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1 Introduction

The averaging method for ordinary differential equations has its roots in the works of Lagrange and
Laplace on celestial mechanics. There are many sources which describe the method and its applications;
a modern and detailed treatment is given in the specialized monograph [15] or in its second revised
edition [16]. The book [17] contains a chapter devoted to averaging, which can serve as a first introduction
with many examples. The simplest version of averaging is concerned with the initial-value problem

x′(t) = εf(t, x(t)), x(t0) = x0,

where ε > 0 is a small parameter. The basic idea is that because x is a slowly varying function, we
can obtain an approximate solution by averaging the right-hand side f with respect to t while holding x
constant, i.e. we consider the equation

y′(t) = εf0(y(t)), y(t0) = x0,

where

f0(y) =
1

T

∫ t0+T

t0

f(t, y) dt

if f is T -periodic in the first argument and

f0(y) = lim
T→∞

1

T

∫ t0+T

t0

f(t, y) dt
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otherwise. According to the classical averaging theorems, the solution of the averaged equation (which is
autonomous and therefore easier to analyze) provides a good approximation to the original solution for
t ∈ [t0, t0 + d/ε], where d is a certain constant.

Our aim is to obtain both periodic and nonperiodic version of the averaging theorem for dynamic
equations on time scales. Note that our term “time scale” has a different meaning than in [15] and [16]
and denotes a closed subset of the real line. We assume that the reader is familiar with the basic notions
of calculus on time scales as presented in [4] and with integration theory on time scales as presented in [5].
Our proof of the periodic averaging theorem follows the proof of the classical theorem from [16]. We also
prove a related theorem on the existence of periodic solutions, which generalizes another well-known
result from the theory of ordinary differential equations. The proof is also inspired by the classical one
(see e.g. [17]), but certain technical details are more complicated.

Finally, we obtain a nonperiodic version of the averaging theorem by converting the dynamic equations
to generalized ordinary differential equations and using an existing theorem on averaging of generalized
equations. In this part, some familiarity with the theory of generalized ordinary differential equations
might be helpful (see e.g. the book [12] and the paper [13], which describes the correspondence between
dynamic equations and generalized ordinary differential equations).

Our averaging theorems unify and extend existing results for differential and difference equations
(periodic and nonperiodic averaging theorems for difference equations can be found in [6] and [1], respec-
tively). As far as the author knows, the theorem on the existence of periodic solutions is new even in the
purely discrete case.

2 Auxiliary results

Let T be a time scale, i.e. a nonempty closed subset of R. For every t ∈ T, we define the forward jump
operator by σ(t) = inf{s ∈ T, s > t} and the graininess function by µ(t) = σ(t) − t. If σ(t) > t, we
say that t is right-scattered; otherwise, t is right-dense. Similarly, the backward jump operator is given
by ρ(t) = sup{s ∈ T, s < t}, and we distinguish between left-scattered and left-dense points depending
on whether ρ(t) < t or ρ(t) = t. If T has a left-scattered maximum M , then we define Tκ = T − {M};
otherwise, Tκ = T.

Given a pair of numbers a, b ∈ T, the symbol [a, b]T will be used to denote a closed interval in T,
i.e. [a, b]T = {t ∈ T; a ≤ t ≤ b}. On the other hand, [a, b] is the usual closed interval on the real line,
i.e. [a, b] = {t ∈ R; a ≤ t ≤ b}. This notational convention should help the reader to distinguish between
ordinary and time scale intervals.

A function f : T → R is called rd-continuous if it is regulated on T and continuous at right-dense
points of T.

In the time scale calculus, the usual derivative f ′(t) is replaced by the ∆-derivative f∆(t), where t ∈
Tκ. Similarly, the usual integral

∫ b
a
f(t) dt is replaced by the ∆-integral

∫ b
a
f(t) ∆t, where f : [a, b]T → R.

The definitions and properties of the ∆-derivative and ∆-integral can be found in [4] and [5]. We remark
that the notion of Riemann ∆-integral is sufficient for our purposes, although time scale versions of the
more general Lebesgue and Kurzweil integrals are available, too.

Definition 2.1. Let T > 0 be a real number. A time scale T is called T -periodic if t ∈ T implies t+T ∈ T
and µ(t) = µ(t+ T ).

For example, the time scale T =
⋃∞
k=0[2k, 2k + 1] is 2-periodic, but also 4-periodic etc.

The condition µ(t) = µ(t+T ) is important; as the following lemma shows, it guarantees that if t ∈ T,
then the interval [t+ T, t+ 2T ]T does not contain more points than [t, t+ T ]T.

Lemma 2.2. Let T be a T -periodic time scale. If t ∈ T, then the function s(τ) = τ + T maps [t, t+ T ]T
onto [t+ T, t+ 2T ]T.
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Proof. Let O = [t, t + T ]\T. Since O is an open set, it can be written as a countable union of disjoint
open intervals, i.e. O =

⋃
n(an, bn). Assume there exists a τ ∈ [t + T, t + 2T ]T which is not contained

in the range of s, i.e. τ − T ∈ O. It follows that τ − T ∈ (an, bn) for a certain n; note that an, bn ∈ T
and µ(an) = bn − an. But τ ∈ (an + T, bn + T ), and consequently µ(an + T ) ≤ τ − an < bn − an,
a contradiction.

Lemma 2.3. Let T be a T -periodic time scale and f : T → R a T -periodic function. If a, b ∈ T, a ≤ b,
and f is ∆-integrable on [a, b]T, then for every k ∈ N, f is ∆-integrable on [a+ kT, b+ kT ]T and∫ b

a

f(τ)∆τ =

∫ b+kT

a+kT

f(τ)∆τ.

Proof. The statement follows immediately from the definition of the ∆-integral and the fact that, accord-
ing to Lemma 2.2, there is a one-to-one correspondence between the partitions of [a, b]T and the partitions
of [a+ kT, b+ kT ]T.

It follows from the previous lemma and the additivity of the ∆-integral that integrating a T -periodic
function f over an arbitrary interval of length T always gives the same result.

Let an arbitrary time scale T be given. If t0 ∈ T and f : T → R is a regressive function (i.e.,
1 + µ(t)f(t) 6= 0 for every t), it is known that the initial value problem

y∆(t) = f(t)y(t), y(t0) = 1

has a unique solution on T. This solution is called the exponential function corresponding to t0 and f
and its value at t ∈ T will be denoted by ef (t, t0). (For more details, see [4]. A more general definition
of the exponential function applicable to Riemann ∆-integrable matrix functions f is given in [14].)

The following theorem from [4, Corollary 6.8] represents a Gronwall-type inequality.

Theorem 2.4. Let y : T→ R be a rd-continuous function and t0 ∈ T. Suppose there exist constants α,
β, γ ∈ R, γ > 0, such that

y(t) ≤ α+ β(t− t0) + γ

∫ t

t0

y(s) ∆s

for every t ∈ T, t ≥ t0. Then
y(t) ≤ (α+ β/γ) eγ(t, t0)− β/γ

for every t ∈ T, t ≥ t0.

The following theorem gives an estimate for the exponential function.

Theorem 2.5. Let f : T→ R be a regressive rd-continuous function such that |f(t)| ≤ C for every t ∈ T.
Then |ef (t, t0)| ≤ eC(t−t0) for each pair of values t, t0 ∈ T, t ≥ t0.

