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GNSs in the complex plane
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In�nitely many GNSs with the same radix

Number systems in Z

Examples of number systems in Z:
The binary system: radix 2, alphabet {0, 1}. Represents all
nonnegative integers. Not a GNS.

The decimal system: radix 10, alphabet {0, 1, . . . , 9}.
Represents all nonnegative integers. Not a GNS.

De�nition

Having a nonzero radix β ∈ Z and a �nite alphabet A ⊂ Z
containing 0: The pair (β,A) is a GNS in Z if every element

0 6= x ∈ Z has a unique representation of the form

x =
N∑

k=0

akβ
k , N ∈ N0, ak ∈ A, aN 6= 0.

J. Krásenský Number systems in the complex plane and in lattices



GNSs in the complex plane
GNSs in lattices

In�nitely many GNSs with the same radix

Number systems in Z

Examples of number systems in Z:
The binary system: radix 2, alphabet {0, 1}. Represents all
nonnegative integers. Not a GNS.

The decimal system: radix 10, alphabet {0, 1, . . . , 9}.
Represents all nonnegative integers. Not a GNS.

De�nition

Having a nonzero radix β ∈ Z and a �nite alphabet A ⊂ Z
containing 0: The pair (β,A) is a GNS in Z if every element

0 6= x ∈ Z has a unique representation of the form

x =
N∑

k=0

akβ
k , N ∈ N0, ak ∈ A, aN 6= 0.

J. Krásenský Number systems in the complex plane and in lattices



GNSs in the complex plane
GNSs in lattices

In�nitely many GNSs with the same radix

Number systems in Z

Further examples of number systems in Z:
Negabinary system (Vittorio Grünwald, 1885): Radix −2,
alphabet {0, 1}. A GNS in Z.
Weighted ternary system: Radix 3, alphabet {−1, 0, 1}. A
GNS in Z.

De�nition

Having a nonzero radix β ∈ Z and a �nite alphabet A ⊂ Z
containing 0: The pair (β,A) is a GNS in Z if every element

0 6= x ∈ Z has a unique representation of the form

x =
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A peek into other rings

Z can be replaced by any ring R . For us mostly R ⊂ C, discrete.
The main example: Gaussian integers Z[i] = {a+ bi | a, b ∈ Z}.

De�nition

Having a nonzero radix β ∈ R and a �nite alphabet A ⊂ R
containing 0: The pair (β,A) is a GNS in R if every element

0 6= x ∈ R has a unique representation of the form

x =
N∑

k=0

akβ
k , N ∈ N0, ak ∈ A, aN 6= 0.

The system (−2, {0, 1, i, 1+ i}) is a GNS in Z[i].
Penney, 1965: (−1+ i, {0, 1}) is a GNS in Z[i].

−1 = (11101)−1+i = (−1+i)4+(−1+i)3+(−1+i)2+(−1+i)0.

However, (+1+ i, {0, 1}) is not a GNS in Z[i].
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Necessary conditions for a GNS

Proposition

If (β,A) is a GNS in R , then:

A is a complete residue system modulo β,

|β| 6= 0, 1,

|1− β| 6= 1.

These conditions are not su�cient! The decimal system satis�es

them all.
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Algorithm for �nding the representation of x ∈ R

(Supposing A is a CRS modulo β.)

Find the last digit a (by congruence);

compute the successor ϕ(x) := (x − a)β−1;

�nd the representation of ϕ(x).

Example: Compute the representation of 1 in (3, {−11, 0, 5}).
x = 1.

x = 1 ≡ −11 (mod 3). ϕ(x) = (1− (−11))/3 = 4.

ϕ(x) = 4 ≡ −11 (mod 3). ϕ2(x) = (4− (−11))/3 = 5.

ϕ2(x) = 5 ≡ 5 (mod 3). ϕ3(x) = (5− 5)/3 = 0. End.

We have found the representation

1 =
(
5(−11)(−11)

)
3
= 5 · 32 + (−11) · 3+ (−11).

Example 2: In (−1+ i, {0, 1}), we have −1 = (11101)−1+i.

Example 3: There is no representation of −16 in the decimal

system.
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Corollaries of the algorithm:

If A is a CRS modulo β, then every x ∈ R has at most one

representation.

The system (β,A) is a GNS i� the algorithm terminates for

every x ∈ R .

