Chapter 3

Structure of classical groups

This chapter contains a classification of finite dimensional representations of classical groups.
The first main fact making possible such classification is complete reducibility of their regular
finite dimensional representations. It claims that any such representation can be written as
a direct sum of irreducible representations. Hence the classification problem is reduced to
a classification of irreducible regular finite dimensional representations.

Reducibility of classical groups is usually proved either algebraically, or analytically.
The former proof is based on properties of Casimir operators. The latter one is based on
integration over the compact real form and is usually called the Weyl unitary trick.

The classification of rreducible finite dimensional representations is based on the fact
that iff & is a connected classical group, any irreducible regular finite dimensional represen-
tation (p, V') can be written as a direct sum of eigenspaces (called weight spaces) for the
action of the Lie algebra f (Cartan subalgebra) of a maximal torus H C G (the Cartan
subgroup). Weights are elements in the dual h* of § and relative to a partial order on
the set of all weights for V., there is a unigque maximal element called the highest weight
characterizing the representation (p, V).

We are using a close connection between irreducible representations of a _Fofmected
algebraic group G and irreducible representations of its Lie algebra g (see Th.bf!% J. This is
a useful fact, which makes it possible to apply efficient tools of linear algebra.

The set of all highest weights of all irreducible regular finite dimensional representations
is a (discrete) cone in a real subspace of h* generated by fundemental weights. The weights
of the representations are permuted by the action of the Weyl group W, which is a finite
group canonically attached to G.

The classification mentioned above coincides with the classification of all irreducible
finite dimensional representations of G considered as a Lie group, which was already treated
in the basic course on Lie groups, their Lie algheras and their representations, hence we
shall present it in a reduced version, as a short overview of its main facts. On the other
hand, we shall extend the classification alse to linear algebraic groups which are not simple
(GL(V)) or which are not connected (O(V,B)). Often is convenient to replace highest
weights as parameters in the classifications by an equivalent langnage of Young diagrams.
We shall use it systematically.
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3.1 Classical groups are reductive

An attempt to understand the structure of representations of a given group is dramatically
simplified, if any representation of the group can be decomposed into a direct sum of
irreducible ones. Groups with this property are called reductive. One way how to prove
that a group is reductive was used by Hermann Weyl and its standard name nowadays is *the
unitary trick’. Its idea is simple. Suppose that we are able to construct an invariant scalar
product for any representation (p, V') of the given type. Then if U C V is an invariant
subspace, then it is easy to show that the orthogonal complement U+ (with respect to
an invariant scalar product) is again invariant and V ~ U @ UL. Now, to construct an
invariant scalar product, it is possible to take any scalar product and to make an average
of it over the given group, the result will be an invariant scalar product. Such an idea was
first successfully used in the case of finite groups (where the average means just a finite
sum over the group) and it can be extented to compact groups (where the integral used to
average the scalar product is well defined). This it the essence of the Weyl unitary trick.

Definition 3.1. Let G be a linear algebraic group. A regular representation (p, V) is called
completely reducible, if for every G-invariant subspace W C V, there is a G-invariant
subspace U C V such that V ~ W & U.

A linear algebraic group G is called reductive, if every regular representation of G is
completely reducible.

Theorem 3.2. Let G be a connected linear alyebraic group which has o compact real form.
Then G is reductive.

Proof. (i) Suppose that K is a compact real form of G. The differential di of the embedding
¢+ K — G induces an isomorphism of the Lie algebra ¢ of K onto a real Lie subalgebra of
the Lie algebra g.

The differential ¢ = d7 of the complex conjugation 7 defined by K C G is a Lie algebra
isomorphism and we can define g, = {X € g|lo(X) = X}. Then di(t) is a subspace of g,
and both spaces have the same (real) dimension, hence they coincide. Consequently,

g =~ du(t) D idu(E).

(ii) Let (p, V) be a regular representation of G. Let us choose a Hermitian scalar product
(...) on V and define a new scalar product by the average

) = / (p(R)w, p(k)v)dk.
SN
with respect to the invariant measure dk on K. It is easy to see that {u, v) > 0 on V, because
(p(x)u, p(x)v) is continuous with respect to & € K and K is compact.

(iii) The new scalar product (.,.) is a Hermitean scalar product invariant with respect to
the action of elements in K. Indeed, if ' € K,

(R, p(0)0) = [ o)oK YRR ) [ (ot o = {0}

Details can be found at App.D of [GW].
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(iv) Consider now an invariant subspace W C V under the action of elements olg) g e G
and its orthogonal complement

W = {veV|{v,w) =0, we W)

The space W is invariant under the action of elements p(K) and the (new) scalar product
is invariant for action of K, hence also W+ is invariant under the action of K. But then
IV is invariant also for the action of & 'ind 7due to (i), also for action of g.

(v )Then it is possible to apply Theor 3.3 below to get that WL is invariant also for the
action of G, O

It was shown in Appendix A.1 that the simple complex classical groups SL(V'), SO(V, B)
and Sp(V. Q) have a compact real form, hence are reductive. More generally. linear alge-
braic group with the property that their Lie algebras are semi-simple (or a direct sum of
semi-simple and commutative Lie algebras) have a compact real form and are hence reduc-
tive. A classification of reductive linear algebraic groups and the related classification of
connected compact Lie groups and a correspondence between reductive and compact groups
can be found at Chapt. 10, Sect. 7 of the book by Processi ([P]).

3.2 Representations of a group and its Lie algebra

There is a very close connection between properties of a representation (p, V) of a linear
algebraic group G and properties of its differential (dp, V). One implication is easy, it W ¢ V
is Invariant under the action of p((3), then W is invariant also under the action of dp(g). The
opposite implication is much more difficnlt and it needs stronger asswinptions. In particular,
it is true, if G is generated by its unipotent elements (and hence connected).

Theorem 3.3. Let G be a linear algebraic group with the Lie algebra g and let (r,V) be a
reqular representation of G.

(1) If W C V is invarient under the action of 7, then W is invariant under the action of
the differential dw.
(2) Suppose that G is generated by its unipotent elements.

Then W C V is invariant under the action of dr iff W is invariant under the action
of . In particular, V is irreducible under the action of G iff it is irreducible under
the action of g.

Proof. (1) Consider elements v € V and v* € V* and define a regular function fy-, on
G by fe-u(g) = (", 7m(g)v). Let C be a rank-one linear transformation on V given by
C(u) = (v*,u)v for w € V. Then

foe2(9) = tr(w(g)C) = (fc o7)(g).

Hence for A € g we have

Xafe-wlg) = (fan(vye 2 T)9) = fordn(ay(y) forallge G (3.1)

by definition of dm. Let W C V be a G-invariant subspace. Set

Wt={v'eV" | (v w=0fralwe Wi.
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1%}%%? forw(g) = 0for all w e W, v* € Wi, and g € G, since n(g)w € W. Hence hy
. we have fi- gr(4)u(g) = 0. Setting g = I, we conclude that (v*,dr(A)w) = 0 for all
v* € W+, This implies that dn(A)w e W,

(2) Suppose that W is invariant under the action of g. Denote by W+ the annihilator of W,
Then (w*, (dp(X))*w) = 0,w € W.w* € W+, X € g,k € Z. Hence

(w*, plexp X)w) = (w*, (exp(dp(X)))w) = Z %(u:*, dp(X)YFw) =0
— k!

and plexp X)W < W Since G is generated by unipotent elements in G, which are images
of nilpotent elements in g, W is invariant under the action of G.
]

3.3 Representations of a torus

3.3.1 Regular representations of C*

Definition 3.4. Let GG be a linear algebraic group. A character of G is a regular homo-
morphism x : G — C*,
The set X'(G) of all characters of G has the natural structure of a commutative group,
identity being the trivial character xp(g) = 1,9 € G.
The classification of regular representations of the group C* = GL(1,C) is described in
the following theorem,
Theorem 3.5. (1) Suppose that (v, C") is a regular representation of C*. For any z €

C*, let Ep,p € Z be the space of all common eigenvectors for the maps o(2) corre-
sponding to the eigenvalues xp(2) = 2P, i.e.

£y ={vel"g(z)v=2"v,2€C"}.
Then

C" = ®pesEp. (3.2)

Sum
(2) Conuversely, for any decomposition of C" of the form (3.2), let us define the map o by
[ D 0y

p(z)v=2Pv,2€ C*,v € Ej.

Then (@, C") is a regular representation of C* that is determined (up to isomorphism)
by the set of integers given by the dimensions of the spaces E,,.