Proof. According to [14], the value of ef (t, t0) is equal to the product integral of f over [t0, t]T. This
means that for every ε > 0, there is a partition D : t0 = s0 < s1 < · · · < sm = t of interval [t0, t]T (where
si ∈ T for every i) such that the product

P (f,D) =

m∏
i=1

(1 + f(ti−1)(ti − ti−1))

satisfies |ef (t, t0)− P (f,D)| < ε. Thus

|ef (t, t0)| ≤ |ef (t, t0)− P (f,D)|+ |P (f,D)| < ε+

m∏
i=1

(1 + C(ti − ti−1))
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≤ ε+

m∏
i=1

eC(ti−ti−1) = ε+ eC(t−t0).

The statement follows from the fact that ε can be arbitrarily small.

In fact, we will need the last theorem only in the case when f is a constant function. However,
the statement as well as the proof can be easily generalized for Riemann ∆-integrable matrix functions
f : T→ Rn×n.

Consider a function f : T × Rn → Rn. For a fixed x ∈ Rn, the function t 7→ f(t, x) is defined on T
and its ∆-derivative (provided it exists) will be denoted by f∆. On the other hand, for a fixed t ∈ T, the
function x 7→ f(t, x) is defined on Rn and its partial derivatives (provided they exist) will be denoted by
∂f
∂x1

, . . . , ∂f∂xn
; the symbol ∂f∂x will be used for the differential (i.e., the Jacobian matrix) of f .

We need the following theorem concerning differentiation under the integral sign with respect to
a parameter; we omit the proof since it is identical to the classical one, and since the time scale version
(in a slightly less general form) was already proved in [2].

Theorem 2.6. If U ⊂ Rn is an open set and f : [a, b]T×U → R is a continuous function with continuous
partial derivatives with respect to x1, . . . , xn, then the function

g(x) =

∫ b

a

f(t, x) ∆t, x ∈ U,

is continuous and has continuous partial derivatives in U given by the formula

∂g

∂xi
(x) =

∫ b

a

∂f

∂xi
(t, x) ∆t, i ∈ {1, . . . , n}.

It is easy to see that the previous statement is true even for vector-valued functions f : [a, b]T×U → Rn.

The following mean-value theorem is proved in [5] (see Theorem 1.14).

Theorem 2.7. Let f : [a, b]T → R be a continuous function, which is ∆-differentiable on [a, b)T. Then
there exist numbers ξ, τ ∈ [a, b)T such that

f∆(τ) ≤ f(b)− f(a)

b− a
≤ f∆(ξ).

We need the following statement, which is an easy corollary of the previous theorem.

Corollary 2.8. Let f : [a, b]T → Rn be a continuous function, which is ∆-differentiable on [a, b)T. If
there exists a number M ≥ 0 such that ‖f∆(t)‖ ≤M for every τ ∈ [a, b)T, then ‖f(b)−f(a)‖ ≤M(b−a).

A time scale version of the implicit function theorem will be used in section 4. The following result
where the implicit function is described by a single equation is proved in section 9 of [3]. The notion of
a partial ∆-derivative of a multivariable time scale function is introduced in the same paper.

Theorem 2.9. Consider time scales T1, . . . ,Tl, a point p0 = (t01, . . . , t
0
l , y

0) ∈ T1 × · · · × Tl × R and
a function F : U → R, where U is a neighborhood of p0. Assume that F satisfies the following conditions:

1. F and ∂F
∂y are continuous in U .

2. F (p0) = 0.

3. ∂F
∂y (p0) 6= 0.
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Then there is an open set V ⊂ T1 × · · · × Tl containing the point (t01, . . . , t
0
l ) and a unique continuous

function ψ : V → R such that y0 = ψ(t01, . . . , t
0
l ) and

F (t1, . . . , tl, ψ(t1, . . . , tl)) = 0

for every (t1, . . . , tl) ∈ V . Moreover, existence and continuity of the partial ∆-derivatives ∂F
∆1t1

, . . . , ∂F∆ltl

in U ∩ Tκ1 × · · · × Tκl implies the existence of ∂ψ
∆1t1

, . . . , ∂ψ∆ltl
in V ∩ Tκ1 × · · · × Tκl .

In the following more general result, the implicit function is given by a system of equations (i.e.,
a single vector equation). We omit the proof since it is the same as in the classical case; it is sufficient to
use Theorem 2.9 and proceed by induction on the number of equations (see e.g. section 3.2 in [8]).

Theorem 2.10. Consider time scales T1, . . . ,Tl, a point p0 = (t01, . . . , t
0
l , y

0
1 , . . . , y

0
n) ∈ T1×· · ·×Tl×Rn,

and a function F : U → Rn, where U is a neighborhood of p0. Assume that F satisfies the following
conditions:

1. F and ∂F
∂y1

, . . . , ∂F∂yn are continuous in U .

2. F (p0) = 0.

3. det ∂F∂y (p0) 6= 0.

Then there is an open set V ⊂ T1 × · · · × Tl containing the point (t01, . . . , t
0
l ) and a unique system of

continuous functions ψ1, . . . , ψn : V → Rn such that y0
j = ψj(t

0
1, . . . , t

0
l ) for every j ∈ {1, . . . , n} and

F (t1, . . . , tl, ψ1(t1, . . . , tl), . . . , ψn(t1, . . . , tl)) = 0

for every (t1, . . . , tl) ∈ V . Moreover, existence and continuity of the partial ∆-derivatives ∂F
∆1t1

, . . . , ∂F∆ltl

in U ∩Tκ1×· · ·×Tκl implies the existence of ∂ψi

∆jtj
in V ∩Tκ1×· · ·×Tκl for i ∈ {1, . . . , n} and j ∈ {1, . . . , l}.

3 Periodic averaging

Assume that T is a T -periodic time scale, t0 ∈ T, U ⊂ Rn, and f : [t0,∞)T × U → Rn is a continuous
function which is T -periodic in the first argument. Throughout this section, we will use the following
notation:

f0(x) =
1

T

∫ t0+T

t0

f(t, x) ∆t, x ∈ U

We are now ready to prove the periodic averaging theorem. Our proof is very similar to the one given
in [16] (see Theorem 2.8.1 and Lemma 2.8.2) for the case T = R.

