another proof of cayley’s formula

an introduction to analytic combinatorics
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Cayley’s formula

Cayley’s formula
For every n € N, the number of labelled trees on n vertices is n®~2.
Equivalent problem

For every n € N, the number of labelled, rooted trees on n vertices is
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Overview

1. Find the generating function (implicit expression)
Symbolic method

2. Analysis of the generating function
Lagrange inversion theorem



Definition

A combinatorial class, or simply a class, is a finite or denumerable set
on which a size function is defined, satisfying the following conditions:

1. the size of an element is a non-negative integer

2. the number of elements of any given size is finite



Definition

The counting sequence of a class A is the sequence of integers (An)n>0
where A, is the number of objects in class A that have size n.



Definition

The counting sequence of a class A is the sequence of integers (An)n>0
where A, is the number of objects in class A that have size n.

Definition

The ordinary generating function (OGF) of a combinatorial class A is

the formal power series

A(z) = i A, z"
n=0



Definition

The counting sequence of a class A is the sequence of integers (An)n>0
where A, is the number of objects in class A that have size n.

Definition

The exponential generating function (EGF) of a combinatorial class

A is the formal power series

Az) =) %zn A, =n!-[2"]A(2)



The Symbolic Method



The Symbolic Method

Example (Binary Trees (rooted, plane))
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The Symbolic Method

Example (Binary Trees (rooted, plane))



The Symbolic Method

Example (Binary Trees (rooted, plane))
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o Class of binary trees, 7 ={binary trees}, size = # of vertices
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The Symbolic Method

Example (Binary Trees (rooted, plane))
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Z

o Class of binary trees: T ={binary trees}, size = # of vertices
o Atomic class: Z ={e}, size = 1
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The Symbolic Method

Example (Binary Trees (rooted, plane))
/Z\ e /Z\
E E T T

o Class of binary trees: T ={binary trees}, size = # of vertices
o Atomic class: Z ={e}, size = 1
o Neutral class: £ ={empty graph}, size = 0
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The Symbolic Method

Example (Binary Trees (rooted, plane))
/Z\ e /Z\
E g T T
T=ZxEXE+ZXT xT
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The Symbolic Method

Example (Binary Trees (rooted, plane))
/Z\ e /Z\
E E T T

T=ZxEXE+ZXT xT

T(z)=2z-1-14+2z-T(z) T(2) :z(1+T(z)2)
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The Symbolic Method

Observation

1. The EGF of € is 1.

& contains by definition only a single object of size 0.
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The Symbolic Method

Observation

1. The EGF of &€ is 1.
& contains by definition only a single object of size 0.
2. The EGF of Z is z.

Z contains by definition only a single object of size 1.
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The Symbolic Method

Observation

1. The EGF of &€ is 1.
& contains by definition only a single object of size 0.
2. The EGF of Z is z.
Z contains by definition only a single object of size 1.
3. The EGF of A + B is A(z) + B(z), given A N B = 0.
If ANB = 0 then we have either an element from A or from B.

Count elements of size n in A then in B and add them up.
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The Symbolic Method

Observation

The EGF of C = A x B is A(z) - B(z).
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The Symbolic Method

Observation

The EGF of C = A x B is A(z) - B(z).

Let c € A x B, size(c)=n.
Then c is a combination of a and b,
where a € A, size(a)=k and b € B, size(b)=n — k.

= True for OGF’s.
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The Symbolic Method

Observation

The EGF of C = A x B is A(z) - B(z).

When we combine objects, we have to relabel them...
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The Symbolic Method

Observation

The EGF of C = A x B is A(z) - B(z).

But we can’t just relabel randomly, otherwise we doublecount!
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The Symbolic Method

Observation

The EGF of C = A x B is A(z) - B(z).

Relabeling has to be order-preserving

PAS AN A4S

18



The Symbolic Method

Observation
The EGF of C = A x B is A(z) - B(z).