(3) In particular, any character of the group C* is given by xp(z) = 20,z € CT*, for
suitable p € Z. The group x(C*) of all characters of (C*) is isomorphic to Z.

Proof. (1) The entries in the matrix ¢(z) are Laurent polynomials due to O(C*) = Clz, z71].
Hence there is an expansion

o(z) =) Ty,

peEZ

where T}, are n x n complex matrices. The sum has only finite number of nontrivial terms.
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The relation ¢(z)e(w) = p(zw) implies

> FwITT, =Y T,

pPgEL rEZ

which implies the relations 7,7, = 0,p # ¢; Tg = T,. Moreover, ¢(1) = I,,, hence the family
{T,} is the resolution of identity on C”*. If T,v = v for v € V, then (z)v = 22T =
zPu. Hence the image of T, is included in E,.

o sk P o :
(2) The decomposition (|3.2§ induces the projections 1), onto E,,. Then the map ¢ is a regular
representation of CF.
(3) It is a special case of (1) and (2).

3.3.2 Regular representations of a torus

Definition 3.6. Any linear algebraic group 7" isomorphic to (C*), where [ is a positive
integer, is called algebraic torus. The integer [ is called the rank of 7.

Lemma 3.7. Let T' be an algebraic torus of rank |. The group X(T) is isomorphic to Z.
(Hence the rank of T' is uniquely determined by the algebraic group structure of T.)
Proof. We may assume that T = (C*)!. For A = Ao N]€Zland t = 21, , 5] €T
set

!

=] 5% (3.3)

k=1

Then xa @t = t* is a character of T. Since tM# = 2/ for A,y € Z' and the functions
21 zf” give a basis for O(T"), it follows that the map A — y, is an injective homomor-
phism from 2! to X (7).

Conversely, let y be a character of T. Then the functions t — xg(z) = y(1,---,_z .-+ ,1)

N
k

1.6.4
for k =1,---,[ are characters of C*. Hence by Theorem l3.5, yi(z) = 2™ for some A\, € 7.
Hence

!
X1y m) = [ ] xeler) = xalen, - 2).
k=1
where A = [Ay, -+, Ay]. Thus every rational character of T is of the form ) for some A € Z'.

O

2.1.3| Theorem 3.8. (1) If (p,V) 1s a regular representation of an algebraic torus T and
Vix) ={ve Viplt)e = x(t)v}, then

V=@, eaV(x) (3.4)
where A is a finite subset of X(T).
(2) If g € End(V) commutes with p(t) for allt € T, then gV (x) C V(x).

Proof. (1) Due to (C*)! ~ (C*)I-1 x €%, the relation {Efﬁacfzsﬂows by induction.
(2) It follows from the definition of V (x).
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3.4 Irreducible representations of s((2,C)

The complete understanding of the structure of classical complex Lie algebras and their
representations is based on structure of the algebra s((2, C) and the behaviour of its repre-
sentations. This is the reason why we repeat here classification of irreducible representations
of s1(2,C) with more details. In a study of representations of a general classical complex
Lic algebra g. these facts are applied using many s[(2, C) Lie subalgebras of g.

Let g = sl{2,C), i.e. 2 x 2-matrices with zero trace. We observe that o — [8 (l)} .

W= ﬁ gJ . h= [(1) 01] is a basis of g and satisfy the commutation relations

vyl =h, [hr]=2r |hy]=—-2y.

Using these relations, it is possible to prove directly from the definition that s1(2,C) is an
example of a simple Lie algebra.

Let V be a regular representation of g. The action of an element = € s((2,C) on v € V
will be denoted by x - v. By Jordan decomposition, h acts diagonally on V. This yields
a decowposition of V' as a direct sum of eigenspaces V\ = {v € V : h-v = M}, A € C.
Whenever V) # {0}, we call A a weight of A in V and we call V) a weight space.

Lemma 3.9. Ifv eV, thenx-v e Vi o andy v e Vi_s.
Proof. h-(r-v)=[h,r] - v4+xr-h-v=2r v+ Ar-v=(A+2)7 v, and similarly for y. 0O

Since dim(V') < oo and V = @y Vi, there must exist Vi # {0} such that Vi, = 0 by
the lemma. For such ), any nonzero vector in V) will be called a highest weight vector,
or singular vector of weight A.

Lemma 3.10. Let V' be an irreducible g-representation. Let vy € Vy be a singular vector.
Setvoy =0, v, = (1/iYy' - vp fori € NU{0}. Then

(1) h-v,= (X~ 20,
(2) y-vie=(+ L,
(3) z-vi=(A—i+ 1y,
Proof. Use the commutation relations. O

We see by (1) that nonzero v; arc in different eigenspaces of h, and therefore they are
linearly independent. Let m be the smallest integer for which vy, # 0 and v, = 0.
This assumption on m implies vy = 0 for all ¢ € N. The subspace of V' with basis
(10,1, -+ ,Um) 18 a nontrivial invariant subspace, hence it coincides with V. The property
(3) for i = m + 1 implies that (A — m)vy, = 0, hence A = m. Every weight p = m — 2i
occurs with multiplicity one. In particular, up to nonzero constant, there is unique maximal
vector. So we have

Theorem 3.11. Lei V' be an irreducible g-representation for g = s1(2,C).

(1) Relative to h. V is the direct sum of weight spaces Vy,, g = m.m—2,--- , —(m—-2), —m.
where m + 1 = dim(V) and dim(V,) = 1 for each 1.
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(2) V hes (up to nonzero scalar multiples) a unique mazimal vector, whose weight (called
the highest weight of V') is m.

sl-action
(8) The action of g on V' is given by Lemma |7.70 with A = m, if the basis is chosen
in the prescribed fashion. In particular, up to isomorphism, there exists at most one
irreducible g-representation py, of each possible dimension m + 1, m € Nu{0}.

Corollary 3.12. Let V be any (finite dimensional) g-representation. Then the eigenvalues
of hoon V are all integers, and each occurs along with its negative (an equal nmmber of times).
Moreover, in any decomposition of V into direct sum of irreducible subrepresentations, the
nunber of summands is precisely dim(Vy) + dim(V}).

Proof. If V' = {0}, there is nothing to prove. Otherwise use complete reducibility to write
V' as direct sum of irreducible subrepresentations. The latter are described by the theorem,
so the first assertion of the corollary is obvious. For the secoud, taking possible weights in
the account, each irreducible g-representation has unique occurrence of either the weight 0
or else the weight 1, but not both. O

3.5 Irreducible representations of SL(2,C)

We want now to classify regular irreducible representation of the group G = SL(2,C).
It is more dillicult but we can use the result proved already for representations of g. The
strategy is to construct a swficient number of representations of <. In more details, for
every nonnegative integer m, we can construct a regular irreducible representation (p, V) of
the group G with dimV = m + 1. Then its differential is a regular irreducible re 1;%56%111‘[6%‘51011
of sl(2,C) with dim}” = m + 1, isomorphic to the one described in Lemma h. U. And it
exhaust all (isomorphic classes of) regular irreducible representations of s((2, C).

Let us define matrices u(z) = [(1) ﬂ SHE] = E ?] and d(a) = lg GQJ § % - N

The vector space of all elements u(z),z € C is a commutative subgroup of SL(2,C),
we shall denote it by N*. Similarly, let N~ be the commutative subgroup of all elements
v(z),z € C. We have now the following classification.

Theorem 3.13. For every integer m > 0, there is a unique (up to equivalence) regular
wrreducible representation (1, Vs)l'ﬁ:feSL(Q’C) of dimension m + 1 whose differential is the
representation py in Theorem I3 11 It has the following properties:

(1) The diagonalizable operator w(d(a)) has eigenvalues a™, a™ 2,-+. . a?~™ a~™.

(2) w(d(a)) acts by the scalar a™ on the one-dimensional space V™ of N+ -fized vectors.

(3) m(d(a)) acts by the scalar a=™™ on the one-dimensional space VY of N~ -fized vectors.
Moreover, any regular irreducible representation of SL(2,C) is wtsomorphic to one from

the list above.

