
Gabriel’s Theorem
Part I
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Introduction

Goal: Gabriel’s theorem

Formulate
Partially prove (in part II)

In this part:

Basic definitions - quivers, representations, underlying graphs, ...
Dynkin diagrams, Euclidean diagrams
Lemmas and theorems needed for the proof of Gabriel’s theorem
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Motivation

Let V be a vector space

Let U,W ⊆ V be subspaces of V

V
⊆ ⊆

U W

“How can U,W be included in V ?”

up to an isomorphism
indecomposable

In this case finitely many possibilities

Generalize

more subspaces

- for three still finitely many; for four infinitely many

not just subspaces

Gabriel’s theorem - “When do we have only finitely many
indecomposable possibilities up an isomorphism”
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Onďrej Draganov (MFF UK) Gabriel’s Theorem November 20, 2015 3 / 34



Motivation

Let V be a vector space

Let U,W ⊆ V be subspaces of V

V
⊆ ⊆

U W

“How can U,W be included in V ?”
up to an isomorphism
indecomposable

In this case finitely many possibilities

Generalize

more subspaces

- for three still finitely many; for four infinitely many

not just subspaces

Gabriel’s theorem - “When do we have only finitely many
indecomposable possibilities up an isomorphism”
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Onďrej Draganov (MFF UK) Gabriel’s Theorem November 20, 2015 3 / 34



Motivation

Let V be a vector space

Let U,W ⊆ V be subspaces of V

V
⊆ ⊆

U W

“How can U,W be included in V ?”
up to an isomorphism
indecomposable

In this case finitely many possibilities

Generalize
more subspaces

- for three still finitely many; for four infinitely many
not just subspaces

Gabriel’s theorem - “When do we have only finitely many
indecomposable possibilities up an isomorphism”
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Quivers

A quiver is an oriented graph with multiple arrows and loops.

We assume quivers to be finite

Definition (Quiver)

A quiver is a quadruple (Q0,Q1, s, t), where

Q0 is a finite set of vertices,

Q1 is a finite set of arrows,

s : Q0 → Q1 is a map which denotes where does an arrow start,

t : Q0 → Q1 is a map which denotes where does an arrow terminate.

For an arrow α ∈ Q1 we sometimes write α : s(α)→ t(α).

We can naturally define oriented paths and oriented cycles.
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Onďrej Draganov (MFF UK) Gabriel’s Theorem November 20, 2015 4 / 34



Quivers

A quiver is an oriented graph with multiple arrows and loops.

We assume quivers to be finite

Definition (Quiver)

A quiver is a quadruple (Q0,Q1, s, t), where

Q0 is a finite set of vertices,

Q1 is a finite set of arrows,

s : Q0 → Q1 is a map which denotes where does an arrow start,

t : Q0 → Q1 is a map which denotes where does an arrow terminate.

For an arrow α ∈ Q1 we sometimes write α : s(α)→ t(α).

We can naturally define oriented paths and oriented cycles.
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Quivers
Examples

an arbitrary quiver

...

n-subspace quiver

Jordan quiver Kronecker quiver

Onďrej Draganov (MFF UK) Gabriel’s Theorem November 20, 2015 5 / 34



Representations

Let K be a field. We fix that field throughout the presentation.

When we talk about vector space, we mean vector space over K.
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Representations

A representation of a quiver is assigning a vector space to each vertex
and a linear map to each arrow

Definition (Representation)

Let Q be a quiver. A representation of Q is a collection

X = (Xi ,Xα)i∈Q0, α∈Q1 ,

where:

Xi is a vector space for each vertex i ∈ Q0,

Xα : Xs(α) → Xt(α) is a linear map for each arrow α ∈ Q1.

