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Sokolovská 83, 186 75 Praha 8, Czech Republic

E-mail: slavik@karlin.mff.cuni.cz

Abstract
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1 Introduction

In their recent paper [2], M. Bohner and T. Cuchta have proposed a new definition of the discrete Bessel
function

Jn(t) =
(−1)n(−t)n

2nn!
F

(
n− t

2
,
n− t

2
+

1

2
;n+ 1;−1

)
, t ∈ N0, (1.1)

where F is the hypergeometric function and (x)k denotes the Pochhammer symbol (also known as the
rising factorial) given by

(x)k =

{
x(x+ 1) · · · (x+ k − 1) for k ∈ N,
1 for k = 0.

The discrete Bessel function given by (1.1) is different from the one studied in earlier papers [4, 5], and
its advantage is that it shares many properties with the classical Bessel function. For example, it satisfies
the difference equation

t(t− 1)∆2y(t− 2) + t∆y(t− 1) + t(t− 1)y(t− 2)− n2y(t) = 0

(where ∆f(t) = f(t + 1) − f(t) is the forward difference), which is a discrete analogue of the Bessel
differential equation

t2y′′(t) + ty′(t) + (t2 − n2)y(t) = 0.

The goal of this paper is to introduce a new class of discrete Bessel functions denoted by Jc
n, where

n ∈ N0 is the order and c is a parameter, and to show that these discrete Bessel functions provide
fundamental solutions to the discrete wave equation

∆2u(x, t) = c2
(
u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

)
, x ∈ Z, t ∈ N0 (1.2)

(with ∆2u(x, t) being the second-order forward difference of u with respect to t). The discrete Bessel
function Jn given by (1.1) is a special case of Jc

n corresponding to c = 1.
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We also introduce a new class of discrete modified Bessel functions denoted by Icn, which can be used
to construct fundamental solutions of the discrete diffusion equation

∆u(x, t) = c
(
u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

)
, x ∈ Z, t ∈ N0 (1.3)

(where ∆u(x, t) is the forward difference of u with respect to t).
Our motivation comes from the theory of lattice differential equations, i.e., equations with discrete

space and continuous time. In this context, it is known that the fundamental solutions of the lattice wave
equation

∂2u

∂t2
(x, t) = c2

(
u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

)
, x ∈ Z, t ∈ R+

0 , (1.4)

which is a semidiscrete analogue of (1.2), have the form u1(x, t) = J2x(2ct) and u2(x, t) =
∫ t

0
J2x(2cs) ds,

where Jx is the classical Bessel function (see [8, Example 3.3]). Similarly, the fundamental solution of
the lattice diffusion equation

∂u

∂t
(x, t) = c

(
u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

)
, x ∈ Z, t ∈ R+

0 , (1.5)

which is a semidiscrete analogue of (1.3), has the form u(x, t) = e−2ctIx(2ct), where Ix is the classical
modified Bessel function (see [10, Example 3.1]).

The corresponding formulas for fundamental solutions of the partial difference equations (1.2) and
(1.3) will be obtained in Sections 3 and 4, respectively. To achieve this goal, we need the discrete analogues
of the functions t 7→ Jn(ct) and t 7→ In(ct) for an arbitrary c > 0, which are precisely the functions Jc

n

and Icn mentioned earlier. While the functions t 7→ Jn(ct) and t 7→ In(ct) satisfy the differential equations

t2y′′(t) + ty′(t) + (±c2t2 − n2)y(t) = 0,

we will show that their discrete counterparts Jc
n and Icn are solutions of the difference equations

t(t− 1)∆2y(t− 2) + t∆y(t− 1)± c2t(t− 1)y(t− 2)− n2y(t) = 0. (1.6)

By expanding the differences, we obtain the equivalent form

(t2 − n2)y(t)− t(2t− 1)y(t− 1) + (1± c2)t(t− 1)y(t− 2) = 0. (1.7)

We remark that the fundamental solutions of the partial difference equations (1.2) and (1.3) are
already available in the existing literature [8, 10], but they are expressed in a different form than we
obtain in Sections 3 and 4. Expressing them in terms of the discrete Bessel functions can simplify the
study of their properties. For example, following the method from [2], we prove that the function Jc

n is
oscillatory. This fact implies that for each fixed x, the first fundamental solution to (1.2) is oscillatory as
a function of t; this result is new and would be difficult to obtain by different methods.