Proof. Let P(C?) be the polynomial functions on C? and let V = P™(C?) be the space of
polynomials that are homogeneous of degree m. Here we take C? as row vectors z = [z1,z3]
with the group acting by multiplication on the right. This action gives an action of &G on
V by plg)d(x) = d(xg) for ¢ € V. As a basis for V, we take the monomials

m ko
(2], 29) = (k);c;"' "sc‘i}, k=01, ,m.
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We now calculate the representation dp of g. Since u(z) = exp(zx) and glsez‘)ti:alexp(zy),
we have p(u(z)) = exp(zdp(r)) and p(v(2)) = exp(zdp(y)) by Theorem EES Taking the z
derivative, we obtain

o]

(1, zx1 + 1) = T1=—P(x1, 22),

d
dp(r)o(ry, x2) = Giia

T

2=0

d ]
dp(y)p(x), z3) = — &y + zx9, 19) = To—P(x1, T2).

dz|,_q day
Since dp(h) = dp(z)dp(y) — dply)dp(z), we also have
a a
dp(h)¢(xy,22) = (Tld—J,l - IQE)QS(.TM Ty).

On the basis vectors v we thus have
dp(h)v, = (m = 28)ug, dp(z)ve = (m =k + Dvg_y, dply)ve = (k + Dogy.

It follows from Theorem E.llzf_efhat dp >~ pm 15 an irreducible rep psenfation of g, and all
irreducible representations of g are obtained this way. Theorem 1EET'B'_lmplies that p is an
irreducible representation of SL(2,C). Furthermore, p ;leglig%%\i determined by dp, since
plu(z)) is uniquely determined by dp 1(z)) (Theorem ET&BWSL(Q,(C) is generated by

unipotent elements (see Lemma [A9). OJ

3.6 The structure of classical simple complex Lie algebras

Let G be a linear algebraic group and g its Lie algebra. To understand well the structure
of g, we are going to study the adjoint representation of G on g, its decomposeition into
(simultaneous) eigenspaces (called root spaces) with respect to the action of the Lie algebra
B of the chosen Cartan subgroup H.

In the rest of this chapter, we consider just the following groups:
Type A;: SL(l +1,0C),
Type B, : SO(C¥+! B),
Type C;: Sp(C*,Q),
Type D;: SO(C*, B), .

where B. resp. Q are defined below, see also App. (ITQ)

These groups form the main part of the class of algebraic (and Lie) groups called simple
linear algebraic groups. There is just 5 more (exceptional) cases on the complete list.
We shall not discuss them in these lectures.

Understanding of their structures will be important for understanding of properties
and classifications of their irreducible representations, which is the main goal of the next
chapter. A study of their structures is based on the decomposition of g under the adjoint
representations of a maximal torus H. So we start first with the choice of such maximal
torus, called the Cartan subgroup.

3.6.1 The Cartan subgroups and Cartan subalgebras

Definition 3.14. If G is a linear algebraic group, then a torus H C G is called maximal,
if it is not contained in any larger torus in G. Maximal tori are usually called Cartan
subgroups and their Lie algebra are called Cartan subalgebras.
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The explicit form of several classical group depends on an explicit choice of a bilinear
form used in their definition. We would like to have the subgroup H of diagonal matrices
in G as the maximal torus in G. It can be achieved in the cases of basic complex forms of
classical groups by the following choices.

Denote by s; the following | x { matrix:

00 01
00 10
5p = (35)
)1 0 0
10 0 o
and define forins B and £ as follows: )
(1) z,y € C", n = 2l even; B(z,y) = 2'Sy; LS ? 'ESJ
.11
0 0 S|
Az, yell'n=21+1lodd; Bla,y)=2'8y; 5= [0 1 0
57 0 0

(3) x,y € C* m = 2L even; Qay) = 25y § = [ . ff] '
— 8]

The form B is nondegenerate, bilinear and symmetric, €0 is nondegenerate, bilinear and
antisymmetric.

Theorem 3.15. Let G be one of groups GL(n,C),SL(n,C), SO(C", B), or Sp(C%, ).
with B and § as above. Define H C G as the set of all diagonal matrices in G.
Then H is a mazimal torus in G,

Proof. Elements of the canonical basis ey, ..., e, are eigenvectors for the action of an elerrgélzts
h € H and eigenvalues are characters #;(h), 0, € X (f). Explicit forms of 6, given in ApA.

shows that ; are mutually distinet. If gh = hg for all h € H, then g preserves eigenspaces
of h, so it is a diagonal matrix. It implies that H is a maximal torus. |

It looks as the form for G given above is special and priviliged but it can be proved that
it is not so.

Theorem 3.16. If G is one of groups in Theor. 715 and T is @ mazimal torus in G. then
there 1s g € G for which T = gHg™ 1.

Details can be found in [GW], p.74.

3.7 Adjoint action
The adjoint action of A on g is given by
rMX =hXh ' heH Xeg

The isomorphisim between Z! and the ring of characters X'(H) sends A = [A,...,A] € z!
to the character h* € X(H),

A =TIz (), (3.6)
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where 1y is the k-th coordinate function on H.

For calculations in h*, we use elements &; defined on the space of all diagonal matrices
by £:(4) = a;, A = diag|ay....,an],i < n. Elements ¢;,...,z form a basis for h* if G =
GL(l,C), SO(C¥*+!, B), Sp(C%,Q), and SO(C¥, B), while in the case SL(l + 1.C), the
basis for b~ is given by {=; — HLI(:‘I Fion o [ipiEdy oo ol

3.7.1 Roots and root spaces

Let G be one group from the above list of the four classical series of complex simple Lie
groups ai d3H its Cartan subgroup of G (defined as the set of all diagonal matrices in G)
(see Sect.3.6.1). Now we shall quickly review well known properties of the adjoint action of
the H on g. A classical idea is to study simultaneous eigenspaces for the adjoint action of
the the (maximal) algebraic torus H C G.

For any finite-dimensional regular representation (p.V) and its differential dp : g —
gl(V'), the operators dp(h) : V — V for h € h can be simultaneously diagonalised. Moreover,
on a simultaneous eigenspace, the eigenvalue depends linearly on H, so it is described by a
linear funcional A : h — C. It leads to the following definitions.

Definition 3.17. For any linear functional A : h — C on a Cartan algebra b, we define the
corresponding joint eigenspace by Vy = {v € V : p(h)v = A(h)v Vh € h}. Element A € p*
is called weight , if the the weight space V) is nontrivial. The set of all weights is a
finite subset of h* and will be denoted by wt(V). In the case when p = Ad and dp = ad.
the weights are called roots and the weight space is called the root space. The set of all
roots will be denoted by @.

The key information about the structure of g is containted in the following root space
decomposition.

Theorem 3.18. We have

g=he& P g (3.7)

acd

Proof. Tt follows from Theor. 3.8, taking into account that the weight space corresponding
to the weight zero is exactly the Cartan subalgebra b.
The Jacobi identity implies that

[9a: 95] C Dot 5 (3.8)
for o, # € ®. More generally, the same computation shows that

Da(vx\) - V/\—H:r- (3'9)

3.8 The root system of a semisimple Lie algebra

Lemma 3.19. Let G C GL(n,C) be a connected classical group with the mazimal torus H.
Suppose that @ C b is the root system for g. Define a symmetric bilinear form (X,Y) on
g by (X.Y) =trea(XY). Then

gradationl

gradationl
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(1) dimg, =1 for all a € d;
(2) a € ®if and only if —a € ®: a € B,ca € b, c € C imply ¢ = +1;
(3} The form (X.Y) is invariant, i.c.
(X.¥].2) = ~(V.[X,Z]; X. Y. Z e g
and its restriction lo b is positive definite.
(4) (0.92) =0 and (ga, gg) = 0 unless a = —3;
(5) [8a:04] € Bars; B € €i, [garg-a] CH.

4
Proof. Ttems (1) and (2) are visible from the explicit lists of roots in App. t%\_-l for all four
series of classical groups.
(3) We have the relation

(X.Y],2)=tr(XYZ -YXZ)=tr(YZX — YXZ) = —tr(Y[X, Z]) = —(V. X, Z)).

The scalar product restricted to diagonal matrices is clearly Euclidean one.
(4) For the second relation, suppose that there is A € h with (a + 8)(4) # 0. Then for all
X € gn.Y € gy, we have

0=([A4X],Y)+ (X,[4,Y]) = (a+ B)(A)X.Y).

The first relation follows from the second taking into account that b is gg for trivial vector
.1'3.
(5) It follows from Jacobi identity.

3.8.1 Simple roots

The set & of all roots spans h*. We are going to choose a basis for h*.

Definition 3.20. A subset A = {a),...,o} C @ is a set of simple roots, if every v € ®
can be uniquely written as a linear combination v = Zﬁ:l n,cv,, where n, are integers having
all the same sign.

