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Motivation

Perfect secrecy is impractical

Computational security has its flaws
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Entropy

Definition

Given two random variables X, Y we define the following functions:
Entropy

H(X ) = −
∑
x∈X

Pr(X = x)log2Pr(X = x)

Mutual information

I (X ;Y ) =
∑
x∈X

∑
y∈Y

Pr(X = x ,Y = y)log2(
Pr(X = x ,Y = y)

Pr(X = x)Pr(Y = y)
)
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Entropy

Definition

Given two random variables X, Y we define the following functions:
Joint entropy

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

Pr(X = x ,Y = y)log2Pr(X = x ,Y = y)

Conditional entropy

H(X |Y ) = H(X ,Y )− H(Y )
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Cryptosystem

Definition

A (shared-key) cryptosystem is a 3-tuple (M,K, enc) where:

M is a finite set of possible messages (message space)

K is a finite set of possible keys (key space)

the encoder enc is a function M×K → C to some space C
such that ∀k ∈ K : enc( , k) is injective.

Examples

AES: M = {0, 1}128 = C,K = {0, 1}128 or 192 or 256,
the encryption function for a given key is a bijection.
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Cryptosystem 2

Definition

Let C = {c |∃m ∈M∃k ∈ K : c = enc(m, k)} be the ciphertext
space.

Definition

Let the decoder dec be the function C × K →M such that
dec(enc(m, k), k) = m.

The existence of dec is guaranteed by the injectivity of enc .
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Perfect secrecy

Let M/C/K be a random variable on the support set M/C/K.
We assume that M and K are independent, i.e.
H(M,K ) = H(M) + H(K ).

Definition

A cryptosystem attains perfect secrect iff H(M) = H(M|C ).

As the name mutual information suggests the following equivalence
holds: H(M) = H(M|C )⇔ I (M;C ) = 0.

Lemma

Perfect secrecy implies |K| ≥ |M|.

Wait. . . isn’t that a little bit impractical?
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Message equivocation H(M|C )

I (M;C ) = H(M)− H(M|C ), i.e. perfect secrecy implies
H(M|C ) = H(M)

Shannon: H(K ) ≥ H(M) necessary condition for perfect
secrecy

H(M|C ) ≤ min(H(M),H(K ))

Theoretical maximal equivocation achieved when
corresponding to min(H(M),H(K ))
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Adolf Sťreda Attainable Unconditional Security for Shared-Key Cryptosystems



Intro
Max-Equivocation

Message equivocation H(M|C )

I (M;C ) = H(M)− H(M|C ), i.e. perfect secrecy implies
H(M|C ) = H(M)

Shannon: H(K ) ≥ H(M) necessary condition for perfect
secrecy

H(M|C ) ≤ min(H(M),H(K ))

Theoretical maximal equivocation achieved when
corresponding to min(H(M),H(K ))
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Max-Equivocation

Definition

A cryptosystem achieves max-equivocation iff

H(M|C ) = min(H(M),H(K ))

We could define key-equivocation similarly for H(K |C ).
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Definition

A function f : A× B → C is semi-injective on B iff it holds that
∀a ∈ A∀bi , bj ∈ B : f (a, bi ) = f (a, bj)⇔ bi = bj .

Lemma

f semi-injective on A then |f (A,B)| ≥ |A|. f semi-injective on
both A,B then |f (A,B)| ≥ max(|A|, |B|).

Lemma

f semi-injective on A, A r.v. on A, C r.v. on C then
H(A) ≤ H(C ).

Proof.

|f (A,B)| = |A| ⇒ ∃c ∈ f (A,B) corresponding to each a ∈ A.
|f (A,B)| > |A| ⇒ ∃ci 6= cj : f (a, bx) = ci , f (a, by ) = cj . This
increases entropy, i.e. H(A) ≤ H(C ).
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Semi-injectivity in cryptosystems

Let (M,K, enc) be a cryptosystem.

Lemma

max(H(M),H(K )) ≤ H(C ) ≤ H(M) + H(K )

Lemma

H(C |M) = H(K )

Utilising these two lemmata, we set bounds for equivocation

Theorem

0 ≤ H(M|C ) ≤ min(H(M),H(K ))
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Corollary

H(C ) = max(H(M),H(K ))⇔ H(M|C ) = min(H(M),H(K ))

Proof.

H(M|C ) = H(C |M) + H(M)− H(C ) = H(K ) + H(M)− H(C )
that is H(M|C ) maximal iff H(C ) minimal
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Key-reuse

Let ~m ∈Mn be a vector of messages, similarly ~k ∈ Kn vector of
keys. Since H( ~M) = nH(M) (mi are independent), the
equivocation of the repeated transmission is:

H( ~M, ~C ) = H( ~C | ~M) + H( ~M)− H( ~C )

= H( ~C | ~M) + nH(M)− H( ~C ) = H( ~K ) + nH(M)− H( ~C )

Independent keys: H( ~K ) = nH(K ); same key: H( ~K ) = H(K ).

Theorem

H(M|C ) = H(K |C )

Using this observation and the theorem we may show that
equivocation does not differ between encrypting using parts of the
total shared key or repeatedly using the shared key.
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Bounds on Key Equivocation

Theorem

0 ≤ H(K |C ) ≤ min(H(K ),H(M))

Theorem

I (M,K ;C ) ≥ |H(K )− H(M)|

This theorem states that the information leakage about the
message and the key is minimal when they have the same size.
Moreover, it shows that using a key with entropy than the message
is unnecessary.

Lemma

If H(K ) > H(M) and perfect secrecy holds then H(M) bits of the
key are used to protect the message with perfect secrecy and the
rest is leaked to the attacker.
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