2 Discrete Bessel functions

Both types of the Bessel functions, Jc
n and Icn, will be defined in terms of the hypergeometric series

F (α, β; γ; z) =

∞∑
k=0

(α)k(β)k
(γ)kk!

zk.

Definition 2.1. For each c ∈ C, we define the discrete Bessel function

Jc
n(t) =

(−c/2)n(−t)n
n!

F

(
n− t

2
,
n− t

2
+

1

2
;n+ 1;−c2

)
, t ∈ N0, n ∈ N0, (2.1)
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and the discrete modified Bessel function

Icn(t) =
(−c/2)n(−t)n

n!
F

(
n− t

2
,
n− t

2
+

1

2
;n+ 1; c2

)
, t ∈ N0, n ∈ N0. (2.2)

Note that if n > t, then (−t)n = 0 and therefore Jc
n(t) = Icn(t) = 0. Otherwise, if n ≤ t, then one

of the fractions n−t
2 and n−t

2 + 1
2 is a nonpositive integer, which means that the hypergeometric series

occurring in (2.1) and (2.2) have only finitely many nonzero terms. As in [2], the definition of Jc
n(t) can

be extended to all t ∈ Z, but the same extension is not always possible for Icn(t). Similarly, it would be
possible to consider Bessel functions of non-integer orders n. However, for simplicity, we restrict ourselves
to nonnegative integer values of t and n; this case is the most interesting one for applications to partial
difference equations.

For c = 1, the function Jc
n coincides with the discrete Bessel function (1.1) introduced in [2]. For

applications in partial difference equations, the most useful case is when c is a positive real number. One
advantage of allowing c to be complex is the connection formula

Icn(t) = (−i)nJ ic
n (t),

which is a straightforward consequence of the definitions.

Our first goal is to prove that Jc
n and Icn satisfy the difference equations (1.6)–(1.7). The next result

generalizes [2, Theorem 1].

Theorem 2.2. If c ∈ C and n ∈ N0, then the function

Bn(t) =
(−c/2)n(−t)n

n!
F

(
n− t

2
,
n− t

2
+

1

2
;n+ 1;±c2

)
, t ∈ N0,

satisfies the difference equation

t(t− 1)∆2Bn(t− 2) + t∆Bn(t− 1)∓ c2t(t− 1)Bn(t− 2)− n2Bn(t) = 0, t ≥ 2,

or equivalently

(t2 − n2)Bn(t)− t(2t− 1)Bn(t− 1) + (1∓ c2)t(t− 1)Bn(t− 2) = 0, t ≥ 2.

Proof. We use the contiguous relation (see [7, formula 15.5.13])

(γ − α− β)F (α, β; γ; z)− (γ − α)F (α− 1, β; γ; z) + β(1− z)F (α, β + 1; γ; z) = 0

with α = n−t
2 + 1, β = n−t

2 + 1
2 , γ = n+ 1, z = ±c2 to get(

t− 1

2

)
F

(
n− t

2
+ 1,

n− t
2

+
1

2
;n+ 1;±c2

)
−
(
n

2
+
t

2

)
F

(
n− t

2
,
n− t

2
+

1

2
;n+ 1;±c2

)
+
n− t+ 1

2
(1∓ c2)F

(
n− t

2
+ 1,

n− t
2

+
3

2
;n+ 1;±c2

)
= 0.

By multiplying the equation with 2 (−c/2)n
n! (−t)n+1, using the definition of Bn and the symmetry of F in

the first two arguments, we obtain

−t(2t− 1)Bn(t− 1)− (n+ t)(−t+ n)Bn(t) + (1∓ c2)t(t− 1)Bn(t− 2) = 0.

Corollary 2.3. For each c ∈ C and n ∈ N0, the function Jc
n is a solution of the difference equation

t(t− 1)∆2y(t− 2) + t∆y(t− 1) + c2t(t− 1)y(t− 2)− n2y(t) = 0, t ≥ 2,

and the function Icn is a solution of the difference equation

t(t− 1)∆2y(t− 2) + t∆y(t− 1)− c2t(t− 1)y(t− 2)− n2y(t) = 0, t ≥ 2.
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The next task is to obtain expressions for differences of the discrete Bessel functions. The following
result generalizes Theorems 5, 6 and Corollary 7 from [2]. Our proof is simpler than in [2] and relies on
the contiguous relations for the hypergeometric function.