It divides @ as a union of two sets

O =3t U (-0,

where ® ' contains roots with nonnegative cocfficients in the above decomposition. Elements
in " are positive roots (with respect to the choice of A).

3.8.2 sly-subalgebras, the Cartan matrix

The key information for classification of irreducible regular representations of classical linear
algebraic groups are Lie subalgebras of g isomorphic with s[(2,C). For every root a, there
is one such subalgebra.
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Lemma 3.21. For every a € O, there exist ey € g, and fo € g_n such that the element
ha = [ea. fu] satisfies w(hy) = 2. Then

[hauf’u} = 2eq, [haa fa] = =2

hence these three elements generate the subalgebra isomorphic to s((2,C). We call such
triples sly-triples (SL2T).

The element hy € b is fized by the normalization condition above uniquely inside one-
dimensional space [go, 9-a) and is called the coroot to o and often denoted by cv.

The Cartan matrix C is defined by C,; = aj(hs,). All diagonal clements of C are
equal to 2, and all off-diagonal elements of C are non-positive and integral.

The form of the Cartan matrix is encoded in the corresponding Dynkin diagram.
This is a graph with a node for every simple root. Nodes corresponding to «; and a; are
conunected with Cj;C), lines. If the roots do not have the same length (with respect to the
scalar product (X, Y)), the inequality sign is placed on the lines indicating which root is
longer. .

All such SL2 triples are described explicitely in App.@m for classical algebraic groups.

3.8.3 Borel subalgebra, Borel subgroup

Definition 3.22. Let g be a classical simple comnplex Lie algebra of a linear algebraic group
G equal to SL(n,C),SO(n, B), or Sp(l,0),n =2l. Let H C G be a Cartan subgroup and
h its Lie algebra.
Suppose that
g=n" ohont

is the decomposition of g with n™ = @aea_ga and n* = Gaca Oa

The Lie subalgebra b = h & n' C g is called the Borel subalgebra of g.

Let moreover N," be the space of all n x n upper triangular unipotent matrices and
NtY=GnN}.

The group B = H- Nt C G is called the Borel subgroup of G.

Then we have the following fact.

Lemma 3.23. Let G C GL(n.C) be a connected classical linear algebraic group and B its
Borel subgroup. Let Nt =GN N,S. Then:

(1) The group NT is connected, unipotent, and normal in B.
(2) The Lie algebra of NT isn™.
(5) B=H x NT is a semidirect product.

The proof of Lemma is an interesting application of action of the group G on the
homogeneous space G/B, which can be realized as a flag manifold (resp. isotropic flag
manifold). Details can be found in [GW], Sect. 11.3.

l



Chapter 4

Irreducible regular representations
for classical groups and algebras

In this chapter. we describe the set of all regular irreducible representations for classical
complex Lie algebras and for classical simple linear algebraic groups. It gives then the
complete description of all regular representations, because these groups and Lie algebras
are reductive and any finite dimensional representation decomposes into a direct sum of
irreducible pieces. In many treatments ([FH],[H]), the attention is concentrated to the case
of Lie algebras, where it is possible to use algebraic methods for the classification. As argued
in previous chapter there is a very close relation between representation of a linear algebraic
group G and its Lie algebra g. But it needs some care to specify the relation of individual
cases precisely. Classification of regular irreducible representations will be given using the
highest weight theory. We shall first discuss classification of irreducible representations of
g for four main series of classical complex Lie algebras. Then we shall show which ones
are differentials of irreducible representations of the corresponding classical linear algebraic
group G. Finally, we shall discuss classification of irreducible regular representations for
special classical cases - the gronp GL(V') (which is reductive but not simple) and the group
O(V), which is not connected. In this chapter, we concentrate our attention to classical
cases. Hence if not specified otherwise, the group G will be one of simple classical linear
algebraic groups given by the following list: SL(n,C), SO(n, B), or Sp(n, Q). The bilinear
forms B a &d 1 giving a realisation of orthogonal, resp. symplectic groups will be chosen
as in Sect.3.6.1. It leads to a cowmfortable form of the Cartan and Borel subgroups (resp.
subalgebras).

The Cartan subalgebra § was defined as the Lie algebra of a maximal torus in G.
(It could be defined also as a maximal commutative subalgebra of g.) The basic idea of
classification below is to decompose a given irreducible representation into a direct sum of
joint cigenspaces (called the weight spaces) for the action of elements of fj and to characterize
the representation by the choice of a suitable extremal element among all weight spaces.
Joint eigenvalues (called weights) for the weight spaces are elements of a lattice in the real
subspace of h* {called the weight lattice), which is specific for every classical complex Lic
algebra. For a given choice of a partial order on the weight lattice, it is possible to show
that there is a unique highest weight among all weights of a given irreducible representation
satisfying a suitable dominant codition. The set of dominant weights in the weight lattice
gives us hence a parametrization of the set of (isomorphic classes of) regular irreducible
representations.

39
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4.1 Weight lattices, dominant integral weight, fundamental
weights

Let g be a classical simple complex Lie algebra.
Definition 4.1. The weight lattice P(g) is defined by
P(g) = {t € b"lu(ha) € Z,ov € B}.

The root lattice ()(g) is the additive subgroup generated by ¢. Hence Q(g) C P(g).
The weight A is called integral, if A(hy) € Z for all a € ©.
The weight A is called dominant, if A(h,) > 0 for all a € ©.
The semigroup ’(g)+4+ of integral dominant weights is hence defined ag

Plg)s+ = {n € 0"|u(ha) € Z; u(hy) > 0Va € ®}.

We shall define a partial order on the weight lattice as follows. Take two elements A, u
in h*. Then g < A iff there are elements 31,...,08, € ! such that g = A — 8 ... - 3,. This
order will be called the root order.

Let us denote by by the real vector subspace of h* generated by Q. The weight and
root. lattices are contained in it. Similarly, we denote by bz the real vector subspace in
h generated by corrots. The bilinear from (X.Y) = tr(XY) on g restricts to a positive
definite form on b (whichi consists of diagonal matrices).

Definition 4.2, Let ,.... o be the set of simple roots for classical simple complex Lie
algebra g and denote by I, = hy,,i =1,...,[ the corresponding coroots. They form a basis
for b. Elements of the dual basis wy, ..., w of h* are called fundamental weights. They

arc characterized by the relations
wifhs) = 4.

The lattice P, (g) of integral dominant weights has a simple structure of a free semi-
group, fundamental weights are its generators.

Theorem 4.3. Let g be a classical simple complexr Lie algebra. Then we have

1
Pii(g)={ren A= Zn,w,—,n, € Z,n; > 0}.
1

In particular

(1) Let G = SL(n,C). Then p € Py (g) iff p=kier + ...+ knzy with k) > ko > .. > ky
and k, — k4 € Z.

(2) Let G = SO2L+1,C). Then p € Poy(g) iff p=kis1+ ...+ kpey withky > ky > ... >
ki > 0 and 2k; and k; — k; are integers for all i, 7.

(3) Let G = Sp(21,C). Thenp € Py (g) if = kiz1+.. +kye withk, > ke > ... 2 k>0
and k; are integers for all 1.

(4) Let G = SO(2L.C). Thenp € Poy(g) ifu =kier+ ... +hpeq with by > ke > ... >
ki—1 2 |ki| and 2k; and k, — k; are integers for all i, J.

The statements in the theorem can be easily checked case-by-case 4by looking at explicit
description of the sets Py (g) and of fundamental weights at App.@f.ﬂ.
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Definition 4.4. Let g be a classical simple complex Lie algebra, and (r, V) its regular
representation, then its weight y is an element from §* such that the weight space

V() ={ve Vr(X)v=pX)v.X eh}
is nontrivial. Denote by wt(V') the set of all weights of V.

Lemma 4.5. Let (7,V) is a regular representation of a classical simple compler Lie algebra
g and wi(V') the set of all weights of (w. V).
Then wt(V) C P(g) and
V = €ueuwn)V (1)

Proof. Consider three-dimensional subalgebra s(a) containing h,, which is isomorphic to
s1(2,C) and consider V' as a representation of s(a). The first claim in the lemma follows
from the fact that sl(2, C) is reductive and from properties of irreducible finite dimensional
representations of sl(2,C).

Coroots h,, generate ), the operators m(hs) commutes and are diagonalizable, which
implies the second claim of the theorem.

i

Recall that the Borel subalgebra b of g is given by the sum b = h ¢ n*, where nt =
$ocotBa- The choice of positive roots implies a partial order on the weight lattice and
the highest weight vector v € V can be interpreted as a joint eigenvector for the Borel
subalgebra, with trivial eigenvalues for action of elements from nt. All that is formalized
in the following definition.