Theorem 3.1. Let T be a T -periodic time scale, U ⊂ Rn, t0 ∈ T, ε0 > 0, d > 0. Consider a pair of
bounded continuous functions f : [t0,∞)T ×U → Rn and g : [t0,∞)T ×U × (0, ε0]→ Rn. Assume that f
is T -periodic in the first argument and Lipschitz-continuous in the second argument. Moreover, suppose
that for every ε ∈ (0, ε0], the initial-value problems

x∆(t) = εf(t, x(t)) + ε2g(t, x(t), ε), x(t0) = x0(ε),
y∆(t) = εf0(y(t)), y(t0) = y0(ε)

have solutions xε, yε : [t0, t0 + d/ε]T → U . If there is a constant B > 0 such that ‖x0(ε) − y0(ε)‖ ≤ Bε
for every ε ∈ (0, ε0], then there exists a constant C > 0 such that

‖xε(t)− yε(t)‖ ≤ Cε

for every ε ∈ (0, ε0] and every t ∈ [t0, t0 + d/ε]T.
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Proof. There exist constants L, M > 0 such that ‖f(t, x)‖ ≤ M , ‖f0(x)‖ ≤ M and ‖g(t, x, ε)‖ ≤ M for
every t ∈ [t0,∞)T, x ∈ U , ε ∈ (0, ε0], and ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ whenever t ∈ [t0,∞)T, x, y ∈ U .
Clearly, f0 is Lipschitz-continuous with the same constant L. For every ε ∈ (0, ε0] and t ∈ [t0, t0 + d/ε]T,
we have the estimate

‖xε(t)− yε(t)‖ ≤ ‖x0(ε)− y0(ε)‖+ ε

∫ t

t0

‖f(s, xε(s)) + εg(s, xε(s), ε)− f0(yε(s))‖∆s

≤ Bε+ ε

∥∥∥∥∫ t

t0

(f(s, xε(s))− f0(yε(s))) ∆s

∥∥∥∥+ ε2M(t− t0)

≤ Bε+ ε

∥∥∥∥∫ t

t0

(f(s, xε(s))− f(s, yε(s))) ∆s

∥∥∥∥+ ε

∥∥∥∥∫ t

t0

(f(s, yε(s))− f0(yε(s))) ∆s

∥∥∥∥+ ε2M(t− t0)

≤ Bε+ εL

∫ t

t0

‖xε(s)− yε(s)‖∆s+ ε

∥∥∥∥∫ t

t0

(f(s, yε(s))− f0(yε(s))) ∆s

∥∥∥∥+ ε2M(t− t0). (1)

Let m be the largest integer such that t0 +mT ≤ t. Then∫ t

t0

(f(s, yε(s))− f0(yε(s))) ∆s =

m∑
i=1

∫ t0+iT

t0+(i−1)T

(f(s, yε(s))− f0(yε(s))) ∆s+

∫ t

t0+mT

(f(s, yε(s))− f0(yε(s))) ∆s. (2)

For every i ∈ {1, . . . ,m}, we have∫ t0+iT

t0+(i−1)T

(f(s, yε(s))− f0(yε(s))) ∆s =

∫ t0+iT

t0+(i−1)T

(f(s, yε(s))− f(s, yε(t0 + iT ))) ∆s

+

∫ t0+iT

t0+(i−1)T

(f(s, yε(t0 + iT ))− f0(yε(t0 + iT ))) ∆s+

∫ t0+iT

t0+(i−1)T

(f0(yε(t0 + iT ))− f0(yε(s))) ∆s.

By the definition of f0, the second of these integrals is zero:∫ t0+iT

t0+(i−1)T

(f(s, yε(t0 + iT ))− f0(yε(t0 + iT ))) ∆s =

∫ t0+T

t0

f(s, yε(t0 + iT )) ∆s− Tf0(yε(t0 + iT )) = 0.

Since y∆(t) = εf0(yε(t)) and the norm of f0 is bounded by M , Corollary 2.8 gives

‖yε(s)− yε(t0 + iT )‖ ≤ εM(t0 + iT − s) ≤ εMT, s ∈ [t0 + (i− 1)T, t0 + iT ]T.

Consequently, we obtain the following estimates for the first and third integral:∥∥∥∥∥
∫ t0+iT

t0+(i−1)T

(f(s, yε(s))− f(s, yε(t0 + iT ))) ∆s

∥∥∥∥∥ ≤
∫ t0+iT

t0+(i−1)T

L‖yε(s)− yε(t0 + iT )‖∆s ≤ εLMT 2

∥∥∥∥∥
∫ t0+iT

t0+(i−1)T

(f0(yε(s))− f0(yε(t0 + iT ))) ∆s

∥∥∥∥∥ ≤
∫ t0+iT

t0+(i−1)T

L‖yε(s)− yε(t0 + iT )‖∆s ≤ εLMT 2

Collecting these results together gives∥∥∥∥∥
∫ t0+iT

t0+(i−1)T

(f(s, yε(s))− f0(yε(s))) ∆s

∥∥∥∥∥ ≤ 2εLMT 2
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for every i ∈ {1, . . . ,m}. Using the fact that mT ≤ t− t0 ≤ d/ε, we obtain∥∥∥∥∥
m∑
i=1

∫ t0+iT

t0+(i−1)T

(f(s, yε(s))− f0(yε(s))) ∆s

∥∥∥∥∥ ≤ 2mεLMT 2 ≤ 2LMTd.

Combining this estimate with equality (2), we see that∥∥∥∥∫ t

t0

(f(s, yε(s))− f0(yε(s))) ∆s

∥∥∥∥ ≤ 2LMTd+ 2MT.

Substituting this result into (1), we obtain

‖xε(t)− yε(t)‖ ≤ ε(B + 2LMTd+ 2MT ) + εL

∫ t

t0

‖xε(s)− yε(s)‖∆s+ ε2M(t− t0).

It follows from Theorem 2.4 with α = ε(B + 2LMTd+ 2MT ), β = ε2M , γ = εL that

‖xε(t)− yε(t)‖ ≤ ε
(
B + 2LMTd+ 2MT +

M

L

)
eLε(t, t0)− εM

L
.

Finally, Theorem 2.5 gives

‖xε(t)− yε(t)‖ ≤ ε
(
B + 2LMTd+ 2MT +

M

L

)
eεL(t−t0) − εM

L

≤ ε
((

B + 2LMTd+ 2MT +
M

L

)
eLd − M

L

)
= Cε,

where C is a constant independent of ε.

The set U ⊂ Rn from the assumptions can be a region of phase space that we are interested in. If
f and g are bounded in U , we can choose the constant d > 0 so that the solutions x, y remain in U for
every ε ∈ (0, ε0] and t ∈ [t0, t0 +d/ε]T. For example, let x0 ∈ Rn, r > 0 and U = {x ∈ Rn; ‖x−x0‖ ≤ r}.
Assume that ‖f(t, x)‖ ≤ M and ‖g(t, x, ε)‖ ≤ M for every x ∈ U , t ∈ [t0,∞)T, ε ∈ (0, ε0]. Consider the
solution of

x∆(t) = εf(t, x(t)) + ε2g(t, x(t), ε), x(t0) = x0

corresponding to ε ∈ (0, ε0]. As long as x stays in U , its ∆-derivative is bounded by εM + ε2M ≤
εM(1 + ε0). Thus if we take d < r

M(1+ε0) , then x cannot leave the ball U during the time interval

[t0, t0 + d/ε]T. The same assertion is true for y, whose ∆-derivative is bounded by εM .

Alternatively, we can start by choosing the constant d > 0 and finding ε0 > 0 and U ⊂ Rn such that
x, y ∈ U for every ε ∈ (0, ε0] and t ∈ [t0, t0 + d/ε]T.

The following example demonstrates the averaging method on a simple dynamic equation. We have
deliberately chosen an equation which can be solved analytically without averaging, so that we can
compare the solutions of the original and averaged equation.