A representation is finite dimensional if each vector space Xi is finite
dimensional.
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Morphisms

Definition (Morphism)

Let Q be a quiver. Let X ,Y be representations of Q.
A morphism φ : X → Y of these representations is a collection

φ = (φi )i∈Q0

of linear maps φi : Xi → Yi for each vertex i , such that for each arrow α
the following diagram commutes:

Xs(α)

Xt(α)

Ys(α)

Yt(α)

Xα Yα

φs(α)

φt(α)

(That is such that
Yαφs(α) = φt(α)Xα)
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Morphisms

Let X ,Y be representations of a quiver Q

The composition of two morphisms φ, ψ : X → Y is given by

(φψ)i = (φ)i (ψ)i

There is an identity morphism idX : X → X given by

(idX )i = idXi
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Onďrej Draganov (MFF UK) Gabriel’s Theorem November 20, 2015 9 / 34



Morphisms

Let X ,Y be representations of a quiver Q

The composition of two morphisms φ, ψ : X → Y is given by

(φψ)i = (φ)i (ψ)i

Xi

Xj

Yi
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The category of representations

For a given quiver Q we have

representations of Q
morphisms between representations of Q
morphisms can be composed and an identity morphism exists

Definition (The category of representations)

For a quiver Q we denote by RepK (Q) a category of representations of Q
where

objects are representations of Q,

morphisms are the morphisms we have defined before.

We denote by repK (Q) the full subcategory with objects the finite
dimensional representations.
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Point-wise definitions for representations and morphisms

We can now carry various concepts defined for vector spaces to
representations by applying the definitions point-wise

Definition

Let X ,Y be two representations of a quiver Q.

We call X a subrepresentation of Y and write X ⊆ Y if

Xi is a subspace of Yi for each vertex i
Xα(x) = Yα(x) for each arrow α and x ∈ Xs(α).
(i. e. subrepresentation is a morphism of inclusions)

A morphism φ : X → Y is an isomorphism if φi : Xi → Yi is an
isomorphism for each vertex i .

Kernel of a morphism φ : X → Y is a subrepresentation Kerφ ⊆ X
given by (Kerφ)i = Kerφi for each vertex i .

The dimension vector of a finite dimensional representation X is a
vector dimX in ZQ0 with (dimX )i = dimXi .
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Simple representations

Definition (Simple representation)

A representation X is simple if it is non-zero and has no proper
subrepresentations (i. e. if Y ( X , then Y is zero representation).

Definition (S(i))

Let Q be a quiver and i ∈ Q0 be a vertex. We define a representation S(i)
by

S(i)j =

{
K if j = i ,

0 if j 6= i ,
and S(i)α = 0

for j ∈ Q0 and α ∈ Q1. This representation is simple.
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Simple representations

Lemma

Let X be a representation of a quiver Q and i ∈ Q0 is a vertex.

Suppose that Xi 6= 0 and Xα = 0 for each arrow α ∈ Q1 starting at i .

Then representation S(i) is a subrepresentation of X .

Proof.

We need to verify that

S(i)j is a subspace of Xj for each vertex j

0 ⊆ Xj for j 6= i
K ⊆ Xi

0 = S(i)α(x) = Xα(x) for each α ∈ Q1 and x ∈ S(i)s(α)

if s(α) = i , we have Xα = 0 by assumption
for s(α) 6= i we have S(i)s(α) = 0
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Simple representations

Lemma

Let

Q be a quiver with no oriented cycles,

S be a simple representation of Q.

Then there exits a unique vertex i ∈ Q0 such that S ∼= S(i).

Proof.

This follows from the previous lemma:

No oriented cycles =⇒ ∃i ∈ Q0 s. t. ∀α ∈ Q1 starting at i : Sα = 0.
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Simple representations

Lemma

Let

Q be a quiver with no oriented cycles,

S be a simple representation of Q.

Then there exits a unique vertex i ∈ Q0 such that S ∼= S(i).

Proof.

This follows from the previous lemma:

No oriented cycles =⇒ ∃i ∈ Q0 s. t. ∀α ∈ Q1 starting at i : Sα = 0.

Take the longest “path of non-zero linear maps” in S . The last vertex of
that path is the desired vertex i .
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Simple representations

Lemma

Let

Q be a quiver with no oriented cycles,

S be a simple representation of Q.
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Proof.

This follows from the previous lemma:

No oriented cycles =⇒ ∃i ∈ Q0 s. t. ∀α ∈ Q1 starting at i : Sα = 0.
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Direct sums

Definition

Let X 1, . . . ,X r be representations of a quiver Q. A direct sum

X = X 1 ⊕ X 2 ⊕ · · · ⊕ X r

is a representation given by direct summation in each vertex. That is

Xi = X 1
i ⊕ · · · ⊕ X r

i for each vertex i .

