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Abstract
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1 Introduction

In contrast to ordinary dynamic equations, the theory of partial dynamic equations is far less developed
and the literature is rather scarce; see e.g. [1, 9, 10, 13]. This paper is a contribution to the recent studies
of partial dynamic equations on discrete-space domains (also known as lattice equations). After the
transport equation considered in [20, 22] and various diffusion-type equations investigated in [2, 7, 17, 18],
the next natural candidate is the one-dimensional discrete-space wave equation

u∆∆(x, t) = c2(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)), x ∈ Z, t ∈ T, (1.1)

as well as its N -dimensional analogue. We use T to denote a time scale, and u∆∆ stands for the second
∆-derivative of u with respect to the time variable. We assume that the reader is familiar with the time
scale calculus (see [3, 8]), which enables us to consider equations with continuous, discrete, or mixed

time in a unified way. Eq. (1.1) is obtained from the classical wave equation ∂2u
∂t2 (x, t) = c2 ∂

2u
∂x2 (x, t)

by discretizing the space variable (the discretization step is fixed), while the time variable can remain
continuous, or can be discretized as well (possibly with variable discretization steps). Without loss of
generality, we assume that the spatial discretization step is 1; otherwise, for step size ∆x > 0, a simple
change of variables transforms the equation to the form (1.1) with c2 is replaced by c2/(∆x)2.

Second-order equations such as (1.1) are equivalent to systems of two first-order equations. In Sec-
tion 2, we do not focus solely on the wave equation, but consider general systems of n linear first-order
partial dynamic equations. We obtain some basic results concerning the well-posedness of initial-value
problems, formulate a superposition principle for infinite linear combinations of solutions, and discuss
symmetric solutions of equations with symmetric right-hand sides. The results and proofs in Section 2
are inspired by the theory of scalar partial dynamic equations developed in [17].

In Section 3, we first show how the previous results apply to the N -dimensional discrete-space wave
equation. Then we focus on the one-dimensional case and discuss a method for obtaining fundamental
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solutions. Our approach is based on generating functions, and is similar to the one demonstrated in [18]
for diffusion-type equations. As an example, we find fundamental solutions of the wave equation (1.1)
for several particular time scales.

Discrete-space equations are interesting from the viewpoint of numerical mathematics, but also show
up directly in applications. For example, the semidiscrete diffusion equation models the flow of a chemical
in a system of tanks connected by pipes [19], while the semidiscrete wave equation describes the motion
of a chain of masses connected by linear springs [21]. Various diffusion-type equations with continuous,
discrete or mixed time appear in the context of stochastic processes [7, 18], signal and image processing
[12], or in biology [4].

2 Discrete-space systems of partial dynamic equations

Assume that N ∈ N, e1, . . . , eN is the canonical basis of RN , n, r ∈ N, and A(i1,...,iN ) ∈ Rn×n for all
i1, . . . , iN ∈ {−r, . . . , r}. We consider the system of n first-order partial dynamic equations written in
the vector form

u∆(x, t) =
∑

i1,...,iN∈{−r,...,r}

A(i1,...,iN )u
(
x+

∑N
k=1 ikek, t

)
, t ∈ T, x ∈ ZN , (2.1)

with the unknown function u : ZN × T→ Rn. Thus, each component of u∆(x, t) is a linear combination
of the values of u lying in the N -dimensional hypercube centered at x and whose side has length 2r + 1.

Note that Eq. (2.1) can be regarded not only as a partial dynamic equation, but also as an infinite
system of ordinary dynamic equations indexed by x ∈ ZN ; equations of a similar type with N = 1
have been investigated in [14], but from a different point of view. In the special case T = R, Eq. (2.1)
becomes a countable system of ordinary differential equations; such systems (as well as the related topic of
ordinary differential equations in Banach spaces) have received a great deal of attention in the literature
(see e.g. [5, 6, 16]).

Let `∞(ZN ) denote the space of all bounded N -dimensional arrays of real numbers {ux}x∈ZN equipped
with the supremum norm

‖u‖ = sup
x∈ZN

|ux|, u ∈ `∞(ZN ).

We also need the product space (`∞(ZN ))n, whose elements have the form u = (u1, . . . , un) with
u1, . . . , un ∈ `∞(ZN ). On this space, we introduce the norm

‖u‖ = max{‖u1‖, . . . , ‖un‖}, u ∈ (`∞(ZN ))n.