Theorem 2.4. Assume that c ∈ C. For each n ∈ N0, consider the function

Bn(t) =
(−c/2)n(−t)n

n!
F

(
n− t

2
,
n− t

2
+

1

2
;n+ 1;±c2

)
, t ∈ N0.

Then we have the following identities:

t∆Bn(t− 1) = nBn(t)± ctBn+1(t− 1), n ≥ 0, t ≥ 1, (2.3)

t∆Bn(t− 1) = −nBn(t) + ctBn−1(t− 1), n ≥ 1, t ≥ 1, (2.4)

nBn(t) =
ct

2

(
Bn−1(t− 1)∓Bn+1(t− 1)

)
, n ≥ 1, t ≥ 1, (2.5)

∆Bn(t) =
c

2

(
Bn−1(t)±Bn+1(t)

)
, n ≥ 1, t ≥ 0. (2.6)

Proof. To prove (2.3), we need to show that

0 = tBn(t− 1) + (n− t)Bn(t)± ctBn+1(t− 1).

Using the definition of Bn and dividing by (−c/2)n(−t)n+1/(n+ 1)!, we see it is enough to show that

0 =− (n+ 1)F

(
n− t

2
+

1

2
,
n− t

2
+ 1;n+ 1;±c2

)
+ (n+ 1)F

(
n− t

2
+

1

2
,
n− t

2
;n+ 1;±c2

)
± c2

2
(n+ 1− t)F

(
n− t

2
+

3

2
,
n− t

2
+ 1;n+ 2;±c2

)
.

To prove this, we use the contiguous relations (see [7, formulas 15.5.13 and 15.5.16])

αγ(1− z)F (α+ 1, β + 1; γ; z) = γ
(
(γ − β − 1)F (α, β; γ; z)− (γ − α− β − 1)F (α, β + 1; γ; z)

)
,

αγ(1− z)F (α+ 1, β + 1; γ; z) = αγF (α, β + 1; γ; z)− α(γ − β − 1)zF (α+ 1, β + 1; γ + 1; z).

By equating the right-hand sides and dividing by (γ − β − 1), we get

γF (α, β; γ; z)− γF (α, β + 1; γ; z) = −αzF (α+ 1, β + 1; γ + 1; z).

The desired relation now follows by letting α = n−t
2 + 1

2 , β = n−t
2 , γ = n+ 1, z = ±c2.

To prove (2.4), we have to show that

0 = tBn(t− 1)− (n+ t)Bn(t) + ctBn−1(t− 1).

Using the definition of Bn and dividing by (−c/2)n(−t)n/n!, we see it is enough to show that

0 =− (−t+ n)F

(
n− t

2
+

1

2
,
n− t

2
+ 1;n+ 1;±c2

)
− (n+ t)F

(
n− t

2
,
n− t

2
+

1

2
;n+ 1;±c2

)
+ 2nF

(
n− t

2
,
n− t

2
+

1

2
;n;±c2

)
.

To prove this, we use the contiguous relation (see [7, formula 15.5.15])

(γ − α)F (α, β; γ + 1; z) + αF (α+ 1, β; γ + 1; z)− γF (α, β; γ; z) = 0.

The desired relation now follows by letting α = n−t
2 , β = n−t

2 + 1
2 , γ = n, z = ±c2.

Identity (2.5) is obtained by subtracting (2.3) from (2.4). To get the identity (2.6), add (2.3) and
(2.4), divide by 2t, and replace t by t+ 1.
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Corollary 2.5. For each c ∈ C, the following relations hold:

t∆Jc
n(t− 1) = nJc

n(t)− ctJc
n+1(t− 1), n ≥ 0, t ≥ 1, (2.7)

t∆Jc
n(t− 1) = −nJc

n(t) + ctJc
n−1(t− 1), n ≥ 1, t ≥ 1, (2.8)

nJc
n(t) =

ct

2

(
Jc
n−1(t− 1) + Jc

n+1(t− 1)
)
, n ≥ 1, t ≥ 1, (2.9)

∆Jc
n(t) =

c

2

(
Jc
n−1(t)− Jc

n+1(t)
)
, n ≥ 1, t ≥ 0, (2.10)

t∆Icn(t− 1) = nIcn(t) + ctIcn+1(t− 1), n ≥ 0, t ≥ 1, (2.11)

t∆Icn(t− 1) = −nIcn(t) + ctIcn−1(t− 1), n ≥ 1, t ≥ 1, (2.12)

nIcn(t) =
ct

2

(
Icn−1(t− 1)− Icn+1(t− 1)

)
, n ≥ 1, t ≥ 1, (2.13)

∆Icn(t) =
c

2

(
Icn−1(t) + Icn+1(t)

)
, n ≥ 1, t ≥ 0. (2.14)

The next theorem provides additional information about the values and differences of Jc
n and Icn.