The linear maps are defined componentwise, that is

Xα = (X 1
α, . . . ,X

r
α) for each arrow α.

Definition

If a representation X can be written as a direct sum of X 1, . . . ,X r ,
we call X 1 ⊕ · · · ⊕ X r a decomposition of X .

If X can not be written as a direct sum of non-zero representations,
we say X is indecomposable.
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Krull-Schmidt theorem

Theorem (Krull-Schmidt)

Let X be a finite dimensional representation. Then there exists a
decomposition

X = (X 1)a1 ⊕ (X 2)a2 ⊕ · · · ⊕ (X r )ar

with X i pairwise non-isomorphic and indecomposable.

The decomposition is unique, i. e. if

X = (Y 1)b1 ⊕ (Y 2)b2 ⊕ · · · ⊕ (Y r )bs

is another decomposition, then r = s and after reordering X i ∼= Y i ,
ai = bi .
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Finite representation type

Definition

Let Q be a quiver. We say Q is of finite representation type if there exists
up to an isomorphism only finitely many indecomposable representations
of Q.

Gabriel’s theorem classifies the quivers which are of finite
representation type.
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Example - decomposition

Let X be a representation of the n-subspace quiver.

0

1 2 3 ... n

Then X admits a unique decomposition
X = X ′ ⊕ X (1)⊕ X (2)⊕ · · · ⊕ X (n) such that

X (i) is a direct sum of copies of S(i) for 1 ≤ i ≤ n,
X ′ is a subspace representation, i. e. each map Xαi : X ′

i → X ′
0 is

injective.

X (1)⊕ X (2)⊕ · · · ⊕ X (n) is a representation which has KerXαi in a
vertex i .
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Underlying graph

By a finite graph we mean a quiver without an orientation,
i. e. a non-oriented graph with multiple edges and loops.

Let Q be a quiver. By Q we denote a graph created from Q by
forgetting the orientation. We call Q an underlying graph of Q.

We will now work with an arbitrary graph Γ .

We will define a symmetric bilinear form and a quadratic form for Γ .
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Finite graphs

Definition

Let Γ be a finite graph with set of vertices {1, . . . , n}. By dij = dji

we denote the finite number of edges joining verices i and j .

We define a symmetric bilinear form (−,−) : Zn → Z for Γ by

(ei , ej) =

{
−dij if i 6= j ,

2− dii if i = j .

We also define a quadratic form q : Zn → Z for Γ by

q(x) =
n∑

i=1

x2
i −

n∑
i≤j

dijxixj =
n∑

i=1

(1− dii )x2
i −

n∑
i<j

dijxixj

Note that q(x) = 1
2 (x , x). Also (x , y) = q(x + y)− q(x)− q(y).

That means Γ , q and (−,−) determine each other.
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We define a symmetric bilinear form (−,−) : Zn → Z for Γ by

(ei , ej) =

{
−dij if i 6= j ,

2− dii if i = j .

We also define a quadratic form q : Zn → Z for Γ by

q(x) =
n∑

i=1

x2
i −

n∑
i≤j

dijxixj =
n∑

i=1

(1− dii )x2
i −

n∑
i<j

dijxixj

Note that q(x) = 1
2 (x , x). Also (x , y) = q(x + y)− q(x)− q(y).

That means Γ , q and (−,−) determine each other.
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Finite graphs

Definition

We define radical of the form q : Zn → Z by

rad q = {x ∈ Zn | (x ,−) = 0}

A vector x ∈ Zn is radical if x ∈ rad q

A vector x ∈ Zn is sincere if xi = 0 for all i

We say that q is

positive definite if q(x) > 0 for all non-zero x ∈ Zn

positive semi-definite if q(x) ≥ 0 for all x ∈ Zn
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Onďrej Draganov (MFF UK) Gabriel’s Theorem November 20, 2015 21 / 34



Finite graphs

Lemma

Let

Γ be connected finite graph (and (−,−), q are defined as before)

y ∈ Zn be a positive radical vector, i. e.

yi ≥ 0 for all i
(x , y) = 0 for all x ∈ Zn

Then

y is sincere (i. e. yi 6= 0 for all i)

q is positive semi-definite

q(x) = 0 ⇐⇒ x ∈ Qy ⇐⇒ x ∈ rad q (for all x ∈ Zn)
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Finite graphs
proof of the lemma

We know that Γ is connected and y is positive radical vector.

