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Definition of FHE

Definition (Fully Homomorphic Encryption)

FHE is a public key encryption scheme which consists of 4 poly-time
algorithms (K,E,D,V) where

� given a security parameter λ, K outputs a keypair (pk, sk),

� given pk and m ∈M, E outputs randomized∗ encryption of m,

� given sk and c ∈ C, an encryption of m, D outputs m,

� given pk , a function f :Mt →M and (c1, . . . , ct) encryptions of
(m1, . . . ,mt), V outputs c which encrypts f (m1, . . . ,mt).

∗To achieve CPA security, public key scheme must be randomized.
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Goal of FHE

� poly-time computation ∼ evaluation of a poly-time evaluable
function

� computation with encrypted data!

� e.g. in cloud services
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History

Example

RSA is homomorphic in Z/nZ w.r.t. multiplication:

E(m1 ·m2) = (m1 ·m2)e = me
1 ·me

2 = E(m1) · E(m2).

� initial idea of FHE by Rivest, Adleman and Dertouzos [4] in 1978

� FHE not known to be even possible for decades

� first FHE by Gentry [1] in 2009

� enormous computational overhead
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Definition of FHE Goal of FHE History Recent Advances

Recent Advances

� since Gentry’s breakthrough a very active research area

� proposed schemes often proved to be insecure

� e.g. Liu [2] and Yagisawa [6], both disproved by Wang [5]

� promising framework by Nuida [3]
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Introduction Requirements Proposal Cryptanalysis Future Work

Introduction to Nuida’s FHE Framework

� operations AND and NOT instead

� sufficient for any computation

� bits encoded into pairs (x , y) ∈ G 2 where y 6= 1G , G group

� 0 ∼ (1G , y)
� 1 ∼ (y , y)

� operations defined using commutator: [x , y ] = x · y · x−1 · y−1

� underlying group G noncommutative!
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Definition of Operations

y 6= 1G 0 ∼ (1G , y) 1 ∼ (y , y) [x , y ] = x · y · x−1 · y−1

� (x1, y1) AND (x2, y2) := ([x1, x2], [y1, y2])†‡

� if w.l.o.g. (x1, y1) ∼ 0 i.e. x1 = 1G

then [x1, x2] = 1G i.e. ([x1, x2], [y1, y2]) ∼ 0
� if (x1, y1) ∼ (x2, y2) ∼ 1 i.e. x1 = y1 and x2 = y2

then [x1, x2] = [y1, y2]

� note that [y1, y2]
!
6= 1G i.e. y1

!
6= y2 and must not commute

†Originally ([gx1g−1, x2], [gy1g−1, y2]) where g is random. Not necessary.
‡Originally originally there was a typo.
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Encryption, Decryption – Most General Setup

Ḡ 1H G1
ϕ

H = ker(ϕ)

� sofar only encoding, needs encryption s.t. decryption is

� homomorphic – to preserve operations, and
� surjective with secret nontriv. kernel – randomization

� let ϕ : Ḡ → G be such homomorphism
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Encryption, Decryption – Most General Setup

Key generation

� pk = (h1, . . . , ht , g1, . . . , gu) ∈ ker(ϕ)t × Ḡ u

� sk – a decisional algorithm g
?∈ ker(ϕ)

Encryption

� h ∈ ker(ϕ) – a random product of (h1, . . . , ht), and
g ∈ Ḡ – a random product of (g1, . . . , gu)

� E(0) = (h, g)

� E(1) = (gh, g)

Decryption

� D(x , y) = x
?

6∈ ker(ϕ) using sk

Kernel distinguishability is hard ⇒ this scheme is secure.
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g ∈ Ḡ – a random product of (g1, . . . , gu)

� E(0) = (h, g)

� E(1) = (gh, g)

Decryption

� D(x , y) = x
?

6∈ ker(ϕ) using sk

Kernel distinguishability is hard ⇒ this scheme is secure.

Student: Jakub Klemsa, Supervisor: Valtteri Niemi Fully Homomorphic Encryption: A Holy Grail of Cryptography



Introduction to FHE FHE Framework by Nuida References

Introduction Requirements Proposal Cryptanalysis Future Work

Encryption, Decryption – Most General Setup

Key generation

� pk = (h1, . . . , ht , g1, . . . , gu) ∈ ker(ϕ)t × Ḡ u
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Nuida’s Suggestion – General Setup