Choose k labels for left object, use the other (n-k) labels for right
object

- n = Ak B —k
p— f— | —_—
Ca=)_ (k)AkB“k e kZ:0 K (n—k)

k=0
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The Symbolic Method

Sequence Construction
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The Symbolic Method

Sequence Construction

l
A

A

A=Z x(E+A)
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The Symbolic Method

Sequence Construction

A
VANVA

A=ZxE+A+AxA)
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The Symbolic Method

Sequence Construction

I
VANVANAN

£ = e

A=Zx(E+A+AXA+AXAXA)

23



The Symbolic Method

Sequence Construction

///R
AN A AN A

& -

A=Zx(E+A+AXA+AXAXA+...)
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The Symbolic Method

Sequence Construction

é /\ /\ /N <+ ORDERED)

\_.

A=Zx(E+A+AXA+AXAXAH+...)
= Z x SEQ(A)
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The Symbolic Method

Sequence Construction

é /\ /\ /N <+ ORDERED)

\_.

A=Zx(E+A+AXA+AXAXAH+...)
= Z x SEQ(A)

A(z) = Z'ZA(Z)H = Z.I%A(Z)

n>0
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The Symbolic Method

Set Construction

L\ /\ /\ v < UNORDERED !

" \_

A =Z x SET(A)
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The Symbolic Method

Set Construction

L\ /\ /\ v < UNORDERED |

" \_

A =Z x SET(A)

A@)?  AQ)*

A) = o-(1+ A + 20 2D A

...) = z-exp(A(z))
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If we can (literally) describe a combinatorial class in terms of "and,
or, set, sequence", we can immediatly derive the generating function!

Construction |  Symbolic | EGF
Sum A+B A(z) + B(2)
Product A x B A(z) - B(z)
Sequence SEQ(A) (1 —A(z)!
Set SET(A) exp(A(2))
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Analysis of the EGF



Singularity Analysis

Theorem (Cauchy-Hadamard)

Let A(z) = 3,51 An(z — )" be a power series with A,,c € C. Then
the radius of convergence of A at the point c is given by

1 1
— = limsup |A,|»
R~ msup |l
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Singularity Analysis

Theorem (Cauchy-Hadamard)

Let A(z) = 3,51 An(z — )" be a power series with A,,c € C. Then
the radius of convergence of A at the point c is given by

1 1
— = limsup |A,|»
R~ msup |l

|An| ~ R7"¢(n)

— "Singularity analysis"
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Cauchy Integral Formula

Theorem (Cauchy Integral Formula)

Let f be a holomorph function in an open subset D C C and let
B;(c) € D. Then it holds for all z € B,(c):

()= 5 [ ay

2mi Jopy — 2

As a consequence, f is analytic in B, (c) and for its Taylor series
f(z) = > fu(z — ¢)" it holds that

1 f(y)
fo=— | — g
2mi Jop (y — c)nr1

30



Cauchy Integral Formula

)
N

If f is "nice" in D then it has Taylor series f(z) = > f,(z—c¢)" in B and

1 f(y)
- — [ Y g4
2mi /aB (y— ot

n

—> Basis for most basic theorems in analytic combinatorics
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Lagrange Inversion Theorem

Theorem (Lagrange Inversion Theorem)

Let ¢(u) = > 150 $ruk be a power series of C[[u]] with ¢g # 0. Then,
the equation A = z¢(A) admits a unique solution in C[[u]] whose
coefficients are given by

A(Z) =Y Aus,  where A, = %[un—%(u)n

n>1
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Cayley’s formula
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Cayley’s formula

\ /\ /" /\ <+ UNORDERED !

— —_—

A=Z xSET(A) = A(z)= Z %z“ =1z-exp(A(z))

n>0
By Lagrange Inversion Theorem:

% - [ “A(z) = %{ " exp(u)”

nfl n—1

-1 (nu)* . n
]Z n! _nn—l) !

n>0
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