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Motivation

Design tangent vector field on a discrete surface that is as
smooth as possible

Theorem (Poincaré ”hairy ball” theorem)

There is no continuous tangent vector field on a sphere without
singularity.
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Theorem (Poincaré ”hairy ball” theorem)

There is no continuous tangent vector field on a sphere without
singularity.



Differential geometry Discrete world Designing tangent vector field Linear system

Motivation

Design tangent vector field on a discrete surface that is as
smooth as possible
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Differential geometry - basic notions

compact surface S

Gaussian curvature K

Theorem (Gauss-Bonnet theorem)

Let S be compact oriented surface, then∫
S
K dH2 = 2π(2− 2g),

where g is genus of the surface S .
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Discrete differential geometry

Definition (Triangle mesh)

Triangle mesh in R3 is a triple S = (V ,E ,F ), where
∀v ∈ V : v ∈ R3, E ⊆ V × V and F ⊆ V × V × V .

compact

without boundary
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Discrete differential geometry

Definition (Discrete Gaussian curvature)

Let S = (V ,E ,F ) be triangle mesh. For vertex v ∈ V we define its
discrete Gaussian curvature as 2π -

∑
i θi , where θi are angles in

adjacent faces to the vertex v
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Discrete differential geometry

Definition (Discrete Gaussian curvature)

Let S = (V ,E ,F ) be triangle mesh. For vertex v ∈ V we define its
discrete Gaussian curvature as 2π -

∑
i θi , where θi are angles in

adjacent faces to the vertex v

Theorem (Discrete Gauss-Bonnet theorem)

Let S = (V ,E ,F ) be compact triangle mesh. Then∑
v∈V

Kv = 2πχ,

where χ = |V | − |E |+ |F | = 2− 2g , is Euler characteristic of the
surface and g is genus of S .
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Dual mesh

Definition (Dual mesh)

Let S = (V ,E ,F ) be triangle mesh. We define its dual mesh S ′ as
triple S ′ = (V ′,E ′,F ′), where

vertices v ′ ∈ V ′ lie in centroid of faces F

faces f ′ ∈ F ′ are polygons with vertices in V ′

edge (v ′i , v
′
j ) ∈ E ′ iff faces fi , fj ∈ F shared an edge
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Discrete connections

Definition (Discrete connection)

Let S ′ = (V ,E ,F ) be a dual mesh of a triangle mesh S .
Discrete connection ω : E ′ → R, that each dual edge e ′ assign
an angle.

Definition (Levi-Civita connection)

Let Φ : E ′ → R be discrete connection. If ∀e ′ ∈ E ′ : ω(e ′) = 0 we
call ω a discrete Levi − Civita connection.
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Holonomy

Definition (Discrete holonomy)

The difference in angle after a vector is transported around
a closed loop is called discrete holonomy , we will denote it h.
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Theorem

Holonomy of a cycle around a vertex is exactly its Gaussian
curvature.
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Trivial connections

to get smooth vector field we set holonomy of each cycle to
be zero

each time when we transport a vector, we rotate it a little

connections describing vanishing holonomy are called
trivial connections
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Singularities

holonomy of a cycle around a vertex equals its Gaussian
curvature

curvature has to be somewhere

instead of making holonomy around some loops zero, we set it
to be 2kπ for some k ∈ N

this is how we get singularity with index k
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Singularities

holonomy of a cycle around a vertex equals its Gaussian
curvature

curvature has to be somewhere

instead of making holonomy around some loops zero, we set it
to be 2kπ for some k ∈ N
this is how we get singularity with index k

Theorem (Poincaré index theorem)

For any surface S = (V ,E ,F )∑
v∈V

indexv = χ,

where χ is Euler characteristic of S .
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Basis

zero holonomy around every cycle

find a basis of cycles on the surface

contractible and non-contractible loops
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Linear system

for each base loop formed by dual edges e ′1, e
′
2, . . . , e

′
l we have

one linear equation

ω(e ′1) + ω(e ′2) + · · ·+ ω(e ′l ) = h,

where h is holonomy of the loop

for contractible cycles we can form vertex-edge incidence
matrix D ∈ {0, 1}|V |×|E |

for 2g non-contractible generators we can form matrix
H ∈ {0, 1}2g×|E |

linear system A~x = ~b, where A =

(
DT

HT

)
, where

A ∈ {0, 1}|E |×(|V |+2g) and ~b is a vector of holonomies
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Linear system

vector field as smooth as possible

as little rotations as possible

the closest solution to the Levi − Civita connection

min
x∈R|E |

||A~x − ~b||
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Thank you for your attention!
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