Definition 4.6. Let (p, V) be a regular representation of a classical Lie algebra g and
choose a set A of simple roots in ®. A nontrivial vector v € V' is called the highest weight
vector (with respect to the choice of A), if:

(1) p(X)v=0forall X en';

(2) There is A € h* such that p(H)e = A(H)v. H ¢ b.

The element A € h* is called the highest weight of V. The highest weight vector
is often called the singular vector for the representation (p, V).

Now we shall state and give main lines of the proof of the classification of regular
irreducible representations of g using highest weights. First we shall show that the highest
weight of such representation is unique, then we prove that isomorphic representations have
the same highest weight, and finally we shall characterize the image of the map (p, V) — Ay.

4.2 Highest weight theorem for g

Theorem 4.7 (Highest weight theorem). Let g be a clussical complex Lie algebra and (p, V)
its reqular irreducible representation. Then:

(1) There is a unique (up to o multiple) highest weight vector v € V. The corresponding
highest weight will be denoted by Ay .

(2) Two regular irreducible representations (p1, V1) and (pa2, Va) are isomorphic if and only
if A = Ay
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(3) A\ € Py (g). t.e. Ay is integral and dominant for g.

(4) For every p € Py, (g), there is a regular irreducible representation (p.V) of g such
that Ay = pu.

Proof. (1) Let A be a maximal element in wi(V') with respect to the root order. By maxi-
mality, any vector in V), is killed by the action of elements from the root spaces g,.a € ®.
hence by m(n"). Choose vy € V). Invariant subspace generated by the action of 7(n_) on
vy coincides with V' (by irreducibility). Hence V' = Cuy & @D, Vi and dimV), = 1.

(2) Isomorphic representations have the same highest weight. On the contrary, suppose
that Adyv; = Ay, = a and vy, resp. v are corresponding highest weight vectors. Then v} () vy
is a highest weight vector of weight « in V; & V4, which generates under the action of g
another irreducible representation U C V) & Va. Projections my : U — V) and m9 : U — Vi,
are nontrivial, hence isomorphisms.

(3) We know already that Ay is integral. For every o € ¢, we can restrict the represen-
tation m to s(a) generated by the corresponding triple {4, fa, o} and by representation
theory for sl(2,C), we get that Ay should be dominant.

(4) Using the fact that the semigroup of dominant integral weights is generated by funda-
mental weights, we shall construct all regular irreducible representations using the Cartan
product of representations corresponding to fundamental weights. Then we shall describe
regular irreducible representations for fundamental weights by case-by-case analysis.
Cartan product

Let V and W be irreducible g-representations with highest weights A and g, respectively.
If v € V and w € W are the highest weight vectors, then v % w is a highest weight vector
in the tensor product representation ¥V ¢ W with the highest weight A + p. This vector
generates an irreducible subrepresentation of V' & W with highest weight A + g, Moreover,
HV=0Vyand W= W, are the weight decompositions, then the weight spaces in
V & W have the form €,, =y Ve @ W In particular, for any weight v of V « W, we
have v = A 4+ u. The subrepresentation generated by the highest weight vector v & w is
called Cartan product of V' and W and is denoted by V @ W.

Recall that dominant integral weights are linear combinations of the fundamental weights
with nonnegative integral coefficients. The irreducible representation V; with the high-
est weight w; is called the ith fundamental representation. Suppose that we have con-
structed the fundamental representations Vi,---,V,,. Given a dominant integral weight
A =aw) + -+ aywy,. consider the representation Vl®“1 8- Vnw". From above we see
that this contains a unique (up to scale) highest weight vector of weight A. Hence by this
procedure we can find all irreducible representations. However, the essential step that re-
mains is to construct fundamental representations.

Fundamental representations:
(1) Aj,G = SL({ + 1.C) Let (7. V) be the defining representation of G on V = CH!. It
induces the representation (@k(rr), %*(V)) on the tensor power of V. The subspace AF(V)
is clearly invariant subspace of 2%(V). which defines a new representation (o, AR (V).
By definition of fundamental weights. we must have #{;‘% = 4y, from which one easily
concludes that w, =e; +---+e¢ fori=1..- [ -1 If {e I,J. oy -€£+1} is the canonical basis
of V, then each ¢; is a weight vector of welght ;. Consequently, the highest weight of V
is £1, so V contains the fundamental representation V| as an irreducible subrepresentation.
Next. consider the exterior powers AV of the standard representations for j = 2,...,l. The
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elements e;, AL .. A e;, for 1 <ip < ... <i; < nform a basis for A7V, which implies that the
weights of AJV are given by all expressions of the form =;, +- - i, 108 1Sy & o il By .
In particular, w; = ey 4 - 4+ ey is a weight (and in fact the highest weight) of A7V, so this
contains the fundamental representation V; as an irreducible subrepresentation.
lakceW

By Thcoren the set of weights of a representation must be invariant under the ac-
tion of the Weyl group. We know that the Weyl group of sl(n, C) is the permutation group
G, which permutes the ¢,. But this shows that for each of the representations A7V all the
weights are obtained from the highest weight by the action of the Weyl group. In partic-
ular, the fundamental representation cannot be strictly smaller, so A7V is a fundamental
representation for j = 1,...,n — 1, and we have found all fundamental representations.

(2) D;, G = SO(C%, B) Similarly to the previous exatnple, one can find w, = e, 4+ ... + ¢,
for j <l —1.w_; = %(51 +.o 4 Eqo) —Ey) and wy = %(51 + ...+ ¢&,). For the standard
representation V = C%, one immediately sees that the weights are +&; for i = 1,...,L
Since the Weyl group acts by permuting the ¢, and changing the sign of an even number
of £'s, we see that the orbit of the highest weight &) under the Weyl group is exactly the
set of all Te;, so we see that C2" is the first fundamental representation Vi. As in the
case of sl(n. C) above, we next conclude that for j = 2,--+ ,n — 2 the exterior power A7V
has to contain the fundamental representation V;. It turns out that A7V is irreducible for
J=1L1,-++.1 =1 and splits into two irreducible components for j = (. In particular, for
j=1.--- 1 — 2 the representation AJV is the jth fundamental representation. (Interested
reader can find details in [GW],p.269)

The remaining two fundamental representations are the two spin representations. They
cannot show up in any tensor power of the standard representations. since a tensor power
contains only weights which are integral linear combinations of the e;, while half integers
cannot occur. A construction of the spin representations is described, e.g., in [GW], Chapt.6.

(3) D;, G = SO(C%+1, B)

One can verify that w; =¢e; +---+2, for k=1,...,01 - 1, while w; = %(51 + e tgy).
Similarly, as for the even orthogonal algebras, one shows that for the standard representation
V = C%*! the exterior power AV is the Jth fundamental representation for § = 1,-+- ,[—1.
In fact, even A'V is irreducible, but not a fundamental representation. It should be noted,
however, that for the odd orthogonal algebras the weights of standard representations are
not in one orbit of the Weyl group any more, since apart from e, also 0 is a weight.
Further details can be found in [GW,p.269]. The last fundamental representation is the
spin representation (see [GW], Chapt. 6).

(4) C,G = Sp(C%,9)

One concludes that wj =¢e; + - +¢; forall j =1, 1. The weights of the standard
representation V = C? are given by tz; for j =1,...,1, so they lic on one orbit of the Weyl
group, which acts by permutations and sign changes of the £;. Thus, V is irreducible and
hence coincides with the fundamental representation Vj. The fundamental weight w; shows
up as the weight of a highest weight vector in A7V but in contrast to the earlier cases, the
exterior powers are not irreducible any more. The point here is that the symplectic form
on V is an invariant clements of A?V*. Contracting with this form defines a sp(2n, C)-
homomorphism A/V — AJ=2V . Since this map is clearly nonzero, its kernel is a nontrivial
subrepresentation V;, which turns out to be the jth fundamental representation. Further
details can be found in [GW],p.271.

d
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4.2.1 Highest weight vectors for G.

Definition 4.8. Let G be a classical linear algebraic group and B its Borel subgroup. The
highest weight vector v € V for a representation (p, V) of G is a joint eigenvector for all
p(b),b € B. Note that this condition implies that p(b)v = ¥/(b)v,b € B, where ¢ : B — C¥
is a character of B. We shall denote it by vy,

Lemma 4.9. Let G be a classical group and B its Borel subgroup Let (p,V) be a reqular
representation of G and (dp, V') its differential.