Example 3.2. Consider the initial-value problem

x∆(t) = ε(sin(tπ) + 1)x(t), x(0) = x0

on the time scale T =
⋃∞
k=0[2k, 2k + 1]. A similar equation was used in [4] to describe the growth of a

plant population; in our case, the growth coefficient varies during the season instead of being constant.
This equation has the form x∆(t) = εf(t, x(t)), where f(t, x) = (sin(tπ) + 1)x is a 2-periodic function
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in the first argument. It is clear that f is continuous and bounded on [t0,∞)T × U whenever U is an
arbitrary bounded set. Moreover, ‖f(t, x) − f(t, y)‖ ≤ 2‖x − y‖ for every t ∈ T and x, y ∈ Rn, which
means that f is Lipschitz-continuous in the second argument. The exact solution of the dynamic equation
is x(t) = x0eε(sin(tπ)+1)(t, 0), i.e.

x(t) = x(2k) exp

(∫ t

2k

ε(sin(uπ) + 1) du

)
= x(2k) exp

(
ε

(
1− cosπt

π
+ t− 2k

))
,

x(2k + 2) = (1 + ε)x(2k + 1) = (1 + ε) exp (ε(2/π + 1))x(2k)

for every nonnegative integer k and every t ∈ [2k, 2k + 1].
According to the averaging theorem, a good approximation of the exact solution can be obtained by

considering the averaged equation y∆(t) = εf0(y(t)), where

f0(y) =
1

2

∫ 2

0

f(t, y) ∆t =
1

2

(∫ 1

0

f(t, y) dt+ f(1, y)

)
=

1

2

(∫ 1

0

(sin(tπ) + 1)y dt+ y

)
= (1 + 1/π)y.

Its solution is
y(t) = y(2k) exp(ε(1 + 1/π)(t− 2k)),

y(2k + 2) = (1 + ε+ ε/π)y(2k + 1) = (1 + ε+ ε/π) exp(ε(1 + 1/π)y(2k))

for every nonnegative integer k and every t ∈ [2k, 2k + 1].

4 Existence of periodic solutions

We now present a generalization of the classical theorem which says that if the averaged equation

y′(t) = εf0(y(t))

has an equilibrium at p0, then the original equation has a periodic solution near p0 for all sufficiently
small values of ε (see e.g. section 11.8 in [17]). The proof will be based on the so-called “near-identity
transform”: Given a pair of functions x : [a, b]T → Rn and u : [a, b]T × Rn → Rn, the near-identity
transform introduces a new function z : [a, b]T → Rn given by the implicit formula

x(t) = z(t) + εu(t, z(t)).

This is always possible for ε small enough, although many texts devoted to averaging and its applications
do not discuss the validity of this transform. We provide a brief justification following the approach from
[16, Lemma 2.8.3]. The symbol Br(p) will be used here and throughout the rest of the paper to denote
the open ball {x ∈ Rn; ‖x− p‖ < r}.

Definition 4.1. Assume that X ⊂ Y ⊂ Rn. We say that X is an interior subset of Y , if there exists an
ε > 0 such that if x ∈ X and ‖y − x‖ < ε, then y ∈ Y .

Lemma 4.2. Let T be a time scale, U ⊂ Rn an open set, D ⊂ Rn an interior bounded subset of U .
Consider a continuous function u : [a, b]T × U → Rn, which is continuously ∆-differentiable in the first
argument and whose partial derivatives ∂u

∂x1
, . . . , ∂u∂xn

exist and are continuous in [a, b]T × U . Then there
exists a number ε0 > 0 and a unique function ϕ : [a, b]T × (−ε0, ε0)×D → U which satisfies

x = ϕ(t, ε, x) + εu(t, ϕ(t, ε, x))

on its domain, is continuously differentiable with respect to ε and x, and ∆-differentiable with respect to t.
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Proof. Since D is an interior subset of U , there exists a δ > 0 such that if x ∈ D and ‖y − x‖ < δ, then
y ∈ U . Let

F (t, ε, x, z) = z + εu(t, z)− x (3)

for every t ∈ [a, b]T, ε ∈ R, x ∈ Rn, z ∈ U . This function is continuously differentiable with respect to
x, z and ε, and continuously ∆-differentiable with respect to t. For every τ ∈ [a, b]T and every x0 ∈ D,
we see that F (τ, 0, x0, x0) = 0 and ∂F

∂z (τ, 0, x0, x0) = I. According to Theorem 2.10 with l = n + 2,
T1 = [a, b]T and T2 = · · · = Tn+2 = R, there exist positive numbers δ1(τ, x0), δ2(τ, x0), δ3(τ, x0), and
a unique continuous function ϕ : (Bδ1(τ,x0)(τ)∩ [a, b]T)×Bδ2(τ,x0)(0)×Bδ3(τ,x0)(x0)→ Rn which satisfies

F (t, ε, x, ϕ(t, ε, x)) = 0 (4)

in its domain; note that by (3), this is equivalent to

x = ϕ(t, ε, x) + εu(t, ϕ(t, ε, x)). (5)

We know that ϕ(τ, 0, x0) = x0; by continuity of ϕ, we can assume that δ1(τ, x0), δ2(τ, x0), δ3(τ, x0) are
small enough to ensure that ‖ϕ(t, ε, x)− x‖ < δ for every t, ε, x, i.e. ϕ(t, ε, x) ∈ U whenever x ∈ D.

Since [a, b]T ×D is a compact set, it can be covered by a finite number of neighborhoods of the form
(Bδ1(τ,x0)(τ) ∩ [a, b]T) × Bδ3(τ,x0)(x0), where τ ∈ [a, b]T and x0 ∈ D. Let ε0 be the minimum of the
corresponding values of δ2(τ, x0). Then for every ε ∈ (−ε0, ε0), t ∈ [a, b]T and x ∈ D, there is a unique
ϕ(t, ε, x) ∈ U such that (5) is satisfied.

Finally, Theorem 2.10 guarantees that ϕ has partial derivatives with respect to x1, . . . , xn, ε and partial
∆-derivative with respect to t; differentiation of (4) shows that the partial derivatives with respect to
x1, . . . , xn, ε are continuous.

We also need the following statement concerning existence of solutions and differentiability with
respect to parameters, which is a consequence of Theorem 3.1 in [7].

Theorem 4.3. Let p0 ∈ Rn, r > 0, ε0 > 0. Assume that f : [a, b]T × Br(p0) → Rn and g : [a, b]T ×
Br(p0)× (−ε0, ε0)→ Rn are continuous, and that ∂f

∂x , ∂g
∂x , ∂g

∂ε exist and are continuous in their domains.
Then there exist ε1 ∈ (0, ε0) and δ ∈ (0, r) such that for every ε ∈ (−ε1, ε1) and every x0 ∈ Bδ(p0), the
initial-value problem

x∆(t) = εf(t, x(t)) + ε2g(t, x(t), ε), x(t0) = x0

has a unique solution t 7→ x(t, x0, ε) defined on [a, b]T. For every t ∈ [a, b]T, x(t, x0, ε) is continuously
differentiable with respect to x0 and ε.

We now proceed to the promised theorem on the existence of periodic solutions.

Theorem 4.4. Consider a T -periodic time scale T, t0 ∈ T, p0 ∈ Rn, r > 0, ε0 > 0, and a pair of
continuous functions f : [t0,∞)T ×Br(p0)→ Rn, g : [t0,∞)T ×Br(p0)× (−ε0, ε0)→ Rn. Let

f0(x) =
1

T

∫ t0+T

t0

f(t, x) ∆t, x ∈ Br(p0).