For an arbitrary u ∈ (`∞(ZN ))n and x ∈ ZN , we use the symbol ux to denote the vector (u1
x, . . . , u

n
x) ∈ Rn.

The system of partial dynamic equations (2.1) is closely related to the abstract dynamic equation

U∆(t) = AU(t), (2.2)

where U : T→ (`∞(ZN ))n, and the linear operator A : (`∞(ZN ))n → (`∞(ZN ))n is given by

A({ux}x∈ZN ) =

 ∑
i1,...,iN∈{−r,...,r}

A(i1,...,iN )ux+
∑N

k=1 ikek


x∈ZN

. (2.3)

Indeed, consider a function U : [T1, T2]T → (`∞(ZN ))n which satisfies (2.2), and let u : ZN × [T1, T2]T →
Rn be given by u(x, t) = U(t)x. Differentiability of U implies that its components are also differentiable,
and we have

(U(t)x)∆ = (U∆(t))x = (AU(t))x =
∑

i1,...,iN∈{−r,...,r}

A(i1,...,iN )U(t)x+
∑N

k=1 ikek
.
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Consequently, u is a solution of (2.1).

We will often need to know the norm of A. If we denote A(i1,...,iN ) = {a(i1,...,iN )
kl }nk,l=1 and rewrite

(2.3) as

A({ux}x∈ZN ) =


 ∑
i1,...,iN

n∑
l=1

a
(i1,...,iN )
1l ul

x+
∑N

k=1 ikek
, . . . ,

∑
i1,...,iN

n∑
l=1

a
(i1,...,iN )
nl ul

x+
∑N

k=1 ikek


x∈ZN

,

it becomes clear that

‖A‖ = max
k∈{1,...,n}

∑
i1,...,iN∈{−r,...,r}

n∑
l=1

∣∣∣a(i1,...,iN )
kl

∣∣∣ . (2.4)

Example 2.1. Consider the system of classical partial differential equations

∂u

∂t
(x, t) = d1

∂2u

∂x2
(x, t) + b11u(x, t) + b12v(x, t),

∂v

∂t
(x, t) = d2

∂2v

∂x2
(x, t) + b21u(x, t) + b22v(x, t), x, t ∈ R.

After discretizing the space variable and replacing the continuous time domain with a general time scale T,
we obtain the discrete-space system of partial dynamic equations

u∆(x, t) = d1(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)) + b11u(x, t) + b12v(x, t),

v∆(x, t) = d2(v(x+ 1, t)− 2v(x, t) + v(x− 1, t)) + b21u(x, t) + b22v(x, t), x ∈ Z, t ∈ T.

This system can be rewritten in the vector form (2.1) with N = 1, n = 2 and r = 1; we get(
u∆(x, t)
v∆(x, t)

)
=

(
d1 0
0 d2

)(
u(x+ 1, t)
v(x+ 1, t)

)
+

(
b11 − 2d1 b12

b21 b22 − 2d2

)(
u(x, t)
v(x, t)

)
+

(
d1 0
0 d2

)(
u(x− 1, t)
v(x− 1, t)

)
.

This means that

A(1) = A(−1) =

(
d1 0
0 d2

)
, A(0) =

(
b11 − 2d1 b12

b21 b22 − 2d2

)
.

According to Eq. (2.4), the norm of the corresponding operator A : (`∞(Z))2 → (`∞(Z))2 is

‖A‖ = max (2|d1|+ |b11 − 2d1|+ |b12|, 2|d2|+ |b22 − 2d2|+ |b21|) .

Our first main result will be concerned with the well-posedness of initial-value problems for Eq. (2.1).
To prove it, we need the following lemma, which is a generalization of [17, Lemma 3.4].

Lemma 2.2. Consider an interval [τ1, τ2]T ⊂ T and a point t ∈ [τ1, τ2]T such that |t− τi| < 1
2‖A‖ for i ∈

{1, 2}. Assume that u1, u2 : ZN × [τ1, τ2]T → Rn are bounded solutions of Eq. (2.1). If u1(x, t) = u2(x, t)
for every x ∈ ZN , then u1 and u2 coincide on ZN × [τ1, τ2]T.