Proposition

If A is a complete residue system modulo β and |β| 6= 0, 1, then
(β,A) is a GNS if and only if there exist a representation of all

elements of the testing set

T :=

{
x ∈ R : |x | ≤ K

|β| − 1

}
, where K := max

a∈A
|a|.

Idea of the proof: If x /∈ T , then |ϕ(x)| < |x |.
Furthermore: If x ∈ T , then ϕ(x) ∈ T . Therefore all periodic

points of ϕ lie inside of T .
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Crutial note: If R is discrete, then it is simple to check the GNS

property for any given (β,A).

Questions:

1 Fully characterise GNSs with a given radix.

Open even for R = Z, β = 3.

2 Examine a given type of alphabet for all radices.

{0, 1, . . . , |β| − 1} gives a GNS in Z i� β ≤ −2.
{−1, 0, . . . , |β| − 2} gives a GNS in Z i� β 6= −1, 0, 1, 2.

3 Characterise all possible radices in the given ring.

In Z the conditions |β| 6= 1, |1− β| 6= 1 su�ce.

4 Many other questions of various �avours: algoritmisation,

topology, dynamical systems, . . .
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2 Examine a given type of alphabet for all radices.

{0, 1, . . . , |β| − 1} gives a GNS in Z i� β ≤ −2.
{−1, 0, . . . , |β| − 2} gives a GNS in Z i� β 6= −1, 0, 1, 2.

3 Characterise all possible radices in the given ring.

In Z the conditions |β| 6= 1, |1− β| 6= 1 su�ce.

4 Many other questions of various �avours: algoritmisation,

topology, dynamical systems, . . .

J. Krásenský Number systems in the complex plane and in lattices



GNSs in the complex plane
GNSs in lattices

In�nitely many GNSs with the same radix

Crutial note: If R is discrete, then it is simple to check the GNS

property for any given (β,A).

Questions:

1 Fully characterise GNSs with a given radix.

Open even for R = Z, β = 3.

2 Examine a given type of alphabet for all radices.

{0, 1, . . . , |β| − 1} gives a GNS in Z i� β ≤ −2.
{−1, 0, . . . , |β| − 2} gives a GNS in Z i� β 6= −1, 0, 1, 2.

3 Characterise all possible radices in the given ring.

In Z the conditions |β| 6= 1, |1− β| 6= 1 su�ce.

4 Many other questions of various �avours: algoritmisation,

topology, dynamical systems, . . .

J. Krásenský Number systems in the complex plane and in lattices



GNSs in the complex plane
GNSs in lattices

In�nitely many GNSs with the same radix

Crutial note: If R is discrete, then it is simple to check the GNS

property for any given (β,A).

Questions:

1 Fully characterise GNSs with a given radix.

Open even for R = Z, β = 3.

2 Examine a given type of alphabet for all radices.

{0, 1, . . . , |β| − 1} gives a GNS in Z i� β ≤ −2.
{−1, 0, . . . , |β| − 2} gives a GNS in Z i� β 6= −1, 0, 1, 2.

3 Characterise all possible radices in the given ring.

In Z the conditions |β| 6= 1, |1− β| 6= 1 su�ce.

4 Many other questions of various �avours: algoritmisation,

topology, dynamical systems, . . .

J. Krásenský Number systems in the complex plane and in lattices



GNSs in the complex plane
GNSs in lattices

In�nitely many GNSs with the same radix

Answers in Z[i]:
1 Fully characterise GNSs with a given radix.

Hopeless.

2 Examine a given type of alphabet for all radices.

Theorem (Kátai, Szabó, 1975)

The canonical alphabet {0, 1, . . . , k − 1} gives a GNS with the

radix β ∈ Z[i] i� β = −n ± i for n ∈ N.

3 Characterise all possible radices in the given ring.

Theorem (Steidl, 1989; Kátai, 1994)

Let β ∈ Z[i]. Then there exists an alphabet A such that (β,A) is a

GNS if and only if |β| 6= 1, |1− β| 6= 1. The same holds in OK

where K is any imaginary quadratic �eld.

4 Some other questions . . .
Behold the next slide!
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Figure: Tiling of the complex plane generated by the Penney system
(−1+ i, {0, 1}).
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A more general setting: lattices

A lattice (Zd);

a radix L ∈ Zd×d ;

a �nite alphabet A ⊂ Zd containing zero.