Assume that the following conditions are satisfied:

1. ∂f
∂xi

and ∂2f
∂xi∂xj

exist and are continuous in [t0,∞)T ×Br(p0) for every i, j ∈ {1, . . . , n}.

2. ∂g
∂ε and ∂g

∂x exist and are continuous in [t0,∞)T ×Br(p0)× (−ε0, ε0).

3. f and g are T -periodic in the first argument.
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4. f0(p0) = 0 and det ∂f
0

∂x (p0) 6= 0.

Then there exist numbers ε1 ∈ (0, ε0), C > 0 and a continuous function p : [−ε1, ε1]→ Br(p0) such that
p(0) = p0 and for every ε ∈ [−ε1, ε1], the initial-value problem

x∆(t) = εf(t, x(t)) + ε2g(t, x(t), ε), x(t0) = p(ε)

has a unique solution t 7→ x(t, p(ε), ε) defined on [t0,∞)T, which is T -periodic and satisfies

‖x(t, p(ε), ε)− p0‖ ≤ C|ε|, t ∈ [t0,∞)T.

Proof. Let

u(t, x) =

∫ t

t0

(f(s, x)− f0(x)) ∆s, x ∈ Br(p0), t ∈ [t0,∞)T.

It follows from the definition of f0 and Lemma 2.3 that the integral in the definition of u is zero when
taken over an arbitrary interval of length T , and thus u is T -periodic in the first argument. Note that
u is always ∆-differentiable with respect to t. According to Theorem 2.6, ∂u

∂x exists and is continuous in
[t0,∞)T ×Br(p0).

Choose an arbitrary δ2 ∈ (0, r). According to Theorem 4.3, there exist numbers ε2 ∈ (0, ε0) and
δ3 ∈ (0, r) such that for every ε ∈ (−ε2, ε2) and every x0 ∈ Bδ3(p0), the initial-value problem

x∆(t) = εf(t, x(t)) + ε2g(t, x(t), ε), x(t0) = x0

has a solution t 7→ x(t, x0, ε), which is defined on [t0, t0 + T ]T, takes values in Bδ2(p0), and x(t, x0, ε) is
continuously differentiable with respect to ε and x0. Let δ1 ∈ (δ2, r). By Lemma 4.2, there exists an
ε3 ∈ (0, ε2) such that if x ∈ Bδ2(p0), t ∈ [t0, t0 +T ]T, and ε ∈ (−ε3, ε3), there is a z = ϕ(t, ε, x) ∈ Bδ1(p0)
such that

x = z + εu(t, z).

We also know from Lemma 4.2 that the near-identity transform z = ϕ(t, ε, x) is continuously differentiable
with respect to x and ∆-differentiable with respect to t. Given a fixed ε ∈ (−ε3, ε3) and a ∆-differentiable
function x : [t0, t0 +T ]T → Bδ2 , we can let z(t) = ϕ(t, ε, x(t)) and thus obtain a function z : [t0, t0 +T ]T →
Bδ1(p0) such that

x(t) = z(t) + εu(t, z(t)).

Note that z is ∆-differentiable; this is clear at right-scattered points, and at a right-dense point t, we
have

z∆(t) = ϕ∆(t, ε, x(t)) +
∂ϕ

∂x
(t, ε, x(t))x∆(t).

Now, assume that the function x satisfies x∆(t) = εf(t, x(t))+ε2g(t, x(t), ε). If t is right-dense, we obtain

εf(t, x(t)) + ε2g(t, x(t), ε) = x∆(t) = z∆(t) + εu∆(t, z(t)) + ε
∂u

∂x
(t, z(t))z∆(t).

Using the obvious identity u∆(t, z(t)) = f(t, z(t)) − f0(z(t)), rearranging the terms and substituting
x(t) = z(t) + εu(t, z(t)), we conclude that(

I + ε
∂u

∂x
(t, z(t))

)
z∆(t) = εf0(z(t))− εf(t, z(t)) + εf(t, z(t) + εu(t, z(t)))+

+ε2g(t, z(t) + εu(t, z(t)), ε). (6)
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On the other hand, if t is right-scattered, we have

εf(t, x(t)) + ε2g(t, x(t), ε) = x∆(t) = z∆(t) + ε
u(σ(t), z(σ(t)))− u(σ(t), z(t))

µ(t)
+

+ε
u(σ(t), z(t))− u(t, z(t))

µ(t)
= z∆(t) + ε

u(σ(t), z(σ(t)))− u(σ(t), z(t))

µ(t)
+ εu∆(t, z(t)). (7)

The mean-value theorem for vector-valued functions (see e.g. [11], page 278) gives

u(σ(t), z(σ(t)))− u(σ(t), z(t)) =

(∫ 1

0

∂u

∂x
(σ(t), (1− s)z(σ(t)) + sz(t)) ds

)
(z(σ(t))− z(t)).

If we introduce the function M : [t0, t0 + T ]T ×Br(p0)×Br(p0)→ Rn by the formula

M(t, a, b) =

∫ 1

0

∂u

∂x
(σ(t), (1− s)b+ sa) ds,

it follows that
u(σ(t), z(σ(t))− u(σ(t), z(t))

µ(t)
= M(t, z(t), z(σ(t)))z∆(t).

Substituting this into (7), using the identity u∆(t, z(t)) = f(t, z(t))− f0(z(t)), and rearranging the terms
as in the right-dense case, we obtain

(I + εM(t, z(t), z(σ(t))))z∆(t) = εf0(z(t))− εf(t, z(t)) + εf(t, z(t) + εu(t, z(t)))+

+ε2g(t, z(t) + εu(t, z(t)), ε). (8)

Note that if t is right-dense, then M(t, z(t), z(σ(t))) = ∂u
∂x (t, z(t)). Comparing this with equation (6), we

see that equation (8) is in fact true for both right-dense and right-continuous points t.
M is bounded on [t0, t0 + T ]T ×Bδ1(p0)×Bδ1(p0), thus if |ε| is sufficiently small, we have

(I + εM(t, z(t), z(σ(t))))−1 =

∞∑
k=0

(−1)kεkM(t, z(t), z(σ(t)))k.

Consequently, it follows from (8) that

z∆(t) =

( ∞∑
k=0

(−1)kεkM(t, z(t), z(σ(t)))k

)(
εf0(z(t))− εf(t, z(t)) + εf(t, z(t) + εu(t, z(t)))+

+ε2g(t, z(t) + εu(t, z(t)), ε)
)
. (9)

Using the mean-value theorem again, we obtain

f(t, z + εu(t, z))− f(t, z) =

(∫ 1

0

∂f

∂x
(t, z + εsu(t, z)) ds

)
εu(t, z).

Thus, if we let

h(t, z, ε) =

(∫ 1

0

∂f

∂x
(t, z + εsu(t, z)) ds

)
u(t, z),

then (9) can be rewritten as

z∆(t) =

( ∞∑
k=0

(−1)kεkM(t, z(t), z(σ(t)))k

)(
εf0(z(t)) + ε2

(
h(t, z(t), ε) + g(t, z(t) + εu(t, z(t)), ε)

))
.
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After collecting all terms of order ε2 together, we obtain

z∆(t) = εf0(z(t)) + ε2R(t, z(t), z(σ(t)), ε),

where

R(t, z, w, ε) = f0(z)

( ∞∑
k=1

(−1)kεk−1M(t, z, w)k

)
+

+
(
h(t, z, ε) + g(t, z + εu(t, z), ε)

)( ∞∑
k=0

(−1)kεkM(t, z, w)k

)
.

