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Abstract

This paper introduces a method for finding closed forms for cer-
tain sums involving squares of binomial coefficients. We use this
method to present an alternative approach to a problem of evaluat-
ing a different type of sums containing squares of the numbers from
Catalan’s triangle.
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1 Introduction

In the first part of our paper, we present a method for finding closed forms
for the sums

Sk(n) :=
n−1∑
l=0

lk
(

2n

l

)2

, n ≥ 1,

Tk(n) :=
n−2∑
l=0

lk
(

2n− 1
l

)2

, n ≥ 2

(we use the convention 00 = 1), where k ≥ 0 is a fixed integer. These sums
are somewhat tricky in the sense that the standard techniques for hyper-
geometric summation (see [5]) are not applicable. Indeed, the summation
does not run over all possible values of l, which means that methods like
Zeilberger’s algorithm or Sister Celine’s method cannot be used; Gosper’s
algorithm for indefinite summation fails, too.

In the second part of the paper, we apply our results to evaluate certain
sums involving squares of the numbers from Catalan’s triangle.
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2 Calculating Sk(n) and Tk(n)

The formulas for Sk(n) and Tk(n) in the cases k = 0 and k = 1 are well-
known:

S0(n) =
n−1∑
l=0

(
2n

l

)2

=
1
2

((
4n

2n

)
−
(

2n

n

)2
)

, n ≥ 1,

T0(n) =
n−2∑
l=0

(
2n− 1

l

)2

=
1
2

(
4n− 2
2n− 1

)
−
(

2n− 1
n− 1

)2

, n ≥ 2,

S1(n) =
n−1∑
l=0

l

(
2n

l

)2

= n

((
4n− 1
2n− 1

)
− 3
(

2n− 1
n− 1

)2
)

, n ≥ 1,

T1(n) =
n−2∑
l=0

l

(
2n− 1

l

)2

=

=
2n− 1

2

((
4n− 3
2n− 2

)
− 2
(

2n− 1
n− 1

)(
2n− 2
n− 2

)
−
(

2n− 2
n− 1

)2
)

, n ≥ 2.

These identities follow easily (see e.g. [3]) from the standard formula

k∑
i=0

(
k

i

)2

=
(

2k

k

)
and the “absorption” identity(

k

i

)
=

k

i

(
k − 1
i− 1

)
, i ≥ 1.

The following theorem shows that for k ≥ 2, there is a formula for Sk

which depends on T0, . . . , Tk−2:

Theorem 1. If k ≥ 2, then

Sk(n) = 4n2
k−2∑
i=0

(
k − 2

i

)
Ti(n), n ≥ 1.

Proof. We use the absorption identity and binomial theorem:

Sk(n) =
n−1∑
l=1

lk
(

2n

l

)2

= 4n2
n−1∑
l=1

lk−2

(
2n− 1
l − 1

)2

=
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4n2
n−2∑
l=0

(l + 1)k−2

(
2n− 1

l

)2

=

4n2
n−2∑
l=0

k−2∑
i=0

(
k − 2

i

)
li
(

2n− 1
l

)2

= 4n2
k−2∑
i=0

(
k − 2

i

)
Ti(n).

There is a similar theorem which gives a formula for Tk, k ≥ 2, in terms
of S0, . . . , Sk−2:

Theorem 2. If k ≥ 2, then

Tk(n) = (2n− 1)2
k−2∑
i=0

(
k − 2

i

)(
Si(n− 1)− (n− 2)i

(
2n− 2
n− 2

)2
)

, n ≥ 2.

Proof.

Tk(n) =
n−2∑
l=1

lk
(

2n− 1
l

)2

= (2n− 1)2
n−2∑
l=1

lk−2

(
2n− 2
l − 1

)2

=

(2n− 1)2
n−3∑
l=0

(l + 1)k−2

(
2n− 2

l

)2

=

(2n− 1)2
n−3∑
l=0

k−2∑
i=0

(
k − 2

i

)
li
(

2n− 2
l

)2

=

(2n− 1)2
k−2∑
i=0

(
k − 2

i

)(n−2∑
l=0

li
(

2n− 2
l

)2

− (n− 2)i

(
2n− 2
n− 2

)2
)

=

(2n− 1)2
k−2∑
i=0

(
k − 2

i

)(
Si(n− 1)− (n− 2)i

(
2n− 2
n− 2

)2
)

.

Since the formulas for S0, S1, T0 and T1 are known, the previous two
theorems can be used to calculate Sk and Tk successively for every k. For
example, we obtain

S2(n) = 4n2

(
1
2

(
4n− 2
2n− 1

)
−
(

2n− 1
n− 1

)2
)
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(this agrees with the formula given in [3]),

T2(n) = (2n− 1)2
(

1
2

((
4n− 4
2n− 2

)
−
(

2n− 2
n− 1

)2
)
−
(

2n− 2
n− 2

)2
)

.

The complexity of the formulas for Sk and Tk grows with increasing k,
but the calculations (including simplification) can be performed using a
computer.