De�nition

The pair (L,A) is a GNS in Zd if every nonzero element x ∈ Zd

has a unique representation of the form

x =
N∑

k=0

Lkak , N ∈ N0, ak ∈ A, aN 6= 0.

If a ring R has an integral basis, it is isomorphic to a lattice; L can

be chosen by the operator of multiplication by β.
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Necessary conditions

The alphabet A must be a complete residue system modulo L;

the radix L must be expansive, i.e. ρ(L−1) < 1 (Vince, 1993);

det(I − L) 6= ±1 (the �unit condition�).

Proposition

Suppose L ∈ Zd×d is expansive and A is a CRS modulo L. Take
any vector norm satisfying r :=

∥∥L−1∥∥∗ < 1 and denote

K := maxd∈A ‖d‖∗. Then the pair (L,A) is a GNS in Zd if and

only if there exists a representation for every element of the testing

set

T :=
{
x ∈ Zd : ‖x‖∗ ≤

Kr

1− r

}
.
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Classical question: Given a radix L ∈ Zd×d , does there exist an

alphabet such that (L,A) is a GNS?

Theorem (Steidl, 1989; Kátai, 1994)

Let β ∈ Z[i]. Then there exists an alphabet A such that (β,A) is a

GNS if and only if |β| 6= 1, |β − 1| 6= 1. The same holds in OK

where K is any imaginary quadratic �eld.

The used digits lie in a parallelogram around the origin.

Theorem (Germán, Kovács, 2007)

If ρ(L−1) < 1/2, then there always exists an alphabet such that

(L,A) is a GNS.

They use the dense alphabet, i.e. the smallest representative (in a

certain vector norm) from every congruence class.

Reminder: ρ(L−1) < 1 is a necessary condition.
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Question 1: Given a radix L ∈ Zd×d , how many alphabets for this

radix do exist?

So far known:

Radix is not expansive or the unit condition det(I − L) 6= ±1
fails =⇒ there is no such alphabet.

For −2 in Z, only the alphabets {0, 1} and {0,−1} are
suitable.

Similarly, for −1+ i in Z[i] there are only four good alphabets.

Matula, 1982: In Z, for every β with |β| ≥ 3 there are

in�nitely many alphabets.

Theorem (K., 2017)

Let L be an operator on Zd satisfying ρ(L−1) ≤ 1/2 for which 2 is

not an eigenvalue. There always exist in�nitely many GNSs with

radix L except for the case d ≤ 2.
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Sparse alphabets

Question 2: Can all the digits be far away from the origin?

De�nition

Given a radix L ∈ Zd×d , a sequence of alphabets (An)n∈N is called

a family of arbitrarily sparse alphabets if for any given ball B
around the origin, there exists an nB such that for n ≥ nB we have

An ∩ B = {0}.

Equivalently we can require that for any �nite 0 /∈ S ⊂ Zd , the

alphabets An do not use any digits from S for n ≥ nS .

If (L,An) is a GNS for every n, we have a family of arbitrarily

sparse GNSs.
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The �rst result in this direction:

Theorem (Kovács, K., 2017)

Suppose that ρ(L−1) ≤ 1/2 and 2 is not an eigenvalue of L. Then

there exists a family of arbitrarily sparse GNSs except for the case

when every eigenvalue of L is either an integer or a non-real

algebraic number of degree 2, and has geometric multiplicity 1.

I.e.: problems arise only if all factors of the characteristic

polynomial have degree less than 3.

For comparison:

Theorem (Germán, Kovács, 2007)

If ρ(L−1) < 1/2, then there always exists an alphabet such that

(L,A) is a GNS.
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Thank you for your attention.

Especially for any questions!
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Starting point:

Theorem (Germán, Kovács, 2007)

If ρ(L−1) < 1/2, then a GNS always exists.

Results:

Theorem

Suppose that ρ(L−1) ≤ 1/2 and 2 is not an eigenvalue of L. There

always exist in�nitely many GNSs with radix L except for the case

where d = 2 and L has complex eigenvalues (where we do not

know), and the case of radix −2 in Z, where only two GNSs exist.

Theorem

Suppose that ρ(L−1) ≤ 1/2 and 2 is not an eigenvalue of L. Then

there exists a family of arbitrarily sparse GNSs except for the case

when every eigenvalue of L is either an integer or a non-real

algebraic number of degree 2, and has geometric multiplicity 1.
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