We want to prove that y is sincere.

We have 0 = (ei , y) = (2− 2dii )yi −
∑
j 6=i

dijyj for every i

Suppose yi = 0 for some i .

Then
∑
i 6=j

dijyj = 0.

So yj = 0 for all j such that i and j are joined by at least one edge.
That means y = 0, because Γ is connected.
But we assumed y to be non-zero.

So y has to be sincere.
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Finite graphs
proof of the lemma

We know that y is sincere and positive and
0 = (ei , y) = (2− 2dii )yi −

∑
j 6=i dijyj for every i

We want to prove that q is positive semi-definite.

q(x) =
∑
i

(1− dii )x2
i −

∑
i<j

dijxixj =
∑
i

(2− 2dii )yi
1

2yi
x2
i −

∑
i<j

dijxixj

=
∑
i 6=j

dijyj
2yi

x2
i −

∑
i<j

dijxixj =
∑
i<j

dij
yj

2yi
x2
i −

∑
i<j

dijxixj +
∑
i<j

dij
yi

2yj
x2
j

=
∑
i<j

dij
yiyj

2

(
x2
i

y 2
i

− 2
xixj
yiyj

+
x2
j

y 2
j

)
=
∑
i<j

dij
yiyj

2

(
xi
yi
−

xj
yj

)2

≥ 0
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Onďrej Draganov (MFF UK) Gabriel’s Theorem November 20, 2015 24 / 34



Finite graphs
proof of the lemma

We know that y is sincere and positive and
0 = (ei , y) = (2− 2dii )yi −

∑
j 6=i dijyj for every i

We want to prove that q is positive semi-definite.

q(x) =
∑
i

(1− dii )x2
i −

∑
i<j

dijxixj =
∑
i

(2− 2dii )yi
1

2yi
x2
i −

∑
i<j

dijxixj

=
∑
i 6=j

dijyj
2yi

x2
i −

∑
i<j

dijxixj =
∑
i<j

dij
yj

2yi
x2
i −

∑
i<j

dijxixj +
∑
i<j

dij
yi

2yj
x2
j

=
∑
i<j

dij
yiyj

2

(
x2
i

y 2
i

− 2
xixj
yiyj

+
x2
j

y 2
j

)
=
∑
i<j

dij
yiyj

2

(
xi
yi
−

xj
yj

)2

≥ 0
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Finite graphs
proof of the lemma

We know that q(x) =
∑
i<j

dij
yiyj

2

(
xi
yi
− xj

yj

)2
≥ 0, Γ is connected and

y is radical

We want to prove that q(x) = 0 ⇐⇒ x ∈ Qy ⇐⇒ x ∈ rad q

If q(x) = 0 then xi
yi

=
xj
yj

for all i , j such that i and j are joined by

an edge. Because Γ is connected, it holds for all i , j .

That means x ∈ Qy .

If x ∈ Qy then x ∈ rad q since y ∈ rad q.

If x ∈ rad q then q(x) = 1
2 (x , x) = 0.
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Finite graphs

We proved the lemma:

Lemma

Let

Γ be connected finite graph (and (−,−), q are defined as before)

y ∈ Zn be a positive radical vector, i. e.

yi ≥ 0 for all i
(x , y) = 0 for all x ∈ Zn

Then

y is sincere (i. e. yi 6= 0 for all i)

q is positive semi-definite

q(x) = 0 ⇐⇒ x ∈ Qy ⇐⇒ x ∈ rad q (for all x ∈ Zn)
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Dynkin diagrams

. . .An

. . .Dn

E6

E7

E8

An and Dn have n vertices.

Gabriel’s theorem: A quiver Q is of finite representation type ⇐⇒
The underlying graph Q is a Dynkin diagram.
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Euclidean diagrams

. . .

. . .
Ãm

. . .D̃m

Ẽ6

Ẽ7

Ẽ8

Ãm and D̃m have m + 1 vertices.