Hiding kernel with trapdoor

� let ϕ̄ : Ḡ → G be a known surjective homomorphism

� take G̃ > Ḡ and an (inner) automorphism τ : G̃ → G̃

� i.e. conjugation by a secret t ∈ G̃ \ Ḡ
� τ(g̃) = t−1g̃ t

� ϕ : (G̃ )→ G , ϕ := ϕ̄ ◦ τ
� ker(ϕ) = τ−1(ker(ϕ̄)) = t ker(ϕ̄)t−1

Summary

� g ∈ G – encoding

� ḡ ∈ Ḡ – randomization

� g̃ ∈ τ−1(Ḡ ) < G̃ – encryption

Student: Jakub Klemsa, Supervisor: Valtteri Niemi Fully Homomorphic Encryption: A Holy Grail of Cryptography
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General Setup Depicted

τ

Ḡ

τ−1(Ḡ)

G̃
1

Ḡ

1
H

G 1

ϕ̄

H = ker(ϕ̄), ϕ = ϕ̄ ◦ τ
What properties do we need?
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Required Properties of General Setup

τ

Ḡ

τ−1(Ḡ)

G̃
1

Ḡ

1
H

G 1

ϕ̄

H = ker(ϕ̄), ϕ = ϕ̄ ◦ τ

� ker(ϕ̄) = H / Ḡ < G̃
⇒ Ḡ shall have a nontrivial normal subgroup

� way to achieve: G = K × H
� (construct ϕ̄ using H and 1st homomorphism theorem)

� AND gives ([x1, x2], [y1, y2]) i.e. moves to commutator subgroup
⇒ Ḡ shall be perfect (Ḡ equals to its commutator subgroup)
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Ḡ

1
H

G 1

ϕ̄

H = ker(ϕ̄), ϕ = ϕ̄ ◦ τ

� ker(ϕ̄) = H / Ḡ < G̃
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Proposal – Specific Setup

Nuida mentioned special linear group SL(2,F) – perfect group

SL(2,F) =

{
A =

(
a b
c d

)∣∣∣∣a, b, c , d ∈ F, det(A) = 1

}
.
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Proposal – Specific Setup

Put all together

� H / Ḡ . . . Ḡ = K × H

� Ḡ ,H perfect . . . K ,H = SL(2,F), Ḡ perfect as well

� ϕ with unknown kernel . . .ϕ = ϕ̄ ◦ τ
� ϕ̄ known with nontrivial kernel H
� τ automorphism . . . inner automorphism i.e. τ(g̃) = t−1g̃ t, t secret

Note that

� Ḡ = K × H '
{(

A1 Θ
Θ A2

)∣∣∣∣A1,2 ∈ SL(2,F)

}
, Θ = zero matrix

� ϕ̄

(
A1 Θ
Θ A2

)
= A1, ker(ϕ̄) =

{(
I Θ
Θ A2

)∣∣∣∣A2 ∈ SL(2,F)

}
� Ḡ < G̃ . . . G̃ = SL(4,F)
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Proposal – Specific Setup
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� ϕ with unknown kernel . . .ϕ = ϕ̄ ◦ τ
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Cryptanalysis of Specific Setup

Does τ (M) := T−1MT

meet security requirements?
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Cryptanalysis of Specific Setup

� problem to be hard: given M ∈ τ−1(Ḡ ), decide

M
?∈ ker(ϕ) = τ−1(H) = THT−1

� such M = T

(
R Θ
Θ S

)
T−1

for some R, S ∈ SL(2,F) and secret T ∈ G̃

� ⇒ decide R
?
= I

Lemma

There is an effective way to decide the previous decision problem without
the knowledge of T with overwhelming probability.
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Lemma

There is an effective way to decide the previous decision problem without
the knowledge of T with overwhelming probability.

Proof.

Note that

M − I = T

(
R Θ
Θ S

)
T−1 − TT−1 = T

(
R − I Θ

Θ S − I

)
T−1.

Here if R = I , then the resulting matrix M − I has rank ≤ 2.
So if rank(M − I ) ≤ 2, then R = I with overwhelming probability since
R,S are pseudorandom with determinant = 1. (The other options are
S = I or det(R − I ) = det(S − I ) = 0, both negl.)
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⇒ testing rank(M − I )
?
≤ 2

leads to plaintext recovery w.h.p.
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Possible Changes to Proposal
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� H / Ḡ . . . Ḡ = K × H

� Ḡ ,H perfect . . . K ,H = SL(2,F), Ḡ perfect as well

� ϕ with unknown kernel . . .ϕ = ϕ̄ ◦ τ
� ϕ̄ known with nontrivial kernel H
� τ automorphism . . . inner automorphism i.e. τ(g̃) = t−1g̃ t, t secret

Note that

� Ḡ = K × H '
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A1 Θ
Θ A2

)∣∣∣∣A1,2 ∈ SL(2,F)

}
, Θ = zero matrix
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)
= A1, ker(ϕ̄) =
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