Then the two following claims are equivalent.
(1) The vector v € V is a highest weight vector for the representation (p, V) of G
(2) Vector v € V' is a highest weight vector for the representation (dp,V) of g.

Moreover, Ay is th 'L%'.ight of v for (dp, V') iff the character ¥ restricted to H is of the
form e (recall here (56)).

roof. Write B = H.N*, where H is the Cartan subgroup and N7t is defined in Lemma

23. The group N7 is unipotent, n™ is nilpotent Lie algebra and expisa 1 - 1 map from
nt onto N *. Hence any character for B is trivial on N and is determined by its restriction
to H.

Let first consider the representation p of B restricted to H and suppose that a character
e X(V) has a forin e{\/.

Then p(h)v = w(h)v,h € H iff dp(A)v = dx(A)v = MA)w.

Now consider the representation p on N*. We know that exp is 1 — I map from n™ onto
NT. Hen gxfcgg every i € N7, there is a nilpotent element N € n* with © = exp N, Using
Theoremcbfﬁﬂ,—we get p(u)v = plexp N)v = exp(dp(N))v. Hence exp(N)v = 0 for all
Nentiff y(u)=1forallueU.

(2) Now 1@5 s restrict the character ¥ to the torus H. We know that we can write ¥ on
H as t* (see (b_GT) and that dt*(4) = (\,4), A € b.

0

4.3 Weyl group

Definition 4.10. Let G be a classical simple complex Lie group. The scalar product
(X,Y) = tr{XY) is positive definite after restriction to hp and it defines dually a positive
definite scalar product on h*.

For every positive root a. we define the reflection s, : h* — §* by

2(8, )

(o, cx)

.

Su(ﬁ) =4 -

The reflection s, is characterized by the relations
sa(a) = —o; (0, B} =0 = oB) = 4.
The Weyl group W is the subgroup of End(h*) generated by all reflections s,, o € 7.

(1) Type A;,G = SL(l 4+ 1,C) For the root system A; of sI({ + 1,C), one can easily verify
that the root reflection Se,—e, + " — B” is induced by the map which exchanges =; and £,
and leaves the ey, for k& # 1, j untouched. Hence, the Weyl group W of 4, is the permutation
group Gy, of [ + 1 elements,
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(2) Type B;,G = SO(C¥t! B)

For the root system of s0(2{+ 1, C). the reflection s. .—e, dgaln exchanges ¢; and ¢, while
the reflection s., changes the sign of £; and leaves the other £ untouched. Thus, we may
view the Weyl Uroup W as the bubgjroup of all permutations o of the 21 elements += ; such
that o(~¢;) = —o(g;)} forall = 1,--- L. In particular, W has {12! elements.

(3) Type C;,G = Sp(C¥*,Q)
Since the reflection corresponding to 2¢; coincides with the reflection for £;. we get the
same Weyl group for the root system C; as for By.

(4) Type D;,G = SO(C%, B)

For the even orthogonal root system Dy, the reflection s,, ¢, again generate permutations
of the £, while the reflection s, ., maps €, to —£; and £, to —¢;. all other ; remain
untouched. Consequently, W can be viewed as the subgroup of those permutations 7 of the
elements 5 which satisfy m(—¢;) = —n(g;) and have the property that the number of j
such that m(g;) = &5 for some & is even. In particular, the number of elements in W equals
ik,

Note that the Weyl group W for SL(2,C) has just two elements and that the nontrivial
element of W™ is represented by the right hand side of an interesting relation

Lt opfr 14 _ |0 1
0 1f|-1 1|0 1] |-1 0]"
This is an inspiration for the following theorem.

Theorem 4.11. Let (7, V) be a finite-dimensional representation of g and

V=g

rcuwt(v)Va

its weight decomposition. Suppose that {en, foha} is an SL2 triple for o € OV, then
elements B = w(e,) and F = w(f,) ere nilpotent and we can define

To = xp(E) exp(—F) exp(£) € GL(V).
Then

(1) ramw(Y)rst =7(saY), Y € b;

(2) The action of W preserve the space of weights X (V) and the multiplicity my = dimV,
s wnvariant under the action of TV,

Proof. If {e, f.h} have the canonical commutation relation for si(2,C), then images of e
and f are nilpotent in an\éxﬁéute duPensmndl representation.

It follows from Theor. 'TESTI_tTd (X) is nilpotent on End(V) for any nilpotent element
X € End(V) and that we have

exp(X)Aexp(-X) = exp(adX)A, A € End(V). (4.1)

(1) We need now to prove three c'laims'
(a) exp(E)n(Y)exp(—E) =7n(Y) —a(Y)E; Y ¢ b;
(b) exp(-F)m(Y)exp(F) = ﬂ'(Y) -aY)F, Y e
(c) exp(E)Fexp(—FE) = F +n(hy) — E.
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Having them available, we get for Y € j

Tam(Y)To! = exp(E) exp(—F)[m(Y) — a(Y) E] exp(F) exp(-E) (4.2)
= exp(E)[n(Y) - a(Y)E - a(Y)r(ha))| exp(-E) (4.3)
= w(Y) - a(Y)n(ha) = 7(5,Y). (4.4)

So to finish the proof, we have to verify the three claims above.
(a) We have
ad(EYn(Y) = —n(ad(Y)eq) = —a(Y)E

.29 ;
for any ¥ € h. Hence it is sufficient to use (EI and the relation ad(E)?*(x(Y)) = 0.
(b) The map given by

Ca = —fai Ja = —Cai ha— =l (4.5)

Is an automorphism of the SL2 triple for «. so the calculation in (a) works as well for (h).

(c) The claim (a) implies exp(E)m(h,) exp(—E) = 71'%1_?}} 2E. Moreover, ud(%)é‘g = 7(ha)

and ad(E)?*F = —2E. So we can use (adE)*F = 0, (.I) and automorphisin (4.5) to prove

the claim (c¢).

(2) Suppose that m(Y)v = A(Y)v,v € VY € h. Then 7(Y )7av = Tam(5.Y)v = [8aA](Y )7q v.
O

4.4 Highest weight theorem for G

The previous section contains a classification of regular irreducible representations of simple
classical complex Lie algebras (four series). Every regular irreducible representation (p, V)
of a linear algebraic group G induces the regular irreducible representation (dp, V) of its Lie
algebra g but the opposite implication is not true. There are regular irreducible represen-
tations (o, V) of g, which cannot be integrated to a representation of G (i.e., which are not
differentials of a regular irreducible representation of G). So we are going to discuss now
the classification of regular irreducible representations of classical simple linear algebraic
groups. Then, in next sections, we are also going to discuss how to classify regular irre-
ducible representations for other (nonsimple) classical groups (GL(V)) and (nonconnected)
classical groups (O(V, I3)).

4.4.1 Weight lattices

Let G be a simple complex linear algebraic group and H its Cartan subgroup. One of
important objects for further discussion is the weight lattice P(G) of G, which is defined
as the space of differentials of all characters of H. We shall see that it is an integral lattice
generated by the basis =1,. ..,/ in §*.

Definition 4.12. The weight lattice P(G) of a classical algebraic group G is defined as
P(G) = {dx|x € X(H)}, (4.6)

where H is a Cartan subgroup of G.
The set P, (@) is defined by the formula
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Lemma 4.13. Let G be ¢ simple complex linear algebraic group. Then
P(G) = &4_ Zey. (4.7)

2.20
Proof. Let t* is the character of H given by (EZ.G . Then dt*(A) = (A, A), 4 € b. Indeed,

Xa acts on O(H) by
{

a
/‘(,} = Z(Ez. A>IZ()_11

i=1

and we get
A A) = Xa(a . ) (1) = (A, A).

a
Elements of P(G) are called integral weights for G and elements of P, (G) are

called integral and dominant for G. We have already described explicitely sets ;4 (g)
in Theorem H.3. Now we describe also explicitely the sets P, o (G).

Theorem 4.14. (1) When G = SL(l + 1,C), then P, ,(G) = P, . (g).

(2) When G = SO(20 + 1,C), then pu € P (G) #ff t = nywi + ... m_qwij—q + (2w,
where 1, are nonnegative inlegers.