Proof. For every x ∈ ZN and r ∈ [τ1, τ2]T, we have

u1(x, r)− u2(x, r) = u1(x, t)− u2(x, t) +

∫ r

t

(u∆
1 (x, s)− u∆

2 (x, s))∆s =

∫ r

t

(u∆
1 (x, s)− u∆

2 (x, s))∆s

=

∫ r

t

∑
i1,...,iN∈{−r,...,r}

A(i1,...,iN )
(
u1

(
x+

∑N
k=1 ikek, s

)
− u2

(
x+

∑N
k=1 ikek, s

))
∆s.
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Without loss of generality, assume that Rn is equipped with the supremum norm. Then∥∥∥∥∥∥
∑

i1,...,iN∈{−r,...,r}

A(i1,...,iN )
(
u1

(
x+

∑N
k=1 ikek, s

)
− u2

(
x+

∑N
k=1 ikek, s

))∥∥∥∥∥∥
≤ ‖A‖ sup

x∈ZN

‖u1(x, s)− u2(x, s)‖,

and it follows that

‖u1(x, r)− u2(x, r)‖ ≤ |r − t| · ‖A‖ sup
s∈[τ1,τ2]T,

x∈ZN

‖u1(x, s)− u2(x, s)‖ ≤ 1

2
sup

s∈[τ1,τ2]T,

x∈ZN

‖u1(x, s)− u2(x, s)‖.

Passing to the supremum on the left-hand side, we conclude that

sup
s∈[τ1,τ2]T,

x∈ZN

‖u1(x, s)− u2(x, s)‖ ≤ 1

2
sup

s∈[τ1,τ2]T,

x∈ZN

‖u1(x, s)− u2(x, s)‖.

Clearly, this inequality holds only if both suprema vanish, i.e., if u1 and u2 coincide.

We now proceed to the well-posedness of initial-value problems to Eq. (2.1). We consider solutions
which can go both forward and backward in time; in the backward direction, a condition involving the
graininess of T is needed to guarantee both existence and uniqueness (the discussion in [17, Section 3]
shows that already in the scalar case, the graininess condition cannot be omitted). The next result
generalizes Theorems 3.3 and 3.5 from [17].

Theorem 2.3. Consider an interval [T1, T2]T ⊂ T and a point t0 ∈ [T1, T2]T. Let u0 ∈ (`∞(ZN ))n.
Assume that for every t ∈ [T1, t0)T, the operator I +Aµ(t) is invertible.

Then, there exists a unique bounded solution u : ZN × [T1, T2]T → Rn of Eq. (2.1) such that u(x, t0) =
u0
x for every x ∈ ZN . Moreover, the solution depends continuously on u0.

Proof. Thanks to the invertibility of I +Aµ(t) for each t ∈ [T1, t0)T, the time scale exponential function
t 7→ eA(t, t0) is defined on [T1, T2]T. The function U(t) = eA(t, t0)u0 is bounded on [T1, T2]T and satisfies
Eq. (2.2) with U(t0) = u0. Consequently, u(x, t) = U(t)x is a bounded solution of Eq. (2.1) satisfying
u(x, t0) = u0

x.
The prove uniqueness, consider a pair of bounded solutions u1, u2 : ZN × [T1, T2]T → Rn. First,

assume that u1, u2 do not coincide on ZN × (t0, T2]T; let

t = inf{s ∈ (t0, T2]; u1(x, s) 6= u2(x, s) for some x ∈ ZN}.

We claim that u1(x, t) = u2(x, t) for every x ∈ ZN . If t = t0, the statement is true. If t > t0 and
t is left-dense, then the statement follows from continuity. Finally, if t > t0 and t is left-scattered, then
u1(x, ρ(t)) = u2(x, ρ(t)), and the statement follows from the fact that u∆

1 (x, ρ(t)) = u∆
2 (x, ρ(t)). Now,

if t is right-scattered, then the relations u1(x, t) = u2(x, t) and u∆
1 (x, t) = u∆

2 (x, t) imply u1(x, σ(t)) =
u2(x, σ(t)), a contradiction with the definition of t. On the other hand, if t is right-dense, there is a point
τ ∈ (t, t+ 1

2‖A‖ )T, and Lemma 2.2 (with τ1 = t, τ2 = τ) leads to a contradiction again.

Before we proceed to uniqueness in the backward direction, we make the following observation: Denote
Ui(t) = {ui(x, t)}x∈Z, i ∈ {1, 2}. If t ∈ [T1, t0)T is a right-scattered point, we have

Ui(σ(t)) = {ui(x, σ(t))}x∈Z = {ui(x, t) + µ(t)u∆
i (x, t)}x∈Z = (I + µ(t)A)Ui(t).