Theorem 2.6. For each c ∈ C, the functions Jc
n and Icn have the following properties:

• Jc
0(0) = Ic0(0) = 1.

• Jc
n(t) = Icn(t) = 0 for all t ∈ N0 and n ∈ N such that n > t.

• ∆Jc
n(0) = ∆Icn(0) = 0 for all n ∈ N0 \ {1}, and ∆Jc

1(0) = ∆Ic1(0) = c/2.

Proof. The first two statements follow from the definitions of Jc
n and Icn; note that (−t)n = 0 for all

t ∈ N0 and n ∈ N such that n > t.
Using (2.10) and (2.14), we get ∆Jc

n(0) = c
2

(
Jc
n−1(0)− Jc

n+1(0)
)

and ∆Icn(0) = c
2

(
Icn−1(0) + Icn+1(0)

)
for all n ∈ N. Both expressions are equal to c/2 if n = 1, and zero for all n ∈ N \ {1}. For n = 0, the
relations (2.7) and (2.11) with t = 1 imply ∆Jc

0(0) = ∆Ic0(0) = 0.

The remaining results in this section are concerned with the sign of Jc
n and Icn if c is a real number.

The first statement generalizes [2, Theorem 12].

Theorem 2.7. For each c ∈ R \ {0} and n ∈ N0, the function Jc
n is oscillatory (i.e., Jc

n(t) changes sign
or vanishes for infinitely many values of t ∈ N0).

Proof. To simplify notation, we denote y(t) = Jc
n(t). According to Corollary 2.3 with t replaced by t+ 2,

we see that y satisfies the difference equation

(t+ 2)(t+ 1)∆2y(t) + (t+ 2)∆y(t+ 1) + c2(t+ 2)(t+ 1)y(t)− n2y(t+ 2) = 0, t ∈ N0.

Using the formulas y(t) = y(t+ 1)−∆y(t+ 1) + ∆2y(t) and y(t+ 2) = ∆y(t+ 1) + y(t+ 1), we obtain

∆2y(t)
(
(t+ 2)(t+ 1)(1 + c2)

)
+ ∆y(t+ 1)

(
t+ 2− c2(t+ 2)(t+ 1)−n2

)
+y(t+ 1)

(
c2(t+ 1)(t+ 2)−n2

)
= 0,

and therefore

∆2y(t) =
c2(t+ 2)(t+ 1) + n2 − t− 2

(t+ 2)(t+ 1)(1 + c2)
∆y(t+ 1)− c2(t+ 1)(t+ 2)− n2

(t+ 2)(t+ 1)(1 + c2)
y(t+ 1), t ∈ N0.

Let

v(t) =

2t

(1+c2)t/2(
t

t−n
2

) =
2t

(1 + c2)t/2
Γ( t−n

2 + 1)Γ( t+n
2 + 1)

Γ(t+ 1)
, t ∈ {n, n+ 1, n+ 2, . . .}.
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One can verify (using a computer system such as Mathematica or by a hand calculation similar to [2,
Lemma 11]) that

∆v(t+ 1) + ∆v(t) + v(t)
c2(t+ 1)(t+ 2) + n2 − t− 2

(t+ 2)(t+ 1)(1 + c2)
= 0, t ∈ {n, n+ 1, n+ 2, . . .}, (2.15)

lim
t→∞

v(t)

v(t+ 1)
=
√

1 + c2. (2.16)

Let
u(t) = v(t)y(t), t ∈ {n, n+ 1, n+ 2, . . .}.

