0 u - el - aglb+1cC
s = —— ey —m— .. Ar=
jQi2e+2 " T (o21)k+1 {det ["(b”")’“’ ’ ax; ]d”d}

u - - 3z
=TT|'—1— det b’c’."—ax—j’.. dradx ,
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where all other determinants vanish, because they contain linearly
dependent columns.

hrd (3\.] du )

Similarly, if we denote 3u = (35 ,.¢..9353 , then
ERN 3dn-1

z:(_1)13u dQ1 _

= 1 2 k -__32 “e . —az
_(c'ér_)k /2k(o%1) det [a u,0¢,357 ¥y v dnd) +

- 92 3T
+ 9z
det [511, +Tc’3)« ""’BXn ildo.dk +

+ nZ1 det Fu,5+1¢,08 R S 1 L2 | gcdudn. ).
5=1 ’3)‘1’ ’BXJ-1’3X5+1’ >3- J

It is sufficient now to apply Theorem 2.5.

It is now possible to show how this complicated formulae for
Res w(u) on the complex null cone will simplify further to obtain

the integral formula of M. Riesz.

Consider first Minkowski subspace M C Cn+1 »
M = {QeCn_”{ Y Qj=iwj;j=1,...,n;vj,wo e R} .
Take a cycle Zn_1 of dimension n-1 in the (real) null cone.

Suppose that the cycle Zn_1 is given by 1-1 smooth map

®: 0<:Rn_1———*'N . We shall consider (as in M. Riesz's integral

formula) the map y: 0 —— N such that (¥,§) = (7,d) =0
with the normalization (€,Y) = -3. We shall suppose further for
simplicity (this assumption can be removed) that the maps 8,y are
real-analytic in 0 . The parametrization v —a{F(l) - (Aﬂ
can be extended to complex domain ( o € C, T € C,x € 0 < Cn_1,

~

E{; being the holomorphic extension from 0 into an open subset 0

of Cn_1) and suppose that it will give us (for a suitable range of

parametrs) the new coordinates in an open subset of Cn+1 . They
are just the coordinates of the type used in Lemma bL.5, so we can use

them to integrate Res w over Zn_1 . First we shall relate the

-~
function FO,FO on tn_1 to the function F wused in M., Riesz's

formula.

Let us recall (see [2],[9]) that
Iy(r,2) _ o(x,2)
/y(0,1) ¢(0,1)

Flt,2)
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- 3(B+1Y)
[0 Toa

P

wvhere ¢(t,2) = det {

Lemma L.6.

We have the following relations on
F (t,2) = i%e(7,1)
. .h _3u
Fo(r,x) = .25?.¢(r,x) .
Proof.

The first relation follows immediately from the relations Q =iw

j=1,...,n, To show the second one,

a(B+t1y)
3)5

su

are linearly independen

The orthogonality conditions for
a(B+1y)

are orthogonal to all s So i
J
n-1 - e
- - a(B+ty)
as 3u = agf + an+1y + 2 a'—__377_
J=1 J
we obtain that a /2 = (Fu,y) du/dr

(%7

a(B+rY)

axn-I]

zn—1

H

j’

ppose that the vectors B8,y,

t (otherwise both sides vanish).

imply that both 8 and vy

f we express the gradient Ju

s Whence

~ _ .n - (B+1Y) 3 (B+1Y) .n _ ,:ndu
Fo = i" det [anf,v, T B i an¢ = 21 31.0 .

So altogether we have
Theorem 4.6.

-1)k ak-1 3F L 3u g .ds .

2%i J; Res w(u) = 1) _£ 3Tk-1 3“ ERS EXS =0

"t
Proof.

First, all terms in the coordinate description of Resy (Lemma 4.5)
containing do ,vanish on DI So we are left only with two terms
and we have

k-1

N _ -1)k 3 3 3u ’ A =

2ni z.‘_Res W = J’ {a +ark“(31¢) 1=0 d
2k=1
du ¢ 3u
_ (=1)k [¢+u 2], ., ar
= ——;i— J’ ark 1 FERRE T =0 4
but because 24(0,2)dr = A4S, we have
k-1 3u 3¢
2ni J; Res & = — 250 “ail_o’ds =
n-1 3 $(0, %)
-1
k (257! fau oF
- 1& J’ ae k 1 [aT.F + uaT T=odS .
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