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Signature Scheme

Definition (Signature Scheme)

Signature scheme is a tuple (Key-Gen,Sign,Ver) of
polynomial time probabilistic algorithms.

Key-Gen generates a pair of keys (Priv,Pub)
Sign takes Priv and a message M and produces a
signature S
Ver takes a signature S and a public key Pub and checks
whether the signature is valid
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Adaptively Chosen Message Attack Unforgeability

Definition (Existential Unforgeability)

The signature scheme is unforgeable if no adversary who is
given the public key and the signatures of n messages
adaptively chosen by himself, can produce the signature of a
new message with non-negligible probability.

Remark
This is the strongest known form of the signature scheme
unforgeability.
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Hash Functions and their Properties

Definition

A hash function is a function H : 2∗ → 2k for some fixed k .

Definition
Assume that domain of a hash function H is finite. Then H is
`-collision-free if there is no `-tuple (x1, . . . , x`) of pairwise
distinct elements for which H (x1) = · · · = H (x`). If ` = 2, we
just say collision-free.

Definition
A hash function H is `-collision-resistant if the above mentioned
`-tuple is computationally impossible to be found. If ` = 2, we
just say collision-resistant.
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Random Oracle

A model of an ideal hash function
Returns random (uniformly distributed) value for any new
input
Returns consistent answers for previous inputs
A simulator may define uniformly distributed answers for
inputs that have not yet been queried
Proofs in random oracle models are questionable
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Common Assumptions for the Signature Schemes

Let p, q be primes, q | p − 1
Let g ∈ Z∗p be an element of order q
Let G and H be hash functions with ranges G and H

q/2 < |G|
|H| < 2q
G is `-collision resistant or `-collision free
H is a random oracle

The Key-Gen algorithm
Take the private key X ∈ Z∗q at random

Compute the public key Y = gX mod p
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DSA

The Sign algorithm
Take k ∈ Z∗q at random
Compute the following:
R = gk mod p T = R mod q
U = H (M) S = (U + XT ) /k mod q

The signature is (S,T )

The Ver algorithm

Check whether gU/SY T/S mod p mod q = T , where
U = H (M)
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DSA-I Variant

The Sign algorithm
Take k ∈ Z∗q at random
Compute the following:
R = gk mod p T = G (R)
U = H (M) S = (U + XT ) /k mod q

The signature is (S,T )

The Ver algorithm

Check whether gU/SY T/S mod p mod q = T , where
U = H (M)
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DSA-II Variant

The Sign algorithm
Take k ∈ Z∗q at random
Compute the following:
R = gk mod p T = G (R)
U = H (M,T ) S = (U + XT ) /k mod q

The signature is (S,T )

The Ver algorithm

Check whether gU/SY T/S mod p mod q = T , where
U = H (M,T )
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KCDSA

The Sign algorithm
Take k ∈ Z∗q at random
Compute the following:
R = gk mod p T = G (M)
U = H (R) S = (k − T ⊕ U) /X mod q

The signature is (S,U)

The Ver algorithm

Compute T = G (M), EG = T ⊕ U, W = gEGY S mod p
Check whether U = H (W )
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Common Assumptions for TEGTSS Schemes
Fi Functions

There exist functions

F1 : (Zq,Zq,G,H)→ Zq

F2 : (Zq,G,H)→ Zq

F3 : (Zq,G,H)→ Zq

satisfying for all (k ,X ,T ,U) ∈ (Zq,Zq,G,H) the following
equation

F2 (F1 (k ,X ,T ,U) ,T ,U)

+X ·F3 (F1 (k ,X ,T ,U) ,T ,U) = k mod q
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Common Assumptions for TEGTSS Schemes
Verification Equation

Definition
A tuple (W ,S,T ,U) satisfies the TEGTSS Verification Equation
if W = gEGY EY mod p for EG = F2 (S,T ,U) and
EY = F3 (S,T ,U).