Using the product rule twice, we get

∆u(t) = y(t+ 1)∆v(t) + v(t)∆y(t),

∆2u(t) = y(t+ 1)∆2v(t) +
(
∆v(t+ 1) + ∆v(t)

)
∆y(t+ 1) + v(t)∆2y(t)

=
u(t+ 1)

v(t+ 1)
∆2v(t) +

(
∆v(t+ 1) + ∆v(t)

)
∆y(t+ 1)

+v(t)

(
c2(t+ 2)(t+ 1) + n2 − t− 2

(t+ 2)(t+ 1)(1 + c2)
∆y(t+ 1)− c2(t+ 1)(t+ 2)− n2

(t+ 2)(t+ 1)(1 + c2)

u(t+ 1)

v(t+ 1)

)
= u(t+ 1)

(
∆2v(t)

v(t+ 1)
− c2(t+ 1)(t+ 2)− n2

(t+ 2)(t+ 1)(1 + c2)

v(t)

v(t+ 1)

)
+∆y(t+ 1)

(
∆v(t+ 1) + ∆v(t) + v(t)

c2(t+ 2)(t+ 1) + n2 − t− 2

(t+ 2)(t+ 1)(1 + c2)

)
.

The last term vanishes thanks to (2.15), and therefore

∆2u(t) + u(t+ 1)

(
c2(t+ 1)(t+ 2)− n2

(t+ 2)(t+ 1)(1 + c2)

v(t)

v(t+ 1)
− ∆2v(t)

v(t+ 1)

)
= 0.

This is a second-order difference equation of the form ∆2u(t) + q(t)u(t+ 1) = 0, where

q(t) =
c2(t+ 1)(t+ 2)− n2

(t+ 2)(t+ 1)(1 + c2)

v(t)

v(t+ 1)
− v(t+ 2)− 2v(t+ 1) + v(t)

v(t+ 1)
.

By Wintner’s theorem (see [3, Theorem 4.45]), such equation is oscillatory if
∑∞

t=n q(t) = ∞. To verify
this fact, it is enough to show that limt→∞ q(t) > 0. Using (2.16), we calculate

lim
t→∞

q(t) =
c2

c2 + 1
lim
t→∞

v(t)

v(t+ 1)
− lim

t→∞

(
v(t+ 2)

v(t+ 1)
− 2 +

v(t)

v(t+ 1)

)
=

c2√
c2 + 1

− 1√
c2 + 1

+ 2−
√

1 + c2 = 2− 2√
c2 + 1

> 0.

This shows that u is oscillatory. Since v is positive, y is oscillatory.

Theorem 2.8. For each c ≥ 0 and n ∈ N0, the function Icn is nonnegative. For each c < 0, the
function Icn is nonnegative if n is even and nonpositive if n is odd.

Proof. The first statement (where c ≥ 0) is easily proved by induction with respect to t. For t = 0, it
follows from the first and second part of Theorem 2.6 that Icn(0) ≥ 0 for all n ∈ N0.

Suppose that Icn(t) ≥ 0 for all n ∈ N0. By the relation (2.14), we have ∆Icn(t) ≥ 0 for all n ∈ N. If
n = 0, then the relation (2.11) with t replaced by t + 1 implies ∆Ic0(t) = cIc1(t) ≥ 0. Consequently, we
have Icn(t+ 1) = Icn(t) + ∆Icn(t) ≥ 0 for all n ∈ N0.

The second statement (where c < 0) is a consequence of the first part and the identity

Icn(t) = (−1)nI |c|n (t),

which follows immediately from the definition.
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3 Discrete wave equation

In this section, we explore the relation between the discrete Bessel function Jc
n and the discrete wave

equation
∆2u(x, t) = c2

(
u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

)
, x ∈ Z, t ∈ N0

(the forward difference operator ∆ always applies to the time variable t; differences with respect to the
space variable x are never considered in this paper). Suppose that u1 : Z × N0 → R is the solution
corresponding to the initial conditions

u1(x, 0) =

{
1 if x = 0,

0 if x 6= 0,

∆u1(x, 0) = 0, x ∈ Z.

Then it is not difficult to check that the function u2 : Z× N0 → R given by

u2(x, t) =

t−1∑
s=0

u1(x, s)

(where the sum is understood as empty if t = 0) is the solution of the discrete wave equation satisfying
the conditions

u2(x, 0) = 0, x ∈ Z,

∆u2(x, 0) =

{
1 if x = 0,

0 if x 6= 0.