Note that z(t0) = x(t0). Thus we have proved that if |ε| is sufficiently small and z0 ∈ Bδ3(p0), the
initial-value problem

z∆(t) = εf0(z(t)) + ε2R(t, z(t), z(σ(t)), ε), z(t0) = z0 (10)

has a solution t 7→ z(t, z0, ε) defined on [t0, t0 + T ]T, which takes values in Bδ1(p0) and is given by the
implicit formula

x(t, z0, ε) = z(t, z0, ε) + εu(t, z(t, z0, ε)).

Since the near-identity transform x(t, z0, ε) 7→ z(t, z0, ε) is continuously differentiable with respect to ε
and z0, it follows that z(t, z0, ε) is also continuously differentiable with respect to ε and z0. Let

F (z0, ε) =

∫ t0+T

t0

f0(z(t, z0, ε)) + εR(t, z(t, z0, ε), z(σ(t), z0, ε), ε)∆t.

Note that by (10), z(t0, z0, ε) = z(t0 + T, z0, ε) if and only if F (z0, ε) = 0.
If ε = 0, then z(t, z0, ε) = z0 for every t ∈ [t0, t0 + T ]T, F (z0, 0) = Tf0(z0), and consequently

F (p0, 0) = Tf0(p0) = 0,

det
∂F

∂z0
(p0, 0) = T det

∂f0

∂x
(p0) 6= 0.

An inspection of the definition of R reveals that this function is continuously differentiable in the second,
third and fourth argument. Since both z(t, z0, ε) and z(σ(t), z0, ε) are continuously differentiable with
respect to ε and z0, we conclude that F is also continuously differentiable with respect to ε and z0.

According to the implicit function theorem, there exists a number ε4 ∈ (0, ε0) and a continuous
mapping p : (−ε4, ε4) → Br(p0) such that F (p(ε), ε) = 0 for every ε ∈ (−ε4, ε4), i.e. z(t0, p(ε), ε) =
z(t0 + T, p(ε), ε). Consequently, x(t0, p(ε), ε) = x(t0 + T, p(ε), ε). Thus if x is extended T -periodically to
[t0,∞)T, we obtain a T -periodic solution of x∆(t) = εf(t, x(t)) + ε2g(t, x(t), ε).

The implicit function theorem guarantees that p is differentiable at 0, and thus there exist numbers
B > 0, ε1 ∈ (0, ε2) such that ‖p(ε) − p0‖ ≤ B|ε| if |ε| ≤ ε1. We let d = ε1T . By the periodic averaging
theorem (the Lipschitz-continuity assumption follows from the continuity of ∂f

∂x ), there exists a number
C > 0 such that

‖x(t, p(ε), ε)− p0‖ ≤ Cε
for every t ∈ [t0, t0 + T ]T and every ε ∈ (0, ε1]. The solution x is T -periodic, and therefore the last
estimate is in fact valid for every t ∈ [t0,∞)T. We still need to obtain the corresponding estimate
for ε < 0. This can be done by considering the functions f̃(t, x) = −f(t, x), g̃(t, x, ε) = g(t, x,−ε),
p̃(ε) = p(−ε), x̃(t, x0, ε) = x(t, x0,−ε) and applying the periodic averaging theorem to the initial-value
problem

x̃∆(t) = εf̃(t, x̃(t))) + ε2g̃(t, x̃(t), ε), x̃(t0) = p̃(ε)

with ε > 0.
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Example 4.5. Consider the time scale T = Z and the dynamic equation

x∆(t) = ε(1− x(t) + (−1)t), t ∈ {0, 1, 2, . . .},

whose right-hand side is 2-periodic in t. The corresponding averaged equation is y∆(t) = εf0(y(t)),

where f0(x) = 1 − x. It has an equilibrium solution y(t) = p0 = 1. Moreover, ∂f0

∂x (p0) = −1. Thus
the previous theorem guarantees that the original dynamic equation has a 2-periodic solution near p0

whenever |ε| is sufficiently small. Indeed, the equation is so simple that we can solve it analytically and
look for a 2-periodic solution; the result is x(t) = 1 + (−1)tε/(ε− 2). Using the notation of Theorem 4.4,
we have p(ε) = x(0) = 1 + ε/(ε − 2). If we restrict ourselves to ε ∈ [−1, 1], we have |ε − 2| ≥ 1 and
|x(t)− 1| = |ε/(ε− 2)| ≤ |ε| for every t ∈ {0, 1, 2, . . .}.

5 Nonperiodic averaging

Consider an interval I ⊂ R, a set B ⊂ Rn, and a function F : B × I → Rn. A function x : I → B is
called a solution of the generalized ordinary differential equation

dx

dτ
= DF (x, t),

whenever

x(s2)− x(s1) =

∫ s2

s1

DF (x(τ), t)

for each pair of values s1, s2 ∈ I. The integral on the right-hand side is the Kurzweil integral defined as
the limit of the integral sums

k∑
j=1

(
F (τj , αj)− F (τj , αj−1)

)
with respect to δ-fine partitions a = α0 ≤ α1 ≤ · · · ≤ αk = b, τi ∈ [αi−1, αi], i = 1, . . . , k (see [12] for

more details). An important special case of this integral is the Kurzweil-Stieltjes integral
∫ b
a
f(s) dg(s),

which is obtained from a pair of functions f : [a, b] → Rn and g : [a, b] → R by setting F (τ, t) =
f(τ)g(t). Generalized ordinary differential equations were introduced by Jaroslav Kurzweil in 1957 (see
the paper [9]). It is now known that this concept includes not only ordinary differential equations, but
also differential equations with impulses, measure differential equations, retarded functional differential
equations, dynamic equations on time scales etc.

In this section, we use the existing averaging theorem for generalized ordinary differential equations
to derive a nonperiodic averaging theorem for dynamic equations on time scales.

In the following text, we use the same notation as in [13]: if t ≤ supT, we let

t∗ = inf{s ∈ T; s ≥ t}.

(Note that t∗ is different from σ(t) = inf{s ∈ T; s > t}.) Since T is a closed set, we have t∗ ∈ T. Further,
let

T∗ =

{
(−∞, supT] if supT <∞,
(−∞,∞) otherwise.

Given a function f : T→ Rn, we define a function f∗ : T∗ → Rn by

f∗(t) = f(t∗), t ∈ T∗.

Similarly, given a set B ⊂ Rn and a function f : B × T→ Rn, we let

f∗(x, t) = f(x, t∗), x ∈ B, t ∈ T∗.
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Finally, a function f : B × T→ Rn is called rd-continuous, if the function t 7→ f(x(t), t) is rd-continuous
whenever x : T→ B is a continuous function.

The following theorem describes a one-to-one correspondence between the solutions of a dynamic
equation and the solutions of a certain generalized ordinary differential equation. The statement is a
special case of Theorem 12 from [13].