(3) When G = Sp(21,C), then Py (G) = P, (p).
(4) When G = SO(2!.C). then u € P, (G) iff
H=1ywr 4 onyg awig 4 g (2w-) + g (2w) + g (wp g wy),
where n, are nonnegative integers.
Proof. There is nothing to prove in cases (1) and (3). In odd dimensional orthogonal case,
the claim is easily visible, because P(G) = Zi:l Zej,wi=e1+... .+, 1=1,...,0—1and

2w is equal to &1 + ... +&y.
In even dimensions, it is easy to check that the lattice generated by elements

Wiy e ey Wiog, 2w, 2wy, Wi + Wy

coincides with P(G). (Note that it is the same information as the claim that vectors
{(1,1),(1,0), (1, —1)} gencrate the same lattice in R? as vectors {(1,0),(0,1)}.)
O

Theorem 4.15 (Highest weight theorem). Let G be one of the four series Ay, By, C}, Dy of
classical linear algebraic groups and suppose that (p, V) is its regular irreducible represen-
tation. Then

(1) (dp, V') is an irreducible reqular representation for g, hence there here is @ unique {up
to a mulliple) highest weight vector v € V with the highest weight Ay

(2) Two regular irreducible representations (p1, Vi) and (p2,V2) of G are isomorphic if
and only if Ny, = Ay;,.

(8) Av € P (G), i.e. Ay is integral and dominant for G.
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(4) For every p € P, (G). there is a reqular irreducible representation (p, V) of G such
that Ay = o

Proof. (1) The representation (dp, V) is irreducible, because (p, V) is. Hence Theor. EE'PQ
implies that there is a unique (up to multiple) highest weight vector in V for (dp, V).

(2) The representation (p,, V,) are isomorphic iff (dp, V;) are.

(3) Ar vw}:k;eight for any representation of G should be in P(G) and we know already using
Theor.H.7 that the highest weight Ay belongs to P, (g).

(4) The proof of part (4) of the highest weight theorem for algebras shows how to construct
representations for weights generating Py (G). All other are constructed using the Cartan
product construction.

|

4.5 Frobenius reciprocity

Definition 4.16. Let G be a linear algebraic group and H its algebraic subgroup. The
ring O(H\G) of functions invariant under the left translation by elements of H is called the
ring of regular functions on the homogencous space H\G.

The right regular action of G preserves the space, which hence become a representation
of G. Its decomposition under this action is described in the following theorem, called the
Frobenius reciprocity.

Let G denote the set of equivalence classes of irreducible regular finite-dimensional
representations of G.

Theorem 4.17. Under the action of G,

O(H\G) ~ &, (dim(c*) ")V, (4.8)

where % @ the representation contragredient to o and (o*)” 1§ the space of its H-invariant
vectors.

Proof. Let (o, W) be an irreducible regular representation of G and let A be an invariant
vector for o*. Recall the definition of the matrix coefficients

exru(g) = (Alo(g)v)).

for o and the intertwining the map ¢y from o to the right regular representation intertwining
for the action of G given by v — ¢y ,,. The image of this map consists of functions invariant
under the left translations (i.e., functions on the coset space H\G).

Conversely, it T': V — O(H\G) is an intertwining operator for the action of G and we
define Ap(v) = T(v)1¢, then Ay is H-invariant element in V*. Then it is easy to check that
A= @y and T — Ap are mutually inverse isomorphisis. If ¢ is moreover irreducible, then
the multiplicity of ¢ in O(H\G) is equal to dim(V*)7,

O
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4.6 Representations of GL,,.

The group GL(n.C) is isomorphic to the direct product SL(n.C) x C*, hence irreducible
regular representations of GIL(n,C) are isomorphic to the tensor product of irreducible
representations of both factors. The set of isomorphic classes of such representations of the
first factor are parametrized by highest weights

)\:{)\17...,,\71)62.”,/\12/\22...2;\”

modulo A = (1....,1), while isomorphie classes of irreducible regular representations of C*
are classified by an integer.
We can put both data together into one item A from the cone

€ = {)\EZan > Aa ZZ)\H}
It leads to the following clagsification of regular irreducible representations of GL(n,C)

Theorem 4.18. (Isomorphic classes) of regular irreducible representations of the group
G = GL(n.C) are classified by elements \ of the cone

C={A=0n .. . M)eZ¥ N Z2h>...2 M}
of integral dominant weights.

Denote by 1, element (1,...,1) € C. The representation det of GL,, has the highest
weight A = 1, and it restricts to the trivial representation of SLy. If p is a regular repre-
sentation of GLy, with the highest weight A, then p & det is a regular representation with
the highest weight A 4+ 1,,.

Let C* denote the subcone of A € C with all components nonnegative. Regular repre-
sentations of G Ly, with highest weight A in Ct are polynomial representations, because
their matrix elements will not involve function det ™!, they will be polynomials in coordinate
functions of the matrix.

A general regular irreducible representation of GL(V) is characterized by a highest
welght from the conus €. We shall characterize such general representations by a pair
of weights as follows. Suppose that the weight A = (A, As,...,\,) belongs to € but its
components need not be nonnegative. Then the weight \* = (=X, =N\,_1...., —=);) is again
in the cone C, hence it is the highest weight of another regular irreducible representation of
G. (It can be checked as an exercise that it is the highest weight of the dual representation
(p™, V"))

Now define by

AV = (max{A, 0}, maz{Az, 0}, ... mar{A,,0})

and

AT = = ((=N)") = (min{A, 0}, min{A2,0}....,min{\,,0})

Then A = A% + A~ and if A € C. then both At and A~ belongs to C*. Let us denote by £(\)
the values of index of the last nontrivial component of A € C* and call it the length of A.

5o for any A € C. we label the representation (py, V') by the pair of weights (A+, A7),
Note that the sum of lengths of A" and A~ is less or equal to n. We can also go back and
for any pair (A1, A2} of two weights from C* with sum of their lengths less or equal to n,
we can define a regular irreducible representation of GL(V') such that the associated pair
of weights for it is equal to (A, A2). So we have
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Theorem 4.19. Classes of isomorphisms of regular irreducible representations of G =
GL(n,C) are parametrized by the set (GL,) of all pairs (A1.A2) of weights from CT with
£(A1) + £(A2) < .

4.7 Representations of O(V,B) and SO(V,B)

We have already described and classified regular irreducible representations of the group
S0(n.C) by their highest weight A € P, (8O(n,C)). The goal of this section is to give a
related description and classification of regular irreducible representations of the full group
G = O(V, B). The group G has two connected components. which can be described using the
character det : G —[{£1} C C*. The kernel of det is the simple group G° = SO(V, B). The
other component is given by det™'(—1). We shall treat the simpler case of odd dimension
of V first, and then we shall describe two different subcases, when dimension of V is even.
We shall use, as usually, the realization §)f orthogonal groups given by the choice of the
syminetric form B on V described in 8.6.1. Let H be the Cartan subgroup of diagonal
matrices in G, and let N* = exp(nt) be the subgroup of upper triangular matrices in G.
The regular irreducible representation of G with the highest weight A will be denoted by
(md VA,
(1) dim V is odd.

In this case, det(—7) = —1 and G ~ G°x Z,. Suppose that (p, W) is a regular irreducible
representation of G. The matrix —T is in the center of G, hence it acts, by the Schur lemma,
as a multiple of identity on W. But p(-1)? = I, hence p(—1) = +1.

Theorem 4.20. Let V' be complex vector space with dimV being odd. Regular irreducible
representations of the group G = O(V, B) are classified by pairs (M, €), where X s an in-
tegral dominant weight for (SO(V, B)) and ¢ = +1. The representation will be denoted by
(TN VA, when 7 (=1) = el. The representation T is isomorphic to ™" % det.

(2) dim V is even.

In this case, the situation is more complicated. Let us choose an element go, which
exchanges basis elements ¢; and e;, 1 and fixes all other basis elements. Then two connected
components of G are G° and oG and G is now a semidirect product G ~ {1,9°} x G“.
We have ggHgal = JH',_(;gr'tJrgo_1 =nt,and go-e;=¢,i=1,...,0—1; gg- &, = —¢y,
Examples.

Let V = €% be the defining representation of O(2(,C). Thentor any k = 0,...2[; k £ L.
representations pf on the exterior powers A¥(V) are irreducible both for G°, and for G. For
k=0,...,0 =1, representations A*(V) and A% are isomorphic as representations of G°,
but not so, when considered as representations of G (note that p*(gn) = +7 for k < [, resp.
k >1.) But in the middle dimension, A'(V) is irreducible only as representation of G, and
it decomposes into the sum of self-dual and anti-self-dual parts as a representation of GY.)