In [8, Theorem 3.2], it is shown that for arbitrary bounded real sequences {u0x}x∈Z, {v0x}x∈Z, the function

u(x, t) =
∑
k∈Z

(u0k · u1(x− k, t) + v0k · u2(x− k, t)), x ∈ Z, t ∈ N0, (3.1)

is the solution of the discrete wave equation satisfying

u(x, 0) = u0x, ∆u(x, 0) = v0x, x ∈ Z.

In fact, it is not difficult to see (use induction with respect to t) that we have u1(x, t) = u2(x, t) = 0
whenever |x| > t. Hence, on the right-hand side of the formula (3.1), the terms corresponding to k ∈ Z
such that |x− k| > t do not contribute to u(x, t), and we can write

u(x, t) =

x+t∑
k=x−t

(u0k · u1(x− k, t) + v0k · u2(x− k, t)), x ∈ Z, t ∈ N0.

The solutions u1, u2 are referred to as the fundamental solutions of the discrete wave equation. The
next theorem shows that u1 (and consequently also u2) can be expressed in terms of the discrete Bessel
function Jc

n.

Theorem 3.1. For each c > 0, the solution of the initial-value problem

∆2u(x, t) = c2
(
u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

)
, x ∈ Z, t ∈ N0, (3.2)

u(x, 0) =

{
1 if x = 0,

0 if x 6= 0,
(3.3)

∆u(x, 0) = 0, x ∈ Z, (3.4)
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is given by
u(x, t) = J2c

2|x|(t), x ∈ Z, t ∈ N0. (3.5)

Moreover, for each x ∈ Z, the function t 7→ u(x, t) oscillatory.

Proof. Let u be defined by (3.5). The relations (3.3) and (3.4) follow from Theorem 2.6. If x ≥ 1, we use
the identity (2.10) to calculate

∆u(x, t) = ∆J2c
2x(t) = c

(
J2c
2x−1(t)− J2c

2x+1(t)
)
,

∆2u(x, t) = c2
(
J2c
2x−2(t)− 2J2c

2x(t) + J2c
2x+2(t)

)
= c2

(
u(x− 1, t)− 2u(x, t) + u(x+ 1, t)

)
.

Similarly, if x ≤ −1, we obtain

∆u(x, t) = ∆J2c
−2x(t) = c

(
J2c
−2x−1(t)− J2c

−2x+1(t)
)
,

∆2u(x, t) = c2
(
J2c
−2x−2(t)− 2J2c

−2x(t) + J2c
−2x+2(t)

)
= c2

(
u(x+ 1, t)− 2u(x, t) + u(x− 1, t)

)
.

Finally, for x = 0, we use the identity (2.7) with n = 0 and t replaced by t+ 1 to get

∆u(0, t) = ∆J2c
0 (t) = −2cJ2c

1 (t),

and consequently (by identity (2.10))

∆2u(0, t) = c2
(
−2J2c

0 (t) + 2J2c
2 (t)

)
= c2

(
J2c
2 (t)− 2J2c

0 (t) + J2c
2 (t)

)
= c2

(
u(1, t)− 2u(0, t) + u(−1, t)

)
.

Thus, the relation (3.2) holds for all x ∈ Z, t ∈ N0.
The fact that t 7→ u(x, t) is oscillatory follows from Theorem 2.7.

Remark 3.2. The first fundamental solution of the discrete wave equation can be alternatively expressed
using the multinomial coefficients as follows (see [8, Example 3.5]):

u(x, t) =

t∑
j=0

(
t

j, t− 2j − 2x, j + 2x

)
(−1)jc2j+2x

4 Discrete diffusion equation

We now turn our attention to the discrete diffusion equation

∆w(x, t) = d
(
w(x+ 1, t)− 2w(x, t) + w(x− 1, t)

)
, x ∈ Z, t ∈ N0.

The solution w : Z× N0 → R corresponding to the initial conditions

w(x, 0) =

{
1 if x = 0,

0 if x 6= 0,

is called the fundamental solution. In [9, Corollary 3.8], it is shown that for an arbitrary bounded real
sequence {u0x}x∈Z, the function

u(x, t) =
∑
k∈Z

u0k · w(x− k, t), x ∈ Z, t ∈ N0, (4.1)

is the solution of the discrete diffusion equation satisfying

u(x, 0) = u0x, x ∈ Z.
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Observing that w(x, t) = 0 whenever |x| > t (use induction with respect to t), we can simplify the
formula (4.1) to

u(x, t) =

x+t∑
k=x−t

u0k · w(x− k, t), x ∈ Z, t ∈ N0.