Remark 3. A similar approach may be used to evaluate more general sums
of the form

Tm
k (n) :=

n−2∑
l=0

lk
(

2n−m

l

)2

, n ≥ m/2,

where m is an arbitrary fixed positive or negative integer and k ≥ 0 as
before; note that Tk = T 1

k . If m is even, then

Tm
k (n) =

n−2∑
l=0

lk
(

2(n−m/2)
l

)2

=

n−m/2−1∑
l=0

lk
(

2(n−m/2)
l

)2

+
n−2∑

l=n−m/2

lk
(

2(n−m/2)
l

)2

=

Sk(n−m/2) +
m/2−2∑

p=0

(p + n−m/2)k

(
2(n−m/2)
p + n−m/2

)2

(we use the convention
∑b

i=a f(i) = −
∑a

i=b f(i) if a > b). Otherwise, if m
is odd, then

Tm
k (n) = (2n−m)2

n−2∑
l=1

lk−2

(
2n−m− 1

l − 1

)2

=

(2n−m)2
n−3∑
l=0

(l + 1)k−2

(
2n−m− 1

l

)2

=

(2n−m)2
n−3∑
l=0

k−2∑
p=0

(
k − 2

p

)
lp
(

2n−m− 1
l

)2

=

(2n−m)2
k−2∑
p=0

(
k − 2

p

)(n−2∑
l=0

lp
(

2n−m− 1
l

)2

− (n− 2)p

(
2n−m− 1

n− 2

)2
)

=
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(2n−m)2
k−2∑
p=0

(
k − 2

p

)(
Tm+1

p (n)− (n− 2)p

(
2n−m− 1

n− 2

)2
)

,

i.e. Tm
k can be expressed in terms of Tm+1

0 , . . . , Tm+1
k−2 , whose upper indices

are even.

3 A sum related to Catalan’s triangle

Catalan’s triangle was introduced in [6] by L. W. Shapiro. Its entries are
the numbers

Bn,l :=
l

n

(
2n

n− l

)
, n, l ∈ N, l ≤ n.

The name of the triangle stems from the fact that

Bn,1 =
1
n

(
2n

n− 1

)
=

1
n + 1

(
2n

n

)
= Cn,

i.e. the Catalan numbers appear in the first column of the triangle.
The numbers Bn,l appear in several combinatorial problems and iden-

tities (see e.g. [6], [3], [2]). The authors of the paper [3] have pointed out
a relation of these numbers to a problem of the dynamical behavior of a
family of iterative methods applied to quadratic polynomials. They also
mentioned the problem of evaluating the sums

Ak(n) :=
n∑

l=1

lkB2
n,l, n ∈ N,

where k ≥ 0 is a fixed integer. They have obtained closed forms for A0, A1

and A2; we need the first two formulas, which are true for n ≥ 1:

A0(n) =
n∑

l=1

B2
n,l = C2n−1 =

1
2(4n− 1)

(
4n

2n

)
,

A1(n) =
n∑

l=1

lB2
n,l =

n(n + 1)
2

Cn−1Cn =
n

4(2n− 1)

(
2n

n

)2

.

Additional closed forms for A3, . . . , A7 were found and proved using the
Wilf-Zeilberger method by the same authors in [4]. Finally, general formulas
for an arbitrary An are given in [1]. We now show a different method of
deriving the corresponding formulas.

The following theorem shows that for arbitrary k, the sum Ak can be
expressed in terms of S0, . . . , Sk+2:
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Theorem 4. If k ≥ 0 and n ≥ 1 are arbitrary integers, then

Ak(n) =
k+2∑
j=0

(
k + 2

j

)
nk−j(−1)jSj(n).

Proof.

Ak(n) =
n∑

m=1

mkB2
n,m =

1
n2

n∑
m=1

mk+2

(
2n

n−m

)2

=
1
n2

n−1∑
l=0

(n− l)k+2

(
2n

l

)2

=

1
n2

n−1∑
l=0

k+2∑
j=0

(
k + 2

j

)
nk+2−j(−1)j lj

(
2n

l

)2

=

k+2∑
j=0

(
k + 2

j

)
nk−j(−1)j

n−1∑
l=0

lj
(

2n

l

)2

=
k+2∑
j=0

(
k + 2

j

)
nk−j(−1)jSj(n).

This means that given a fixed k ≥ 0, we have a method for obtaining
a closed form for Ak. To avoid laborious calculations, it’s again better to
use a computer. All the following results were obtained using Mathematica.
We start with the first few identities for Ak, where k is even:

A2(n) =
n(3n− 2)

2(4n− 3)(4n− 1)

(
4n

2n

)
,

A4(n) =
n
(
15n3 − 30n2 + 16n− 2

)
2(4n− 5)(4n− 3)(4n− 1)

(
4n

2n

)
,

A6(n) =
n(105n5 − 420n4 + 588n3 − 356n2 + 96n− 10)

2(4n− 7)(4n− 5)(4n− 3)(4n− 1)

(
4n

2n

)
,

And now a few formulas for Ak, where k is odd:

A3(n) =
n2

4(2n− 1)

(
2n

n

)2

,

A5(n) =
n2
(
3n2 − 5n + 1

)
4(2n− 3)(2n− 1)

(
2n

n

)2

,

A7(n) =
n2
(
6n3 − 12n2 + 6n− 1

)
4(2n− 3)(2n− 1)

(
2n

n

)2

.

Note that these formulas are written in a slightly different form than in [1]
and [4]; our form has the advantage that the right-hand sides are defined for
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every n ≥ 1. It should be noted that with increasing k, the time needed to
perform the calculation according to Theorem 4 grows rather quickly. The
Mathematica code which was used to perform all the calculations presented
in this paper is available from

www.karlin.mff.cuni.cz/~slavik/mathematica/identities.nb
(including more formulas which have been omitted because of their com-
plexity).

The author thanks the referee for valuable suggestions which helped to
improve this paper.
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