Hence, Ui(t) = (I + µ(t)A)−1Ui(σ(t)). In other words, the values of the solutions at time σ(t) uniquely
determine the values at time t.
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It remains to discuss the possibility that u1, u2 do not coincide on ZN × [T1, t0)T; let

t = sup{s ∈ [T1, t0); u1(x, s) 6= u2(x, s) for some x ∈ ZN}.

We claim that u1(x, t) = u2(x, t) for every x ∈ ZN . If t = t0, the statement is true. If t < t0 and t is
right-dense, then the statement follows from continuity. Finally, if t < t0 and t is right-scattered, it is
enough to use our observation. Now, if t is left-scattered, then the relation u1(x, t) = u2(x, t) and the
observation imply u1(x, ρ(t)) = u2(x, ρ(t)), a contradiction. On the other hand, if t is left-dense, there is
a point τ ∈ (t− 1

2‖A‖ , t)T, and Lemma 2.2 (with τ1 = τ , τ2 = t) leads to a contradiction.

If u0
1, u

0
2 ∈ (`∞(ZN ))n are two initial conditions, then the corresponding solutions Ui(t) = eA(t, t0)u0

i

satisfy

‖U1(t)− U2(t)‖ ≤

(
sup

s∈[T1,T2]T

‖eA(s, t0)‖

)
‖u0

1 − u0
2‖, t ∈ [T1, T2]T,

which proves continuous dependence of solutions on initial values.

Remark 2.4. In connection with the previous theorem, we point out the following facts:

• If we do not restrict ourselves to bounded solutions, then uniqueness is no longer guaranteed (see
[17, Section 3] for a counterexample in the scalar case).

• The condition that I +Aµ(t) is invertible for each t ∈ [T1, t0)T is known as regressivity. Note that
if we are interested only in forward-time solutions, i.e., if t0 = T1, then the condition vanishes.

• The invertibility of I + Aµ(t) might be difficult to verify. In this case, one can observe that if
µ(t) < 1

‖A‖ for every t ∈ [T1, t0)T, then ‖I − (I + Aµ(t))‖ = ‖A‖µ(t) < 1, and therefore I + Aµ(t)

is invertible.

The next result is the superposition principle for infinite linear combinations of solutions, which
generalizes [17, Theorem 3.7].

Theorem 2.5. Let uk : ZN × [t0, T ]T → Rn, k ∈ N, be a sequence of bounded solutions of Eq. (2.1).
Assume there exists a β > 0 such that

∑∞
k=1 ‖uk(x, t0)‖ ≤ β for every x ∈ ZN . Then, for every bounded

sequence {ck}∞k=1, the function u(x, t) =
∑∞
k=1 ckuk(x, t) is a solution of Eq. (2.1) on ZN × [t0, T ]T.

Proof. Find M > 0 such that |ck| ≤ M , k ∈ N. Let {dk}∞k=1 be an arbitrary sequence of numbers such
that |dk| ≤M and consider the functions

u(m)(x, t) =

m∑
k=1

dkuk(x, t), x ∈ ZN , t ∈ [t0, T ]T, m ∈ N.

By linearity, each u(m) is a solution of Eq. (2.1), i.e.,

u(m)(x, t) = u(m)(x, t0) +

∫ t

t0

∑
i1,...,iN∈{−r,...,r}

A(i1,...,iN )u(m)
(
x+

∑N
l=1 ilel, s

)
∆s.

This leads to the estimate

sup
x∈ZN

‖u(m)(x, t)‖ ≤ sup
x∈ZN

‖u(m)(x, t0)‖+

∫ t

t0

∑
i1,...,iN∈{−r,...,r}

‖A(i1,...,iN )‖ sup
x∈ZN

‖u(m)(x, s)‖∆s,

and Gronwall’s inequality [3, Corollary 6.7] gives

sup
x∈ZN

‖u(m)(x, t)‖ ≤ sup
x∈ZN

‖u(m)(x, t0)‖e∑
i1,...,iN

‖A(i1,...,iN )‖(t, t0) ≤ βMe∑
i1,...,iN

‖A(i1,...,iN )‖(t, t0)
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for all t ∈ [t0, T ]T, m ∈ N. In particular,

|u(m)
j (x, t)| ≤ βMe∑

i1,...,iN
‖A(i1,...,iN )‖(t, t0), x ∈ ZN , t ∈ [t0, T ]T, m ∈ N, j ∈ {1, . . . , n}.