Theorem 5.1. Let B be a bounded subset of Rn and f : B ×T→ Rn a bounded rd-continuous function,
which is Lipschitz-continuous in the first variable. If x : T→ B is a solution of

x∆(t) = f(x(t), t), t ∈ T, (11)

then x∗ : T∗ → B is a solution of the generalized ordinary differential equation

dx

dτ
= DF (x, t), t ∈ T∗, (12)

where

F (x, t) =

∫ t

t0

f(x, s∗) dg(s), x ∈ B, t ∈ T∗,

t0 ∈ T is an arbitrary fixed number, and g(s) = s∗ for every s ∈ T∗. Moreover, every solution y : T∗ → B
of (12) has the form y = x∗, where x : T→ B is a solution of (11).

We proceed to the averaging theorem for generalized ordinary differential equations (the statement
as well as its proof can be found in [12], Theorem 8.12).

Theorem 5.2. Consider a number r > 0 and a function F : Br(0)× [0,∞)→ Rn such that the following
conditions are satisfied:

1. There exists a nondecreasing function h : [0,∞)→ R such that

‖F (x, t2)− F (x, t1)‖ ≤ |h(t2)− h(t1)|

for every x ∈ Br(0) and t1, t2 ∈ [0,∞).

2. There exists a continuous increasing function ω : [0,∞)→ R such that ω(0) = 0 and

‖F (x, t2)− F (x, t1)− F (y, t2) + F (y, t1)‖ ≤ ω(‖x− y‖)|h(t2)− h(t1)|

for every x, y ∈ Br(0) and t1, t2 ∈ [0,∞).

3. There exists a number C ∈ R such that for every a ∈ [0,∞)

lim sup
r→∞

h(a+ r)− h(a)

r
≤ C.

4. There exists a function F0 : Br(0)→ Rn such that

lim
r→∞

F (x, r)

r
= F0(x), x ∈ Br(0).

Let x0 ∈ Br(0). Assume that the equation

y′(t) = F0(y(t)), y(0) = x0
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has a unique solution y : [0,∞)→ Rn, which is contained in an interior subset of Br(0). Then for every
µ > 0 and d > 0 there is an ε0 > 0 such that for every ε ∈ (0, ε0), the generalized ordinary differential
equation

dx

dτ
= D(εF (x, t)), x(0) = x0

has a solution xε : [0, d/ε]→ Rn, the ordinary differential equation

y′(t) = εF0(y(t)), y(0) = x0

has a solution yε : [0, d/ε]→ Rn, and

‖xε(t)− yε(t)‖ < µ for every t ∈ [0, d/ε].

With the help of the previous two statements, we prove the following averaging theorem for dynamic
equations on time scales.

Theorem 5.3. Let T be a time scale with supT =∞ and lim supt→∞ µ(t)/t <∞, t0 ∈ T, p ∈ Rn, r > 0.
Assume that f : Br(p) × [t0,∞)T → Rn is bounded, rd-continuous, and Lipschitz-continuous in the first
variable. Moreover, assume there exists a function f0 : Br(p)→ Rn such that

lim
T→∞

1

T

∫ t0+T

t0

f∗(x, s) dg(s) = f0(x), x ∈ Br(p),

where g(s) = s∗ for every s ∈ [t0,∞). Let x0 ∈ Br(p). If the equation

y′(t) = f0(y(t)), y(t0) = x0

has a unique solution y : [t0,∞)→ Rn, which is contained in an interior subset of Br(p), then for every
µ > 0 and d > 0 there is an ε0 > 0 such that for every ε ∈ (0, ε0), the dynamic equation

x∆(t) = εf(x(t), t), x(t0) = x0

has a solution xε : [t0, t0 + d/ε]T → Rn, the ordinary differential equation

y′(t) = εf0(y(t)), y(t0) = x0

has a solution yε : [t0, t0 + d/ε]→ Rn, and

‖xε(t)− yε(t)‖ < µ for every t ∈ [t0, t0 + d/ε]T.

Proof. Assume without loss of generality that t0 = 0; otherwise, consider a shifted problem with time
scale T̃ = {t−t0; t ∈ T} and right-hand side f̃(x, t) = f(x, t0+t). Similarly, we can assume that p = 0. By
the assumptions, there exist numbers m, l ∈ R+ such that ‖f(x, t)‖ ≤ m and ‖f(x, t)−f(y, t)‖ ≤ l‖x−y‖
for every x, y ∈ Br(p) and t ∈ [t0,∞)T. Let h(t) = m ·g(t) for t ∈ [0,∞), ω(r) = l

m ·r for every r ∈ [0,∞),
and

F (x, t) =

∫ t

0

f∗(x, s) dg(s), x ∈ Br(0), t ∈ [0,∞).

When 0 ≤ t1 ≤ t2 and x ∈ Br(0), we have

‖F (x, t2)− F (x, t1)‖ =

∥∥∥∥∫ t2

t1

f∗(x, s) dg(s)

∥∥∥∥ ≤ m(g(t2)− g(t1)) = h(t2)− h(t1).
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Similarly, if 0 ≤ t1 ≤ t2 and x, y ∈ Br(0), then

‖F (x, t2)− F (x, t1)− F (y, t2) + F (y, t1)‖

=

∥∥∥∥∫ t2

t1

f∗(x, s) dg(s)−
∫ t2

t1

f∗(y, s) dg(s)

∥∥∥∥ =

∥∥∥∥∫ t2

t1

(f∗(x, s)− f∗(y, s)) dg(s)

∥∥∥∥
≤ l‖x− y‖(g(t2)− g(t1)) = ω(‖x− y‖)m(t∗2 − t∗1) = ω(‖x− y‖)(h(t2)− h(t1)).

Since lim supt→∞ µ(t)/t < ∞, there exists numbers D > 0 and τ ∈ T such that µ(t)/t ≤ D for every
t ∈ [τ,∞)T. It follows that if t ∈ R is such that ρ(t∗) ≥ τ , then

t∗ ≤ t+ µ(ρ(t∗)) ≤ t+Dρ(t∗) ≤ t+Dt = t(D + 1).

Thus for sufficiently large r we obtain

h(a+ r)− h(a)

r
=
m((a+ r)∗ − a∗)

r
≤ m((a+ r)(D + 1)− a∗)

r
,

and consequently

lim sup
r→∞

h(a+ r)− h(a)

r
≤ lim
r→∞

m((a+ r)(D + 1)− a∗)
r

= m(D + 1).

It is also obvious that

lim
r→∞

F (x, r)

r
= f0(x), x ∈ Br(0),

and thus we see that F satisfies all four assumptions of Theorem 5.2. According to this theorem, given
a µ > 0 and d > 0, there is an ε0 > 0 such that for every ε ∈ (0, ε0), the generalized ordinary differential
equation

dx

dτ
= D(εF (x, t)), x(0) = 0

has a solution xε : [0, d/ε]→ Rn, the ordinary differential equation

y′(t) = εf0(y(t)), y(t0) = x0

has a solution yε : [0, d/ε]→ Rn, and

‖xε(t)− yε(t)‖ < µ for every t ∈ [0, d/ε].

To conclude the proof, it is sufficient to observe that, according to Theorem 5.1, the restriction of xε to
[0, d/ε]T coincides with the solution of the dynamic equation

x∆(t) = εf(x(t), t), x(0) = x0.