Euclidean diagrams are the smallest graphs that are not Dynkin, i. e.
every non-Dynkin graph has some Euclidean subgraph.
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Finite graphs classification

Theorem

Let Γ be a connected graph and q the corresponding quadratic form.

(1) Γ is a Dynkin diagram ⇐⇒ q is positive definite

(2) Γ is an Euclidean diagram ⇐⇒ q is positive semi-definite but not
positive definite. In that case there is a unique positive vector δ such
that rad q = Zδ

We will prove the theorem in three steps.

a) We prove “ =⇒ ” in (2).
b) We prove “ =⇒ ” in (1).
c) We prove that if Γ is neither Dynkin nor Euclidean then q(x) < 0 for

some x ∈ Zn.
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Finite graphs classification
proof of the theorem

a) If Γ is Euclidean then q is positive semi-definite but not positive and
there exists δ ∈ Zn such that rad q = Znδ.

Each vertex i is now marked with the value δi of δ:

1

1 . . . 1

1

1 . . . 1

Ãm

1

1

2 . . . 2

1

1

D̃m

1 2 3 2 1

2

1

Ẽ6

1 2 3 4 3 2 1

2

Ẽ7

2 4 6 5 4 3 2 1

3

Ẽ8

We check: 0 = 2δi −
∑

j :dij 6=0

δj

For Ã2 ( 1 1 ): (2− 2dii )δi −
∑
j 6=i

dijδj = 2δi − 2δj = 0, where i 6= j
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Onďrej Draganov (MFF UK) Gabriel’s Theorem November 20, 2015 30 / 34
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proof of the theorem

a) If Γ is Euclidean then q is positive semi-definite but not positive and
there exists δ ∈ Zn such that rad q = Znδ.
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We check: 0 = 2δi −
∑

j :dij 6=0

δj (for every i)

So we have positive δ ∈ rad q. Claim now follows from the lemma.
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Finite graphs classification
proof of the theorem

b) If Γ is Dynkin then q is positive definite.

This follows from a), because:

There exists a Euclidean diagram Γ̃ such that Γ is obtained by deleting
some vertex e (WLOG e=0).
For Γ̃ we have qΓ̃ (x) = 1

2 (x , x)Γ̃ > 0 for every non-zero vector x ∈ Zn

such that xe = 0 (because x /∈ Zδ)

x0 = 0, so we have

qΓ (x) =
n∑

i=1

x2
i −

n∑
i ,j=1
i≤j

dijxixj =
n∑

i=0

x2
i −

n∑
i ,j=0
i≤j

dijxixj = qΓ̃ (x) > 0
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Finite graphs classification
proof of the theorem

c) If Γ is neither Dynkin nor Euclidean then q(x) < 0 for some x ∈ Zn

We find a Euclidean subgraph Γ ′ with radical vector δ.

If the vertices of Γ and Γ ′ are the same put x = δ
(some dij is greater in Γ then in Γ ′ and δ is positive)
Let Γ has more vertices. Take some vertex i such that i ∈ Γ \ Γ ′, but
i is joined with Γ ′ by an edge. Put x = 2δ + ei .

q(x) =
n∑

i=1

(1− dii )x2
i −

n∑
i<j

dijxixj

(x , ei ) = (2−2dii )xi +
∑
j 6=i

−dijxj

q(2δ + ei ) = q(2δ) + (2δ, ei ) + q(ei )

≤ 0 + (2
∑
j 6=i

−dijδj︸ ︷︷ ︸
≤−1

) + (1− dii )︸ ︷︷ ︸
≤1

< 0
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Roots

Definition

Let Γ be Dynkin or Euclidean. We define

∆ = {x ∈ Zn | q(x) ≤ 1} .

A non-zero element of ∆ is called root.

Lemma

Let Γ be Dynkin or Euclidean. Then

Each ei is a root.

If x ∈ ∆, then also −x ∈ ∆.

If x ∈ ∆ and y ∈ rad q, then also x + y ∈ ∆

Every root is either positive or negative.

For Euclidean diagram ∆/rad qisfinite

For Dynkin diagram ∆ is finite.
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Thank you for your attention!
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