For an arbitrary fixed pair (x, t) and j ∈ {1, . . . , n}, we can let dk = |ck| sgn(uk)j(x, t), k ∈ N. Then, the
previous inequality reduces to

m∑
k=1

|ck| · |(uk)j(x, t)| ≤ βMe∑
i1,...,iN

‖A(i1,...,iN )‖(t, t0),

and it follows that the series
∑∞
k=1 ckuk(x, t) is absolutely convergent.

We claim that
∑∞
k=1 cku

∆
k (x, t) is absolutely convergent, too. Indeed, we have

m∑
k=1

|ck||(u∆
k )j(x, t)| =

m∑
k=1

|ck|

∣∣∣∣∣∣
∑

i1,...,iN∈{−r,...,r}

n∑
p=1

a
(i1,...,iN )
jp (uk)p

(
x+

∑N
l=1 ilel, t

)∣∣∣∣∣∣
≤

∑
i1,...,iN∈{−r,...,r}

n∑
p=1

|a(i1,...,iN )
jp |

m∑
k=1

|ck|
∣∣∣(uk)p

(
x+

∑N
l=1 ilel, t

)∣∣∣
≤

∑
i1,...,iN∈{−r,...,r}

n∑
p=1

|a(i1,...,iN )
jp |βMe∑

i1,...,iN
‖A(i1,...,iN )‖(t, t0) ≤ ‖A‖βMe∑

i1,...,iN
‖A(i1,...,iN )‖(t, t0),

which proves the assertion. By Lebesgue’s dominated convergence theorem, the series
∑∞
k=1 cku

∆
k (x, t)

can be integrated term by term:

∞∑
k=1

ckuk(x, t0) +

∫ t

t0

( ∞∑
k=1

cku
∆
k (x, s)

)
∆s =

∞∑
k=1

ckuk(x, t0) +

∞∑
k=1

ck(uk(x, t)− uk(x, t0)) = u(x, t)

It follows from this relation that u is continuous with respect to t (since the integral on the left-hand side
is a continuous function of its upper bound). Since

∞∑
k=1

cku
∆
k (x, t) =

∞∑
k=1

ck

 ∑
i1,...,iN∈{−r,...,r}

A(i1,...,iN )uk

(
x+

∑N
k=1 ikek, t

)
=

∑
i1,...,iN∈{−r,...,r}

A(i1,...,iN )u
(
x+

∑N
k=1 ikek, t

)
,

we see that
∑∞
k=1 cku

∆
k (x, t) is continuous with respect to t. Hence, we can differentiate the equality

u(x, t) =

∞∑
k=1

ckuk(x, t0) +

∫ t

t0

( ∞∑
k=1

cku
∆
k (x, s)

)
∆s

with respect to t and obtain

u∆(x, t) =

∞∑
k=1

cku
∆
k (x, t) =

∑
i1,...,iN∈{−r,...,r}

A(i1,...,iN )u
(
x+

∑N
k=1 ikek, t

)
,

which shows that u is a solution of Eq. (2.1)
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The next result, which generalizes Theorem 5.1 from [17], guarantees that symmetric right-hand sides
together with symmetric initial conditions give rise to symmetric solutions. For simplicity, we consider
symmetry with respect to the origin, but any other point in ZN can serve the same purpose.

Theorem 2.6. Let u : ZN× [T1, T2]T → Rn be a bounded solution of Eq. (2.1). Assume that the following
conditions are satisfied:

• A(i1,...,iN ) = A−(i1,...,iN ) for all i1, . . . , iN ∈ {−r, . . . , r}.

• For a certain t0 ∈ [T1, T2]T, we have u(x, t0) = u(−x, t0) for every x ∈ ZN .

• For every t ∈ [T1, t0)T, the operator I +Aµ(t) is invertible.

Then u(x, t) = u(−x, t) for every t ∈ [T1, T2]T and x ∈ ZN .

Proof. The function v : ZN × [T1, T2]T → Rn given by v(x, t) = u(−x, t) is a solution of Eq. (2.1), because

v∆(x, t) = u∆(−x, t) =
∑

i1,...,iN∈{−r,...,r}

A(i1,...,iN )u
(
−x+

∑N
k=1 ikek, t

)

=
∑

i1,...,iN∈{−r,...,r}

A−(i1,...,iN )v
(
x−

∑N
k=1 ikek, t

)
=

∑
i1,...,iN∈{−r,...,r}

A(i1,...,iN )v
(
x+

∑N
k=1 ikek, t

)
.

Also, u and v have the same values for t = t0. By the uniqueness of solutions (see Theorem 2.3), we have
u = v on ZN × [T1, T2]T.