To construct irreducible representations of G from irreducible representations of G°, we
can use the scheme of induced representations. Starting from regular irreducible represell-
tation (74, VA of G°, we define the induced representation (p, I(V*)) of G as

[(V?) = Indgio(n*) = {f € O(G. V)| f(zg) = nMz) f(9).x € G°, g € C}.

where O(G, V?*) is the space of all regular maps from G to V> and the action pof G on
I(V*) is given by the right translation (which clearly preserves the space I(V*).)
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We want to show that the space I(V*) decomposes under the action of G as a direct sum
of two G irreducible representations. More precisely, we are going to prove the following
lemma.

Lemma 4.21. The induced representation 1(V?) decomposes as G” representation as
(‘JT/\, V/\) & (Tryg-/\’ V_l’jg-)\).

Proof. The map f € I(V*) — (f(1), f(go)) € V2 & V> is an isomorphism of vector spaces.
If we define the representation 7 on VA by n(x) = ™ (g "xg0). & € G, then we get that
under the action of G°

IV = (@2 VN & (7)), VD). (4.9)

But it is easy to sce that the highest weight of the representation (W()\, VA is go - A, hence
this representation is isomorphic to (7904, V904,

It is helpful to see explicitly the form of these two G°-irreducible components and their
highest weight vectors. Define the space I1(V*) as functions supported on G° and vanishing
on G°gy. Similarly, let Iy(V*) be the space of functions supported on Gy and vanishing
on % Then clearly

I(VA = L(VY & I(V?)
Is an alternative expression for (!fsf%%
Choose a highest weight vector v € (W*)*" and define functions fiand fo for x € G° by

fi(x) = T (x)v, fi(zgo) = 0; folz) = 0, fo(zgo) = 7 (x)v.
Then 1 € I(V*) and fp € Io(V*) form a basis for I(V)‘}“\L, because

p(h) fL(zge) = m(zh)v = kA fi(x) (4.10)
p(h) fo(zgo) = ™ (zgohgy v = A% fy(zgo), (4.11)
and p(go0) f1 = fo- O

Recall that a dominant integral weight A = Ajg; + ... + X\;z; satisfies
A=A 2> 2N 2 A

Due to g” - Ay = =N we may (and will) suppose that A; > 0. We have now to discuss
whether the induced representation I(V?) is irreducible as a representation of G.
The subcase (2) A.

Suppose first that A; > 0, hence go - A # A. Then weights of highest weight vectors fi
and fo are different, f; is mapped by p(go) to fo. Hence I(V?) is irreducible for G. We shall
denote it by p*.

The subcase (2) B. If A, = 0, then gg- A = A and the highest weight vectors Fy = f; + fo
form another basis for J(V*)"" with the property p(go)Fy = £F4. Each of the vectors Fiy
generates an irreducible representation for G, we shall denote them by VA, resp. VA,

Hence (V) decomposes into irreducible G?-components as
(VY = VAT g VA,

It is possible to check that V4~ ~ VAT & det.

The case (2), classification. We are going to show now that any regular irreducible
representation of G is isomorphic to one of those induced representations or their subrep-
resentations.
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Theorem 4.22. Regular irreducible representations of G = O(V, B) for dimV even are
isomorphic to one of representations in the following families:

(1) (75, VA with X integral and dominant Jfor G° = SO(V, B) and A\ = 0;

(2) (p*, I(V)) with X integral and dominant for G9 and A > 0.

Proof. Suppose that (g, W) is a regular irreducible representation for . We can restrict
the action on IV to G and we can find an irreducible representation for (7%, V*) for the
action of G with V* ¢ W. The group G? is reductive, hence we can find G equivariant
projection P : W — V* and to define the map §: W — I(VN) by S(w)(g) = Plo(g)w).
The map S intertwines representations (o, 1V) and (p, I(V*)) and § is injective, becausc
S(w)(1) = w. Using our discussion of the induced representation for the image (S(W)) iu
I(VY), we get that (o, W) is isomorphic with (p, I(V?)) if Ay # 0, and (o, W) is isomorphic
with p restricted to one of the spaces VA%, if A, = 0.

O

The case (2), an alternative classification. It is possible to simplify and unify the
classification for regular irreducible representations of G = O(V) as follows. There are (in
both parities) two families (7%, VM), where 74" ~ 74~ & det. Suppose that the rank of
G is equal to [ and £(\) = 7,0 < j < [. (Recall that £(\) is equal to the index of the last
nontrivial comnponent of A. )

We shall denote the representation 7+ by 7% and the representation 7%~ by 7, where
Ai=Xfori=0.... Jand Ay =1fori=j+1,....20 — J- It means that A is equal to
A complemented by components equal to 1 up to the length symmetric to the length of A
with respect to the origin’ 7 = [.

Before going further in discussion, we introduce a helpful notation. Note that the length
£(A) of a weight A can be writen also as £(A) = |{k|Ax > 1}|, where the absolute value denotes
the number of elements in the set. More generally, define the new weight A associated to
A by

X = {2 i}

So, e.g.. £(A) = A}. If an element X is represented by the Young diagram D (see the next
section), then A’ is represented by the transposed diagram D' obtained from D by the
reflection with respect to the diagonal. Note also that M € C* for A € CT¥.

Returning back to representations 7%, it is easy to check that using the introduced
notation, the weight A satisfies an additional condition Al A, < 21, because Ay = AL

As a swuunmary, we get the following alternative classification.

Theorem 4.23. Regular irreducible representations of the group G = OV, B), of rank 1
are classified by a weight u € Ct with ) + p < 21,

Proof. If dimV is odd, then the parameter (A. %) is replaced by p = A for ¢ = + and p = A
for ¢ = —.

The same is true for dimV even and A, = 0.

If dimV is even and A; > 0, then we define g = A, It is easy to check that the condition
1) + ph < 21 holds.

On contrary, if y is an element from C* with p{ + g < 2I, then p corresponds to
the representation () if {(p) < I, to the representation 7M7), with only nontrivial
components of A given by A; = p;, 1 =0,...,20 - (u), if £(p) > 1, and to the representation
(p), it dimV is even and 1y > 0. d
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4.8 The diagram notation.

We now iutroduce an alternative notation for weights, which is often nsed in description of
representations for classical linear algebraic groups. A typical dominant weight A is an ele-
ment of the cone C", i.¢., a sequence of noninereasing nonnegative integers. Such sequences
can be represented graphically using Young diagrams (often also called Ferrers diagrams).
Suppose that A = (A...., A,) be a sequence of nonnegative integers satisfying the relation
A2 Az 2 . Ag. We shall identify such sequence with the array of square boxes, arranged
in left-justified rows. with the top row of length Aj, the second row of length Az, and so
forth. For example, the diagram corresponding to the sequence (7,5,4,4,2,0,0,--) is

[

Diagrams will be denoted by capital letters, such as D, E. We say that the Young diagram
D with p nontrivial rows has length (or depth) equal to p and denote it by £(D). The total
uumber of boxes in the diagram is |D| = 37, A, If A is a weight. then associated character
will be denoted hy ¥p.

For a diagram D, we denote by D' the diagram corresponding to the sequence given
by number of boxes in individual columns of the diagram. Geometrically, D! is the di-
agram D transposed along the diagonal axis. For example, if D = (7.5,4,4,2), then
D'=(5.5,4,4,2,1,1). If D = (A1,..., Ax), then it can be checked that D! = (X,,.... A,
where A} = [{k]\; > i}|, where the absolute value denotes the number of elements in the
set. So, for examples, the condition for weights g in alterr 3{% classification of regular irre-
ducible representations of the arthogonal group Theorem 11.22 1s saying that sum of lenghts
of the first two columns in the corresponding Young diagram D is less or equal to 21.

4.9 Notation for regular irreducible representations of clas-
sical groups

The case of G = GL, Let p,q be nonnegative integers and n a positive integer with
p+ ¢ < n and suppose that Dy with #(D;) = p and Dy with £(D2) = ¢ are two Young
diagrams. Then the regular irreducible representation on V' corresponding to the pair
(D, Dq) will be denoted by p"D-“DZ.

The case of G = O,, Let D be a Young diagram satysfying the conditions that the sum of
lenghts of the first two columns is less or equal to n. Then we denote the regular irreducible
representation of G = O, on V corresponding to the diagram D hy U{,).

The case of G = Sp,,, Let D be a Young diagram satisfying the conditions that £(D) < 2n.
Then we denote the regular irreducible representation of G = Sp,, on V corresponding to
the diagram D by 7.