For d 6= 1/2, the next theorem shows that the fundamental solution w can be constructed using the
discrete modified Bessel function Icn.

Theorem 4.1. For each d 6= 1/2, the solution of the initial-value problem

∆w(x, t) = d
(
w(x+ 1, t)− 2w(x, t) + w(x− 1, t)

)
, x ∈ Z, t ∈ N0, (4.2)

w(x, 0) =

{
1 if x = 0,

0 if x 6= 0.
(4.3)

is given by

w(x, t) = (1− 2d)tI
2d/(1−2d)
|x| (t), x ∈ Z, t ∈ N0. (4.4)

Moreover, for each x ∈ Z, the function t 7→ w(x, t) is nonnegative if d ∈ (0, 1/2), and oscillatory if
d > 1/2.

Proof. Let w be defined by (4.4). To simplify notation, let c = d/(1 − 2d). The relation (4.3) follows
from Theorem 2.6. Let

z(x, t) = I2c|x|(t), x ∈ Z, t ∈ N0.

If x ≥ 1, we use the identity (2.14) to calculate

∆z(x, t) = ∆I2cx (t) = c
(
I2cx+1(t) + I2cx−1(t)

)
= c
(
z(x+ 1, t) + z(x− 1, t)

)
.

Similarly, if x ≤ −1, we obtain

∆z(x, t) = ∆I2c−x(t) = c
(
I2c−x+1(t) + I2c−x−1(t)

)
= c
(
z(x− 1, t) + z(x+ 1, t)

)
.

Finally, if x = 0, identity (2.11) with n = 0 and t replaced by t+ 1 implies that

∆z(0, t) = ∆I2c0 (t) = 2cI2c1 (t) = c
(
z(1, t) + z(−1, t)

)
.

Note that
∆(1− 2d)t = (1− 2d)t+1 − (1− 2d)t = −2d(1− 2d)t.

Hence, by the product rule, we have

∆w(x, t) = ∆
(
z(x, t)(1− 2d)t

)
= ∆z(x, t)(1− 2d)t+1 + z(x, t)∆(1− 2d)t

=
d

1− 2d

(
z(x+ 1, t) + z(x− 1, t)

)
(1− 2d)t+1 − z(x, t)2d(1− 2d)t

= d
(
z(x+ 1, t)− 2z(x, t) + z(x− 1, t)

)
(1− 2d)t = d

(
w(x+ 1, t)− 2w(x, t) + w(x− 1, t)

)
.

The fact that t 7→ w(x, t) is nonnegative if d ∈ (0, 1/2) and oscillatory if d > 1/2 follows from the
definition of w and Theorem 2.8.

Remark 4.2. An alternative form of the fundamental solution to the discrete diffusion equation is (see
[10, Example 3.3])

w(x, t) =

t∑
j=0

(
t

j, t− 2j − x, j + x

)
d2j+x(1− 2d)t−2j−x.

This formula is valid also for d = 1/2, when it reduces to

w(x, t) =

{(
t

t+x
2

) (
1
2

)t
if t+ x is even,

0 if t+ x is odd.
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5 Conclusion

We conclude the paper by pointing out two possible directions for further research:

• The classical Bessel functions have their multivariable counterparts [1], which found applications
in various areas of physics (see, e.g., [6] and the references there). Is there a reasonable extension
of the discrete Bessel functions to several variables? If yes, is it related to the higher-dimensional
discrete diffusion/wave equations? (Note that an explicit formula for the fundamental solution of
the n-dimensional discrete diffusion equation, which does not rely on Bessel functions, can be found
in [10]).

• In Sections 3 and 4, we were dealing with the discrete diffusion/wave equations whose left-hand
sides involve forward differences of first and second order with respect to time. In some situations, it
might be more appropriate to consider the backward first-order difference for the diffusion equation,
and the central or backward second-order difference for the wave equation. Is it possible to express
their solutions with the help of some Bessel-type functions?
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[9] A. Slav́ık, P. Stehĺık, Dynamic diffusion-type equations on discrete-space domains, J. Math. Anal.
Appl. 427 (2015), 525–545.
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