3 Discrete-space wave equation

The N -dimensional discrete-space wave equation

u∆∆(x, t) = c2

(
N∑
i=1

u(x+ ei, t)− 2Nu(x, t) +

N∑
i=1

u(x− ei, t)

)
, t ∈ T, x ∈ ZN , (3.1)

is equivalent to the first-order system

u∆(x, t) = v(x, t),

v∆(x, t) =

N∑
i=1

c2u(x+ ei, t)− 2Nc2u(x, t) +

N∑
i=1

c2u(x− ei, t),

which has the form (2.1) with n = 2, r = 1, A(0,...,0) =

(
0 1

−2Nc2 0

)
, A(i1,...,iN ) =

(
0 0
c2 0

)
if exactly

one of the i1, . . . , iN is nonzero and equals ±1, and A(i1,...,iN ) =

(
0 0
0 0

)
otherwise.

According to Eq. (2.4), the norm of the operator A given by (2.3) is ‖A‖ = max(1, 4Nc2). The
following theorem is now an immediate consequence of Theorems 2.3, 2.6, and Remark 2.4.

Theorem 3.1. Consider an interval [T1, T2]T ⊂ T and a point t0 ∈ [T1, T2]T. Let u0, v0 ∈ `∞(ZN ).
Assume that µ(t) < 1

max(1,4Nc2) for every t ∈ [T1, t0)T.

Then, there exists a unique bounded solution u : ZN×[T1, T2]T → R of Eq. (3.1) such that u(x, t0) = u0
x

and u∆(x, t0) = v0
x for all x ∈ ZN . Moreover, the solution depends continuously on u0 and v0. Also, if

u0
x = u0

−x and v0
x = v0

−x for all x ∈ ZN , then u(x, t) = u(−x, t) for all t ∈ [T1, T2]T, x ∈ ZN .
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In the rest of this section, we focus on forward-time solutions of initial-value problems for the one-
dimensional wave equation

u∆∆(x, t) = c2(u(x+ 1, t)− 2u(x, t) + u(x− 1, t)), x ∈ Z, t ∈ T, (3.2)

u(x, t0) = u0
x, u∆(x, t0) = v0

x, x ∈ Z, (3.3)

where c > 0, and u0, v0 ∈ `∞(Z) are given sequences.
According to the next theorem, which is an immediate consequence of Theorem 2.5, the initial-value

problem (3.2)–(3.3) can be solved for an arbitrary choice of u0, v0 if we find a pair of fundamental
solutions to Eq. (3.2). We use the symbol δij to denote the Kronecker delta.

Theorem 3.2. Let u1, u2 : Z× [t0, T ]T → R be the unique bounded solutions of Eq. (3.2) corresponding
to the initial conditions u1(x, t0) = δx0, u∆

1 (x, t0) = 0, and u2(x, t0) = 0, u∆
2 (x, t0) = δx0 for all x ∈ Z.

Then for arbitrary u0, v0 ∈ `∞(Z), the function

u(x, t) =
∑
k∈Z

(u0
x · u1(x− k, t) + v0

x · u2(x− k, t)), x ∈ Z, t ∈ [t0, T ]T,

is the unique bounded solution of the initial-value problem (3.2)–(3.3).

To find u1, we use the generating function method. Instead of defining F (z, t) =
∑
x∈Z u1(x, t)zx as

in [18], it is more convenient to let

F (z, t) =
∑
x∈Z

u1(x, t)z2x.

Now, Eq. (3.2) implies

F∆∆(z, t) = c2
(

1

z2
− 2 + z2

)
F (z, t) =

( c
z
− cz

)2

F (z, t). (3.4)

Taking into account the initial conditions for u1, we get

F (z, 0) = 1, F∆(z, 0) = 0. (3.5)

The solution of the initial-value problem (3.4)–(3.5) can be expressed in terms of the time scale hyperbolic
cosine:

F (z, t) = coshc/z−cz(t, t0) =
1

2

(
ec/z−cz(t, t0) + e−c/z+cz(t, t0)

)
. (3.6)

To get an explicit formula for u1(x, t), it remains to calculate the Laurent series expansion of F and find
the coefficient of z2x.

Once we have u1, it is a simple observation that the function

u2(x, t) =

∫ t

t0

u1(x, s)∆s, x ∈ Z, t ∈ [t0,∞)T,

satisfies Eq. (3.2) with u2(x, t0) = 0 and u∆
2 (x, t0) = u1(x, t0) = δx0.