Note
If the tuple (W ,S,T ,U) satisfies the TEGTSS Verification
Equation, it does not necessarily mean that U = H (W ) for
TEGTSS-I or T = G (W ) for TEGTSS-II (i.e. the tuple is
verifiable).
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TEGTSS-I
Algorithms

The Sign algorithm
Take k ∈ Z∗q at random
Compute the following:
R = gk mod p T = G (M)
U = H (R) S = F1 (k ,X ,T ,U)

The signature is (S,U)

The Ver algorithm

Compute T = G (M), EG = F2 (S,T ,U), EY = F3 (S,T ,U)
and W = gEGY EY mod p
Check whether U = H (W )
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TEGTSS-I
Required Properties

Let the tuples (W ,Si ,Ti ,Ui), i = 1,2 satisfy the TEGTSS
Verification equation, let (W ,S1,T1,U1) be verifiable. Then the
following must hold:

if T1 6= T2 and (W ,S2,T2,U2) is verifiable, then
F3 (S1,T1,U1) 6= F3 (S2,T2,U2)

let (W ,S1,T1,U1) be fixed, then there is a one-to-one
mapping between the values U2 and T2 such that
F3 (S1,T1,U1) = F3 (S2,T2,U2)
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TEGTSS-I
Example

Lemma
The KCDSA scheme is a TEGTSS-I scheme.

Proof.
Trivial and technical.
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TEGTSS-II
Algorithms

The Sign algorithm
Take k ∈ Z∗q at random
Compute the following:
R = gk mod p T = G (R)
U = H (M,T ) S = F1 (k ,X ,T ,U)

The signature is (S,T )

The Ver algorithm

Compute U = H (M,T ), EG = F2 (S,T ,U),
EY = F3 (S,T ,U) and W = gEGY EY mod p
Check whether T = G (W )
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TEGTSS-II
Required Properties

For given T , EG and EY , there exists a unique pair (U,S) such
that EG = F2 (S,T ,U) and EY = F3 (S,T ,U). This pair is easy
to find.
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TEGTSS-II
Example

Lemma
The DSA-II scheme is a TEGTSS-II scheme.

Proof.
Trivial and technical.
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Theorem
Let us have an attacker A that is able to perform an existential
forgery against TEGTSS scheme with probability ε > 4/q after
Q queries to the H function. Let H be a random oracle.

for TEGTSS-I scheme, if G is collision-resistant, then one
extracts the secret key X with less than 24Q/ε replays of
A, with constant probability greater than 1/100
for TEGTSS-II scheme, if

G is (`+ 1)-collision-resistant
or, x 7→ G (gx mod p) is (`+ 1)-collision-free,

then one extracts the secret key X with less than
25Q log2 (2`) /ε replays of A, with constant probability
greater than 1/100.
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Proof Strategy

construct a simulator B that signs the supplied messages
in a way indistinguishable from the legitimate signer
the attacker is able to perform forgery using only the
simulator
let us assume that A constructs a new verifiable tuple
(M,R,S,T ,U), M a new message, U not defined by the
simulator
use "forking lemma" to obtain two representations of
R = gEGY EY = gE ′

GY E ′
Y , which leads to X
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Forking Lemma Details

choose new random oracles and run the attack multiple
times
there is a constant probability that one find ` verifiable
tuples (Mi ,Ri ,Si ,Ti ,Ui), such that Ui are pairwise distinct
and

all Ri equal for TEGTSS-I
all (Mi ,Ti) equal for TEGTSS-II
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TEGTSS-I Simulator

the simulator gets M
computes T = G (M)

chooses S and U at random
computes R like in the verification algorithm
defines H (R) = U (this may fail)
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TEGTSS-I Proof Sketch

we have a verifiable tuple (M,R,S,T ,U)

case 1: H (R) was defined by the simulator in the process
of singing M ′ 6= M

the simulator result was (M ′,R,S′,T ′,U ′)
T = G (M) 6= G (M ′) = T ′ (collision resistance)

case 2: H (R) was defined by a direct query to H
by forking lemma, we have two tuples (M1,R,S1,T1,U1)
and (M2,R,S2,T2,U2), Ui pairwise distinct
if F3 equals for these tuples, we get
T1 = G (M1) = G (M2) = T2, a contradiction

by TEGTSS-I properties, F3 6= F ′3
we get two representations of R
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Thanks
Thank you for your attention.
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