Identities with squares of binomial coefficients*

Antonin Slavik
Charles University, Faculty of Mathematics and Physics,
Sokolovska 83, 186 75 Praha 8, Czech Republic
E-mail: slavik@karlin.mff.cuni.cz

Abstract
This paper introduces a method for finding closed forms for cer-
tain sums involving squares of binomial coefficients. We use this
method to present an alternative approach to a problem of evaluat-
ing a different type of sums containing squares of the numbers from
Catalan’s triangle.
Keywords: Binomial identity; Catalan’s triangle

MSC2000 subject classification: 05A19, 05A10, 11B65

1 Introduction

In the first part of our paper, we present a method for finding closed forms

for the sums
n—1 m 2
o k
Sk(n) == léol (l) , n>1,

=21
Tk(n)::Zlk( l ) , n>2
=0

(we use the convention 0° = 1), where k > 0 is a fixed integer. These sums
are somewhat tricky in the sense that the standard techniques for hyper-
geometric summation (see [5]) are not applicable. Indeed, the summation
does not run over all possible values of [, which means that methods like
Zeilberger’s algorithm or Sister Celine’s method cannot be used; Gosper’s
algorithm for indefinite summation fails, too.

In the second part of the paper, we apply our results to evaluate certain
sums involving squares of the numbers from Catalan’s triangle.
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2 Calculating Si(n) and Tj(n)

The formulas for Si(n) and T (n) in the cases k = 0 and k = 1 are well-
known:
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These identities follow easily (see e.g. [3]) from the standard formula
() ()
—~\i) \k
=0
and the “absorption” identity
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The following theorem shows that for k£ > 2, there is a formula for S
which depends on Ty, ..., Tk _o:

Theorem 1. If k > 2, then

Si(n) = 4712]:2_;2 <k ; Z)Ti(n), n>1.

Proof. We use the absorption identity and binomial theorem:
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There is a similar theorem which gives a formula for T}, & > 2, in terms
of So, ceey Sk_2:

Theorem 2. If k > 2, then
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Proof.
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Since the formulas for Sy, Sy, Ty and T are known, the previous two
theorems can be used to calculate Sy and T}, successively for every k. For
example, we obtain

s =t (3072 (222))

O



(this agrees with the formula given in [3]),
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The complexity of the formulas for Sy and T} grows with increasing k,

but the calculations (including simplification) can be performed using a
computer.

Remark 3. A similar approach may be used to evaluate more general sums

of the form
n—2
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where m is an arbitrary fixed positive or negative integer and k£ > 0 as
before; note that T, = T}}. If m is even, then
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(we use the convention Z?:a f@)==3%, f(i) if a > b). Otherwise, if m
is odd, then
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i.e. T{" can be expressed in terms of w5, whose upper indices

are even.

3 A sum related to Catalan’s triangle

Catalan’s triangle was introduced in [6] by L. W. Shapiro. Its entries are

the numbers /9
B, ::( nl)’ n,l € N,I <n.

’ n\n —

The name of the triangle stems from the fact that

1 2n 1 2n
Bui= = -— (") =q.
1 n(nl) n+1(n)

i.e. the Catalan numbers appear in the first column of the triangle.

The numbers B, ; appear in several combinatorial problems and iden-
tities (see e.g. [6], [3], [2]). The authors of the paper [3] have pointed out
a relation of these numbers to a problem of the dynamical behavior of a
family of iterative methods applied to quadratic polynomials. They also
mentioned the problem of evaluating the sums

Zlanl, n €N,

where k£ > 0 is a fixed integer. They have obtained closed forms for Ay, A;
and As; we need the first two formulas, which are true for n > 1:
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Additional closed forms for As,...,A; were found and proved using the
Wilf-Zeilberger method by the same authors in [4]. Finally, general formulas
for an arbitrary A, are given in [1]. We now show a different method of
deriving the corresponding formulas.

The following theorem shows that for arbitrary k, the sum Ay can be
expressed in terms of Sy, ..., Skia:



Theorem 4. If k >0 and n > 1 are arbitrary integers, then
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This means that given a fixed k > 0, we have a method for obtaining
a closed form for Ag. To avoid laborious calculations, it’s again better to
use a computer. All the following results were obtained using Mathematica.
We start with the first few identities for A, where k is even:
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And now a few formulas for Ay, where k is odd:

1500 = e ().

e ().
()

Note that these formulas are written in a slightly different form than in [1]
and [4]; our form has the advantage that the right-hand sides are defined for

As(n) =

n

A7(n) = n



every n > 1. It should be noted that with increasing k, the time needed to
perform the calculation according to Theorem 4 grows rather quickly. The
Mathematica code which was used to perform all the calculations presented
in this paper is available from

www.karlin.mff.cuni.cz/"slavik/mathematica/identities.nb
(including more formulas which have been omitted because of their com-
plexity).

The author thanks the referee for valuable suggestions which helped to
improve this paper.
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