The following examples illustrate the previous method on several particular time scales.

Example 3.3. Consider the semidiscrete one-dimensional wave equation, which is a special case of
Eq. (3.2) corresponding to T = R. We find a pair of fundamental solutions for t0 = 0. In this case, the
function F given by Eq. (3.6) becomes

F (z, t) = cosh(ct(1/z − z)) =
1

2

(
e(1/z−z)ct + e−(1/z−z)ct

)
.

8



Figure 1: Fundamental solutions u1 (left) and u2 (right) for T = R

We need the identity e
1
2 t(z−1/z) =

∑
x∈Z Jx(t)zx (see [15, formula 10.12.1]), where Jx is the Bessel function

of the first kind. Consequently,

F (z, t) =
1

2

∑
x∈Z

(Jx(−2ct) + Jx(2ct))zx.

From the definition of the Bessel function (see [15, formula 10.2.2]), it is clear that Jx is even when x is
an even integer, and odd if x is an odd integer. Hence,

F (z, t) =
∑
x∈Z

J2x(2ct)z2x,

which leads to the result

u1(x, t) = J2x(2ct), u2(x, t) =

∫ t

0

J2x(2cs) ds.

Our calculations involving the generating function were purely formal; nevertheless, using the identity
J ′x(z) = 1

2 (Jx−1(z)− Jx+1(z)) (see [15, formula 10.6.1]), one can easily verify that u1 and u2 are indeed
solutions of Eq. (3.2).

The two fundamental solutions are shown in Figure 1. At first sight, the triangles emanating from
the origin resemble the causality principle valid for the classical wave equation with continuous space and
time. Nevertheless, in the semidiscrete case, the signal propagates with infinite speed: For every fixed
t > 0, the function x 7→ u1(x, t) approaches zero as x→ ±∞, but does not have a compact support.

In the next two examples, we need the following technical lemma, which is a consequence of [18,
Lemma 3.2]. The symbol

(
t

t1,...,tn

)
stands for the multinomial coefficient, which is equal to t!

t1!···tn! when
t, t1, . . . , tn are nonnegative integers, and otherwise is zero.

Lemma 3.4. For every t ∈ N0 and x ∈ Z, the coefficient of zx in (a/z + b+ cz)t is

t∑
j=0

(
t

j, t− 2j − x, j + x

)
ajbt−2j−xcj+x.
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0 7 −7 −14 29 −14 −7 7 0
0 1 9 −30 41 −30 9 1 0
0 0 5 −10 11 −10 5 0 0
0 0 1 2 −5 2 1 0 0
0 0 0 3 −5 3 0 0 0
0 0 0 1 −1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0

0 1 15 −34 43 −34 15 1 0
0 0 6 −4 2 −4 6 0 0
0 0 1 6 −9 6 1 0 0
0 0 0 4 −4 4 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0

Table 1: Fundamental solutions u1 (left) and u2 (right) for T = Z

Example 3.5. Consider the purely discrete one-dimensional wave equation, which is a special case of
Eq. (3.2) corresponding to T = Z. Again, let t0 = 0. In this case, we have eα(t, 0) = (1 + α)t, and
therefore

F (z, t) =
1

2

((
1 +

c

z
− cz

)t
+
(

1− c

z
+ cz

)t)
.

Recalling that u1(x, t) is the coefficient of z2x in F (z, t) and using Lemma 3.4, we obtain

u1(x, t) =
1

2

 t∑
j=0

(
t

j, t− 2j − 2x, j + 2x

)
(cj(−c)j+2x + (−c)jcj+2x)


=

t∑
j=0

(
t

j, t− 2j − 2x, j + 2x

)
(−1)jc2j+2x,

u2(x, t) =

t−1∑
s=0

u1(x, s) =

t−1∑
s=0

s∑
j=0

(
s

j, s− 2j − 2x, j + 2x

)
(−1)jc2j+2x

=

t−1∑
j=0

(−1)jc2j+2x
t−1∑
s=j

(
s

j, s− 2j − 2x, j + 2x

)
=

t−1∑
j=0

(−1)jc2j+2x

(
2j + 2x

j

) t−1∑
s=j

(
s

2j + 2x

)
.

Finally, using the well-known identity
∑m
k=0

(
k
n

)
=
(
m+1
n+1

)
, the last formula simplifies to

u2(x, t) =

t−1∑
j=0

(−1)jc2j+2x

(
2j + 2x

j

)((
t

2j + 2x+ 1

)
−
(

j

2j + 2x+ 1

))
.

