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Abstract. Inspired by an old result by Georg Frobenius, we show that the unbiased version of
Hall’s marriage theorem is more transparent when reformulated in the language of matrices.
At the same time, we obtain a more general statement applicable to bipartite graphs whose
parts need not have the same size.

Given a bipartite graph G, Hall’s marriage theorem provides a necessary and sufficient
condition for the existence of a matching that covers all vertices in one of the two parts
of G. For each vertex set S, let N(S) denote the set of all neighbors of S. Hall’s
theorem is as follows:

Theorem 1. For a bipartite graph G with parts V1 and V2, the following conditions
are equivalent:

(H1) G has a matching that covers V1.
(H2) Each set S ⊆ V1 satisfies |N(S)| ≥ |S|.

If |V1| = |V2|, a matching that covers V1 or V2 is necessarily a perfect matching.
This case was studied in [3, 8], where it was shown that condition (H2) might be
replaced by one of two alternative conditions. Since these conditions involve vertices
from both V1 and V2, the authors referred to their results as the “unbiased version” of
the marriage theorem.

In this note we show that the results from [3, 8] become quite straightforward when
translated into the language of matrices. At the same time, we extend them to the case
when V1 and V2 need not have the same size. We begin by recalling the matrix form
of the marriage theorem.

Theorem 2. For a matrix A ∈ Rm×n, the following conditions are equivalent:

(M1) A has m nonzero entries such that no two lie in the same row or column.
(M2) A does not contain a k × l zero submatrix1 with k + l = n+ 1.

To see that Theorem 2 is just a restatement of Theorem 1, observe that a bipartite
graph with parts V1 and V2 of sizes m and n can be identified with an m× n matrix A
whose element aij is nonzero if and only if there is an edge connecting the ith vertex
of V1 to the jth vertex of V2. Condition (H1) is then equivalent to (M1), and condition
(H2) is equivalent to (M2). Indeed, a set S ⊆ V1 of size k satisfies |N(S)| ≥ |S| if
and only if the corresponding k rows of A contain at least k nonzero columns; that is,
the number l of columns whose intersection with the given k rows contains only zeros
does not exceed n− k.

The connection between linear-algebraic results and matchings in bipartite graphs
was discovered by Dénes König [6]. In 1916, he proved that every regular bipartite
multigraph has a perfect matching, and realized that his result immediately gives the

1A k × l submatrix is the intersection of k rows and l columns, which need not be adjacent.
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following theorem: If A is a square matrix with nonnegative integer elements such
that all rows and columns have the same nonzero sum, then at least one product in the
definition of the determinant of A does not vanish (and hence detA 6= 0).

Theorem 2 goes back to a 1917 paper by Georg Frobenius [4], who considered
the special case m = n, and expressed the equivalence of (M1) and (M2) by saying
that all products in the definition of the determinant of A vanish if and only if A
has a zero k × l submatrix with k + l > n. Frobenius was familiar with the work of
König, and showed that his theorem on matrices with identical row and column sums
is a consequence of Theorem 2.

Based on this evidence, we can speculate that Frobenius would have been able
to reformulate Theorem 2 in terms of matchings in bipartite graphs, and thus obtain
Theorem 1. However, it is known that Frobenius did not have a high opinion of graph
theory, criticized its use for obtaining results about determinants, and even remarked
that König’s theorem is only of little value. The history of Hall’s theorem and the
dispute between Frobenius and König are described in [1, 7].

Standard formulations of Hall’s theorem involve either matchings in bipartite
graphs (as in Theorem 1), or systems of distinct representatives; this version be-
came popular after the publication of Philip Hall’s paper [5] in 1935, eighteen years
after Frobenius’s discovery of Theorem 2. Still, the matrix formulation is not forgot-
ten and appears even in modern textbooks, e.g., [2, Section 2.1] or [9, Section 7.2].
One reason is that it easily leads to Birkhoff’s theorem, which says that every doubly
stochastic matrix is a convex combination of permutation matrices (see [9, p. 626]).

Unlike Theorem 1, the statement of Theorem 2 is unbiased in the sense that rows
and columns of A play the same role. To see the relation with the unbiased marriage
theorems from [3, 8], we make the following observation.

Let p, q ∈ N0 satisfy p+ q = n. If k, l ∈ N are such that k + l = n+ 1, then:

• Either k > p, or l > q (for otherwise k + l ≤ p+ q = n).
• Either k ≤ p, or l ≤ q (for otherwise k + l ≥ p+ q + 2 = n+ 2).

This simple observation explains why condition (M2) can be replaced by one of
two seemingly weaker conditions.

Theorem 3. For a matrix A ∈ Rm×n, each of the following conditions is equivalent
to (M2).

(M3) There exist integers p, q ∈ N0 with p + q = n such that A does not contain
a k × l zero submatrix, where k + l = n+ 1, and k > p or l > q.

(M4) There exist integers p, q ∈ N0 with p + q = n such that A does not contain
a k × l zero submatrix, where k + l = n+ 1, and k ≤ p or l ≤ q.

The nonexistence of a k × l zero submatrix with k + l = n+ 1 can be rephrased
as follows:

• If we select any k rows, then they have at most n− k zero columns, i.e., at least
k nonzero columns.
• If we select any l columns, then they have at most n− l zero rows, i.e., at least
m− n+ l nonzero rows.

Recalling that a bipartite graph with parts V1 and V2 can be represented by a matrix
whose rows correspond to the vertices of V1, columns to the vertices of V2, and nonzero
entries to edges, we obtain the following graph-theoretic version of Theorem 3.
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Theorem 4. For a bipartite graph with parts V1 and V2, each of the following condi-
tions is equivalent to (H2).

(H3) There exist integers p, q ∈ N0 satisfying p+ q = |V2| such that each set S ⊆ V1

with |S| > p satisfies |N(S)| ≥ |S|, and each set S ⊆ V2 with |S| > q satisfies
|N(S)| ≥ |V1| − |V2|+ |S|.

(H4) There exist integers p, q ∈ N0 satisfying p+ q = |V2| such that each set S ⊆ V1

with |S| ≤ p satisfies |N(S)| ≥ |S|, and each set S ⊆ V2 with |S| ≤ q satisfies
|N(S)| ≥ |V1| − |V2|+ |S|.

The results in [3, 8] are special cases of Theorem 4 corresponding to |V1| = |V2|.
If |V1| > |V2|, it is clear that there is no matching that covers V1, and conditions (H2),
(H3), (H4) are false. Hence, Theorems 1 and 4 are interesting only if |V1| ≤ |V2|.

Although Theorem 4 can be obtained by purely graph-theoretic methods (adapting
the proof from [8]), we believe that our derivation might be more transparent: It shows
that Theorem 4 is just a reformulation of Theorem 3, which follows trivially from the
matrix version of the marriage theorem.
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