Our averaging theorem says that solutions of the original dynamic equation might be approximated
by solutions of a certain autonomous differential equation, whose right-hand side is calculated with the
help of the Kurzweil-Stieltjes integral. This integral might be difficult to evaluate, but as we now show,
it is often possible to obtain the averaged function with the help of an ordinary ∆-integral. We need the
following statement, which is a consequence of Theorem 5 in [13].
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Theorem 5.4. Consider a time scale T with supT = ∞. Let f : [t0,∞)T → Rn be a rd-continuous
function. Choose an arbitrary a ∈ [t0,∞)T and let

F1(t) =

∫ t

a

f(s) ∆s, t ∈ [t0,∞)T,

F2(t) =

∫ t

a

f∗(s) dg(s), t ∈ [t0,∞),

where g(s) = s∗ for every s ∈ [t0,∞). Then F2(t) = F ∗1 (t) for every t ∈ [t0,∞); in particular, F2(t) =
F1(t) for every t ∈ [t0,∞)T.

Lemma 5.5. Consider a time scale T such that supT = ∞ and limt→∞ µ(t)/t = 0, a number t0 ∈ T
and a function H : [t0,∞)T → Rn such that

lim
t→∞, t∈T

H(t)

t
= L.

Then

lim
t→∞

H∗(t)

t
= L.

Proof. Given an arbitrary ε > 0, we can find a T > max(t0, 0) such that for every t ≥ T we have∥∥∥∥H(t)

t
− L

∥∥∥∥ < ε,

µ(t)

t
< ε.

Then ∥∥∥∥H∗(t)t∗
− L

∥∥∥∥ < ε,

‖H∗(t)− Lt∗‖ < εt∗,

and

‖H∗(t)− Lt‖ = ‖H(t∗)− Lt∗ + Lt∗ − Lt‖ ≤ ‖H(t∗)− Lt∗‖+ ‖L‖(t∗ − t) < εt∗ + ‖L‖µ(ρ(t∗)).

Now, if t is such that ρ(t∗) ≥ T , we obtain∥∥∥∥H∗(t)t
− L

∥∥∥∥ < εt∗

t
+
‖L‖µ(ρ(t∗))

t
≤ εt∗

ρ(t∗)
+
‖L‖µ(ρ(t∗))

ρ(t∗)

≤ ερ(t∗) + µ(ρ(t∗))

ρ(t∗)
+
‖L‖µ(ρ(t∗))

ρ(t∗)
< ε+ ε+ ‖L‖ε = ε(2 + ‖L‖)

and the conclusion follows easily.

Combining the last lemma with Theorem 5.4, we obtain the following corollary.

Corollary 5.6. If supT = ∞, limt→∞ µ(t)/t = 0, and h : [t0,∞)T → Rn is ∆-integrable on every
compact subinterval of [t0,∞)T, then

lim
T→∞

1

T

∫ t0+T

t0

h∗(s) dg(s) = lim
T→∞, t0+T∈T

1

T

∫ t0+T

t0

h(s) ∆s,

provided the limit on the right-hand side exists.
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Proof. Let H(u) =
∫ u
t0
h(s) ∆s, u ∈ [t0,∞)T. Then

lim
T→∞

1

T

∫ t0+T

t0

h∗(s) dg(s) = lim
T→∞

H∗(t0 + T )

T
= lim
T→∞

H∗(t0 + T )

t0 + T

t0 + T

T
= lim
T→∞

H∗(t0 + T )

t0 + T

= lim
u→∞

H∗(u)

u
= lim
u→∞, u∈T

H(u)

u
= lim
T→∞, t0+T∈T

H(t0 + T )

t0 + T
= lim
T→∞, t0+T∈T

H(t0 + T )

T

T

t0 + T

= lim
T→∞, t0+T∈T

H(t0 + T )

T
= lim
T→∞, t0+T∈T

1

T

∫ t0+T

t0

h(s) ∆s.

In the context of our averaging theorem, we see that if limt→∞ µ(t)/t = 0, then

f0(x) = lim
T→∞

1

T

∫ t0+T

t0

f∗(x, s) dg(s) = lim
T→∞, t0+T∈T

1

T

∫ t0+T

t0

f(x, s) ∆s,

provided the right-hand side exists. This justifies the name “averaging theorem”, since we are calculating
the average of t 7→ f(x, t) over [t0,∞)T.

The condition limt→∞ µ(t)/t = 0 means that the time scale graininess grows slower than linearly
as t → ∞. (In particular, every time scale with bounded graininess satisfies this condition.) Without
this condition, the corollary is no longer true. To see this, assume that µ(t)/t > ε0 for arbitrarily large
values t, and consider a function h : [t0,∞)T → R which is identically equal to L > 0. If t0 + T ∈ T,

we have 1
T

∫ t0+T

t0
h(s) ∆s = L. It follows from the properties of the Kurzweil-Stieltjes integral that the

function T 7→ 1
T

∫ t0+T

t0
h∗(s) dg(s) has a jump of size 1

T Lµ(T ) at every T ∈ [t0,∞)T, which exceeds Lε0

for arbitrarily large values T . Thus the second limit does not exist.

Example 5.7. Consider the time scale T = Z and the linear dynamic equation

x∆(t) = ε

(
−1 +

1

1 + t

)
x(t), t ∈ {0, 1, 2, . . .}, x(0) = x0.

Given an arbitrary p ∈ R and r > 0, the right-hand side f(x, t) =
(
−1 + 1

1+t

)
x is rd-continuous, bounded

and Lipschitz-continuous in Br(p) × [0,∞)T (with Lipschitz-constant l = 1). Since limt→∞ µ(t)/t = 0,
we calculate

f0(x, t) = lim
T→∞

(
1

T

∫ T

0

(
−1 +

1

1 + t

)
∆t

)
x =

(
lim
T→∞

−T +
∑T
i=1

1
i

T

)
x = −x.

According to the averaging theorem, the solutions of the original dynamic equation are well approximated
by solutions of the averaged differential equation

y′(t) = −εy(t), t ∈ [0,∞), y(0) = x0.

Note that we have deliberately chosen a simple example where both solutions can be found analytically:

x(t) = eε(−1+ 1
1+t )

(t, 0)x0 =

t−1∏
k=0

(
1− ε+

ε

1 + k

)
x0 =

t∏
k=1

(
1− ε+

ε

k

)
x0

y(t) = e−εtx0
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6 Conclusion

The statement as well as the proof of the periodic averaging theorem for dynamic equations on time scales
are similar to the classical case T = R. Generalizing the proof of the nonperiodic averaging theorem turns
out to be more difficult and thus we have followed a different path via generalized ordinary differential
equations. The disadvantage is that our result applies only to time scales with lim supt→∞ µ(t)/t < ∞,
i.e. the graininess cannot grow faster than linearly as t→∞. The question whether there is an averaging
theorem applicable to all time scales remains open.

Note also that in the periodic case, the averaged equation is a dynamic equation, while in the non-
periodic case, the averaged equation is an ordinary differential equation. (See also the paper [10], which
contains a periodic averaging theorem where the averaged equation is an ordinary differential equation.)
Both approximations have their merits: ordinary differential equations are often easier to deal with, but
from an aesthetic point of view, it seems more natural to approximate a dynamic equation by a dynamic
equation again. Thus the second open question is whether there exists a nonperiodic averaging theo-
rem where the averaged equation is a dynamic equation defined on the same time scale as the original
equation.

Acknowledgment. The author thanks the anonymous referee whose suggestions helped to improve
this paper.
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