Table 1 shows the values of u1(x, t) and u2(x, t) for c = 1 and t ∈ {0, . . . , 7} (horizontal direction
corresponds to spatial location, and the upward direction corresponds to increasing values of time, starting
with t = 0).

Example 3.6. Consider the time scale T = {Hn, n ∈ N0}, where H0 = 0 and Hn =
∑n
k=1

1
k are the

harmonic numbers. Assume that t0 = 0. It is known (see [3, Example 2.53]) that the values of the time
scale exponential function are the binomial coefficients: eα(Hn, 0) =

(
n+α
n

)
. Therefore,

F (z,Hn) =
1

2

((
n+ c/z − cz

n

)
+

(
n− c/z + cz

n

))
, n ∈ N0.

Using the identity (see [15, formula 26.8.7])

x(x− 1) · · · (x− n+ 1) =

n∑
l=0

s(n, l)xl, x ∈ R, n ∈ N0,
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where s(n, l) are the Stirling numbers of the first kind, we obtain

F (z,Hn) =
1

2n!

n∑
l=0

s(n, l)
(
(n+ c/z − cz)l + (n− c/z + cz)l

)
.

Recalling that u1(x,Hn) is the coefficient of z2x in F (z,Hn) and using Lemma 3.4, we find that

u1(x,Hn) =
1

2n!

n∑
l=0

l∑
j=0

s(n, l)

(
l

j, l − 2j − 2x, j + 2x

)(
cjnl−2j−2x(−c)j+2x + (−c)jnl−2j−2xcj+2x

)
=

1

n!

n∑
l=0

l∑
j=0

s(n, l)

(
l

j, l − 2j − 2x, j + 2x

)
nl−2j−2x(−1)jc2j+2x,

u2(x,Hn) =

n−1∑
k=0

u1(x,Hk)µ(Hk) =

n−1∑
k=0

u1(x,Hk)
1

k + 1
.

Example 3.7. Consider the time scale T = qN0 , where q > 1. Assume that t0 = 1. It is known (see [3,
Example 2.55]) that the time scale exponential function is given by the formula

eα(qn, 1) =
∏

s∈[1,qn)T

(1 + (q − 1)αs) =

n−1∏
k=0

(1 + (q − 1)αqk), n ∈ N0.

Recalling the definition of the q-Pochhammer symbol (also known as the q-shifted factorial)

(a; q)n =

n−1∏
k=0

(1− aqk),

we see that
eα(qn, 1) = ((1− q)α; q)n.

Using the identity (see [11, Eq. (0.3.5)])

(a; q)n =

n∑
k=0

q(
k
2)
[
n

k

]
q

(−a)k

where
[
n
k

]
q

is the q-binomial coefficient, we obtain

eα(qn, 1) =

n∑
k=0

q(
k
2)
[
n

k

]
q

((q − 1)α)k.

Therefore,

F (z, qn) =
1

2

(
ec/z−cz(q

n, 1) + e−c/z+cz(q
n, 1)

)
=

1

2

n∑
k=0

q(
k
2)
[
n

k

]
q

(q − 1)k
(
(c/z − cz)k + (−c/z + cz)k

)

=
1

2

n∑
k=0

q(
k
2)
[
n

k

]
q

(q − 1)kck
(
(1/z − z)k + (−1/z + z)k

)
.
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Note that (1/z − z)k + (−1/z + z)k equals 2(1/z − z)k if k is even, and zero if k is odd. Hence,

F (z, qn) =

bn/2c∑
l=0

q(
2l
2 )
[
n

2l

]
q

(q − 1)2lc2l(1/z − z)2l =

bn/2c∑
l=0

q(
2l
2 )
[
n

2l

]
q

(q − 1)2lc2l

(
2l∑

m=0

(
2l

m

)
(−1)mz2m−2l

)
.

Since u1(x, qn) is the coefficient of z2x in F (z, qn), we get

u1(x, qn) =

bn/2c∑
l=0

q(
2l
2 )
[
n

2l

]
q

(q − 1)2lc2l
(

2l

l + x

)
(−1)l+x,

u2(x, qn) =

n−1∑
k=0

u1(x, qk)µ(qk) =

n−1∑
k=0

bk/2c∑
l=0

q(
2l
2 )
[
k

2l

]
q

qk(q − 1)2l+1c2l
(

2l

l + x

)
(−1)l+x.
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